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Abstract A new hybrid material system was successfully

developed from the combination of polyimide (PI), or-

ganically modified silicate (ORMOSIL), and phospho-

tungstic acid (HPW) from polycondensation reactions and

sol–gel process. The materials were obtained in the form of

flexible and free-standing films, with the formation of PI

and ORMOSIL network confirmed by Fourier transform

infrared. Solid-state phosphorus-31 nuclear magnetic res-

onance evaluated the HPW structure and confirmed its

presence and also structural integrity in the materials after

synthesis procedure. Thermogravimetric analysis revealed

that the materials were thermally stable up to 773 K, and

scanning electron microscopy images and X-ray micro-

fluorescence mapping showed very good compatibility

between the organic and inorganic phases with ORMOSIL

improving the HPW dispersion. Furthermore, both

ORMOSIL and HPW enhanced the permittivity of the

materials from 2.5 to 4.3, compared to the neat PI,

appointing them as potential candidates for electric and

electronic applications.

Introduction

Multifunctional and high performance materials requires

accurate control of their building blocks (atoms, molecules,

crystalline structure) by synthetic design, in order to

achieve fully control their properties (mechanical, thermal,

electrical, etc.) [1, 2]. Nevertheless, hardly a single com-

pound will present the same level of performance when

subjected to different conditions and environments. Thus,

there has been increased interest in hybrid materials,

consisting generally of organic and inorganic components

mixed at the molecular level, with at least one of the

components generated in situ during synthesis [1, 2].

Polyimides (PIs) are thermal stable and mechanical

strength polymers [3]. They are of great interest for the

synthesis of hybrid materials, especially by combination

with Organically Modified Silicates (ORMOSIL), from

polycondensation reactions and sol–gel route [4]. ORMO-

SIL materials are stable in very acidic and slightly basic

media, and act as perfect hosts for enzymes, catalysts,

photochromic compounds, etc., without degrading their

properties [5–7]. Moreover, PI-ORMOSIL system provides

highly intermingled and homogeneous hybrid materials,

with several applications such as insulators in electronic

devices [8–10]. In addition, the introduction of
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phosphotungstic acid (HPW) to PI-ORMOSIL system may

enable its application as a high-temperature polymer

electrolyte (HTPE) to be used in electrical energy storage

devices [11–15]. Aerospace industry currently has a strong

need for compact capacitors for power conditioning

applications operating above 100 �C [16].

HPW is a thermally stable Keggin-type heteropolyox-

ometalate, with formula H3PW12O40, and a very strong

Bronsted–Lowry acid in solid state. It has global symmetry

Td, composed of 12 octahedrons MO6, organized into 4

groups of W3O13, named triads, that share vertices among

themselves and with the PO4 tetrahedron in the center of

the structure [17, 18]. Due to its high solubility in water

and organic solvents, which causes leaching, it is usually

supported on activated charcoal, ionic-exchanged resins,

SiO2, or ZrO2 for solid-state applications [19–21]. How-

ever, the solubility makes this compound a suitable choice

for hybrids materials formed from sol–gel process [19].

Furthermore, HPW is a low-cost choice compound that can

enable electrochemical, photochromic, and photocatalytic

technological platforms operating from environment tem-

perature up to higher than 150 �C [22].

Although there are plenty of literature related to the

combination of PI and ORMOSIL, to our knowledge, there

are no reports of PI-ORMOSIL containing HPW. Thus, this

work aims to develop and to explore the new PI-ORMO-

SIL-HPW hybrid material system, providing detailed

composition–structure–property relationship.

Materials and methods

Materials

All reagents 4,4-Oxydiphthalic anhydride (OPDA, Sigma-

Aldrich, 97 %), 4,40-Oxydianiline (ODA, Sigma-Aldrich,

98 %), (3-aminopropyl)triethoxysilane (APTES, Sigma-

Aldrich, 99 %), tetraethyl orthosilicate (TEOS, Sigma-

Aldrich, 98 %), phosphotungstic acid hydrated (HPW,

Sigma-Aldrich), hydrochloric acid (HCl, J.T. Baker,

36.5–38 %), and N,N-dimethylacetamide (DMAc, Sigma-

Aldrich, 99 %) were used as purchased, except DMAc that

was distilled and conditioned in flask containing 3 Å

molecular sieves. Nitrogen (N2, White Martins, 99.99 %)

and Argon (Ar, White Martins, 99.99 %) were used in the

synthesis and thermal treatment, respectively.

Methods

Synthesis of the materials

ODA (1.5 mmol) was dissolved under stirring into 8 mL of

DMAc, followed by addition of 1.5 mmol of ODPA,

starting the formation of poly(amic acid), PAA, PI pre-

cursor. 120 min later was added APTES followed by

TEOS in 1:4 (APTES:TEOS) wt% ratio, relative to the

total mass of ODPA ? ODA. After 10 min, 43 lmol of

HPW, dissolved into 2 mL DMAc, was added, and the

reaction proceeds for more 20 min when the stirring was

turned off. The whole process was performed under N2

atmosphere. The solution formed was equally divided into

4 Teflon� molds and taken to a pre-heated MARCONIS’s

vacuum oven for 15 h at 333 K to evaporate most part of

the solvent. The free-standing PAA hybrid films were

supported on alumina plates and thermal treated in a

tubular furnace under Argon flow Tambient !ð
100 �C=60 min ! 200 �C=60 min ! 300 �C=60 min !
Tambient; all at 3 �C min�1Þ:

Characterization

Attenuated total reflectance Fourier transform infrared

(ATR-FTIR) spectra were collected using a SHIMADZU

IRAffinity-1 spectrometer in the range from 4000 to

650 cm-1 with spectral resolution of 4 cm-1 using air as

background. Thermogravimetric Analysis (TGA) were

carried out under synthetic air in a SHIMADZU TG-50A

equipment, in the range from 298 to 1223 K with heating

rate of 10 K min-1, using platinum pans. Py-GC/MS

experiments were also performed to evaluate the thermal

behavior of the synthesized materials. The experiments

were carried out using a CDS Analytical 5150 Pyro-probe

coupled to an Agilent 7890 gas chromatograph (GC) with

an Agilent 5973 N quadrupole mass spectrometer (MS) for

the detection of analytes. Samples (*0.5 mg) of each

compound were massed into quartz sample tubes. The

sample tubes were loaded into the Pt filament coil of the

pyro-probe apparatus for pyrolysis. For the determination

of the products of degradation, the sample was held at an

initial temperature of 60 �C for 0.5 min, and then pyrol-

ysed at a ballistic heating rate from 60 to 1000 �C under a

purge flow of helium for a total pyrolysis time of 2.0 min.

The pyrolysates were continually transferred from the

pyro-probe apparatus to the GC inlet using an inert transfer

line (both at 300 �C) with a 10:1 split flow for the total

pyrolysis runtime. Agilent DB-1 (30 m 9 0.25 mm id,

0.25 microns) analytical column under constant flow of

2.0 mL min-1 with Helium carrier gas was used. The ini-

tial GC oven temperature was set at 40 �C for 2.0 min and

then ramped at 10 �C min-1 to 300 �C and held for 10 min

at the final temperature for a total analysis time of

38.0 min. The MS ion source and quadrupole were 230 and

150 �C, respectively. Total ion chromatograms (TIC) of

the pyrolysis products were collected for each run. The

collected data in the form of TIC plots were normalized to
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sample mass and baselined, and individual identified pro-

duct peaks integrated to yield a relative assessment of the

abundance of degradation products. Samples previously

coated with gold using a BAL-TEC MED 020 sputter were

analyzed by scanning electron microscopy (SEM) in a

ZEISS LEO 440 microscope. 31P and 29Si solid-state high-

resolution nuclear magnetic resonance with Magic Angle

Spinning (MAS-NMR) were performed at room tempera-

ture using an INOVA Varian Unity spectrometer with

magnetic field of 9.4 T. The samples were cut into pieces,

dispersed in KBr, packed into Zirconia rotors of 7 mm

diameter, and spun at 5 kHz. The recovery time used was

100 s, and p/2 pulses of 3.5 ls for 29Si and 4 ls for 31P

were applied. The chemical shift of 29Si was referenced

with solid kaolinite (-91.5 ppm, relative to TMS) and 31P

with phosphoric acid 85 % (0 ppm). Impedance Spec-

troscopy (IS) experiments in alternating current were per-

formed in a SOLARTRON SI 1260 impedance analyzer

with 1296A Dielectric Interface coupled to a furnace, in the

frequency range from 1 Hz to 1 MHz and temperature

range from 298 to 423 K. A previous thermal treatment in

the same temperature range was performed on the samples

to avoid water interference. Wide-angle X-ray scattering

(WAXS) was performed in a bench diffractometer with

rotating anode X-ray source operating with Cu Ka and

collector time of 120 s. The samples were set at 90� with
the beam and at 150 mm from detector. The data were

processed using the FIT2D software. X-ray micro-fluores-

cence (l-XRF) was performed on beam line D09BXRF

using the following experimental set-up: source (storage

ring, 1.4 GeV); photon flux (3.9 9 1010 to 2.31 9 1011

photon s-1); polychromatic X-ray beam line (10.5 keV);

elliptic shape X-ray beam (18 lm 9 9 lm); CANBERRA

SL30165 Si(Li) detector with energy dispersive transmis-

sion geometry with 165 eV of resolution and energy of

5.6 keV cooled by N2; micro-focalization system moving

in x, y, and z directions; as well as two elliptic non-planar

mirrors. The analysis was performed in 441 points mea-

sured for 5 s and the data treated with PyMca 4.4 software

developed at the European Synchrotron Radiation Facility

[23].

Table 1 Information of the synthesized materials

Samples code Composition (wt%)a

APTES TEOS HPW

POO 0 0 0

PAT 10 40 0

PATH1 2.5 10 12.5

PATH2 10 40 12.5

PATH3 15 60 12.5

a Relative to the total mass of PI precursors (ODPA ? ODA)
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Fig. 1 a ATR-FTMIR spectra in the inset A highlighted the POO bands and in inset B the ORMOSIL and HPW bands and b representation of

the HPW structure (Color figure online)
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Results and discussion

Synthesized materials

Flexible and free-standing PI-ORMOSIL-HPW films were

obtained from polycondensation reactions and sol–gel

process, where the ORMOSIL structure was generated

in situ via acid catalysis using HPW. The water present in

the nanocluster structure (*11.5 wt%, about 1 HPW/21

H2O) initiated the hydrolysis and condensation process of

APTES and TEOS, which was concluded during thermal

treatment by using the water released from the imide ring

closure. No additional water was added and as the amount

of alkoxysilanes increased in the composition, the color of

the materials changed from yellow to caramel red. APTES

was used as coupling agent by reaction of its amino group

with terminal carbonyl groups from PAA establishing

NORMOSIL–CPI covalent bonds [24–27] giving rise to a

class II hybrid [2]. Moreover, it was expected the

ORMOSIL network to prevent HPW leaching by formation

of ionic interactions [28, 29] as (:Si–OH2)
?

(H2PW12O40)
- and [:Si–(CH2)3–NH3]

?(H2PW12O40)
-.

Table 1 describes the sample formulations and respective

codes of the synthesized materials.

Figure 1 shows the characteristics bands of imide at

1777 and 1711 cm-1, mas(C=O) and ms (C=O) stretches, and

(a) (b)  
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Tn

Qn

PAT

PATH1

PATH2

PATH3

-30 -25 -20 -15 -10 -5 0

31P Chemical Shift (ppm)

PATH1
 PATH1 fitting

-15.8

PATH2
 PATH2 fitting
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Fig. 2 a 29Si and b 31P MAS

solid-state NMR spectra (Color

figure online)
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at 1364 cm-1 (C–N stretch of imide ring). Amide bands

from PAA at 1652 cm-1 (C=O stretch) and in

1560–1520 cm-1 range (C–N–H bending) were not

observed, confirming full imidization. Other POO bands

were also assigned: 1520–1420 cm-1 (breathing mode),

1596 cm-1 (–C=C– stretch), and 2900–3100 cm-1 (C–H

stretch); all normal vibration modes from aromatic rings

and at 1240–1270 cm-1 were assigned to C–O–C from

ether bond [30–32]. The bands in 1000–1220 cm-1 region

came from stretching vibrations of siloxane (Si–O–Si)

bonds and around 880 cm-1 from stretching vibration of

silanol (Si–OH) groups [7], indicating the formation of

ORMOSIL network. HPW bands were observed at

1036 cm-1 [mas(P–O), mas(W–Ot) (asymmetric coupling),

mas(W–O2c2–W)], 977 cm-1 [mas(P–O), mas(W–Ot) (sym-

metric coupling)], and at 895 cm-1 [mas(W–O2c1–W),

mas(W–O2c2–W)] [33], indicating the preservation of the

HPW structure after the synthesis process.
29Si NMR analysis, Fig. 2a, investigated the nature of

the ORMOSIL network. The signals in the spectra corre-

spond to the region of Qn and Tn groups. Q4 peak indicates

predominance of fully condensed silica (SiO4) from TEOS

hydrolysis and condensation, while T3 corresponds to fully

condensed sesquisiloxane with one Si–C bond, from

APTES [7, 29]. The local interactions of HPW were also

evaluated from 31P NMR, Fig. 2b. The peak at -15.8 ppm

corresponds to PO4 in the center of the Keggin structure

[21, 28, 34–36]. Synthesis conditions and interaction of

HPW with ORMOSIL network could lead to the formation

of lacunars resulting in a shift and a line broadening in 31P

NMR spectra [20, 21]; nevertheless, there was no change

on the local structure of the molecular cluster around the

PO4 group. In addition, De Oliveira et al. [34] assigned a

chemical shift in this region as belonging to the hexahy-

drated HPW.

WAXS evaluated the crystallinity of the materials, and

the diffractograms are shown in Fig. 3. Peaks were

observed at 6.9�, 19.5�, and 29.9� (as a shoulder), corre-

sponding to d spacing of 12.8, 4.5, and 3 Å, respectively,

according to Bragg’s law [37]. Indeed, the peaks are

composed by convolution of peaks according to curve fit-

ting performed with the software WINSPEC. It was found

peaks centered at 5.2�, 7.2�, 9�, 18.5�, and 31.7�. The

diffraction angle at 24.4� is an amorphous halo, evidencing
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Fig. 4 Si and W l-XRF
mapping of a, c PATH1 and b,
d PATH3 (Color figure online)
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the semicrystalline nature of the hybrids. POO displays

basically a large halo centered at 19.5�, typical of non-

crystalline material. Perrin et al. [38] and Ferreira-Neto

et al. [39] observed such pattern and assigned to the for-

mation of cage-like structures formed by Polyhedral Oli-

gomeric Silsesquioxanes (POSS) where the peaks below

10� are from distances between cages (d1), around 20� is

from diagonal of the cages (d2), and at 30� are from dis-

tances between Si4O4 faces of the cage (d3).

l-XRF mapping obtained for PATH1 and PATH3,

Fig. 4, revealed a homogeneous distribution of silicon (Si)

and tungsten (W) implying in good dispersion of ORMO-

SIL and HPW throughout the films as signal of good

compatibility between the inorganic and organic phases.

Furthermore, the images revealed an improvement of HPW

dispersion in the sample with the highest Si content indi-

cating a strong interaction between HPW and ORMOSIL,

as expected. Morphological information obtained from

(a)

(b)

(c)

(d)

(e)

(f)

(119±1)μm

μm

μm

(102±2)

(76±1)

Fig. 5 Topological (left) and

cross-section (right) SEM

images of a, d PATH1; b,
e PATH2, and c, f PATH3. In
image c is inserted a

magnification of the observed

protuberances

Fig. 6 Topological SEM

images of a PAT and b PATH2
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SEM images, Fig. 5, revealed the formation of granular

protuberances whose size increase with the ORMOSIL

content but does not exceed 1 lm. Nevertheless, such

structures are not loosely bounded to the surface, as

reflection of the enhanced compatibility provided by

APTES and reduced amount of water used in the hydrol-

ysis of the silanes. Jiang et al. [40] reported that the use of

stoichiometric amount of water or less increases the com-

patibility between the organic and inorganic phases by

avoiding the formation of large silica agglomerates. Cross-

section images also showed similar morphology, in addi-

tion to reveal non-porous films. The values of average

thickness with respective incertitude were obtained from

measurement of thickness in different regions of the ana-

lyzed area for each material. Additionally in Fig. 6, the

comparison between PAT and PATH2, both prepared with

same amount of alkoxysilane precursors, indicated that the

introduction of HPW may also lead to more homogeneous

PI-ORMOSIL materials, as can be seen by the smaller

number and size of the protuberances.

Physical properties

Figure 7 shows the thermal stability curves obtained for the

materials. All present a weight loss less than 5 wt% up to

773 K. Deeper information on the products of thermal

decomposition of the materials was obtained by Py-GC/MS

which revealed H2O and CO2 as the main decomposition

products, Table 2. They are released from the cleavage of

the imide ring, as in agreement with thermal decomposition

products found by Cella [41], as well as from further

condensation process of ORMOSIL and dehydration of

HPW, justifying the higher amount found for PATH2. No

significant levels of siloxane degradation products were

detected, indicating that any volatile siloxane oligomers

were either below of detection limits of the analysis and

masked by the siloxane ‘‘column bleed’’ background or it

remained confined in the condensed phase on degradation.

It also seems evident that the hybrid materials such as PAT

and PATH2 are somewhat more thermally stable than

POO, since they do not degrade until reaching higher

temperatures, and their process of thermal degradation

seems to follow different steps until complete

decomposition.

Based on all that was discussed so far, a model was

proposed to represent the structure of the PI-ORMOSIL-

HPW materials and is displayed in Fig. 8. There is an

interpenetrating network (IPN) formed between PI matrix

and ORMOSIL network representing the good compati-

bility between the organic and inorganic parts. It also

illustrates the POSS structures evidenced by WAXS, as

well as the HPW cluster and its hydration water.

Given the outstanding electrical properties of the com-

ponents of PI-ORMOSIL-HPW system, such property was
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Fig. 7 TG curves of the materials (Color figure online)

Table 2 Py-GC/MS analyses

of the thermal decomposition

products

Peak Identification Integrated peak area (104 counts s-1)

POO PAT PATH2

1 CO2, �H2O, �N2 33.78 35.17 62.81

2 Benzene 30.75 1.14 2.01

3 Aniline 13.46 14.08 25.96

4 Phenol 20.67 11.27 6.94

5 4-Hydroxy benzonitrile 10.39 0.00 0.00

6 Naphthalene 0.00 5.60 3.78

7 Biphenyl 0.00 11.34 5.18

8 Dibenzofuran 0.00 19.13 4.22

9 Naphthol [2,1-6] furan 12.35 0.00 0.00

10 4-Phenoxy benzonitrile 10.23 4.39 6.61

11 Condensed hydroxy/carboxyphenyl species 5.26 2.20 6.09
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also evaluated. Figure 9 shows the dependence of permit-

tivity with the temperature at 1 Hz and 1 MHz. It is

observed that the ORMOSIL network increased the per-

mittivity, further enhanced by the introduction of HPW.

Regarding to ORMOSIL, according to Jeong et al. [42], the

permanent dipole of the silanol group (Si–OH) is respon-

sible for this behavior. The electrons injected from the

electrodes can be trapped forming a negative charge pro-

duct (SiO-), as occurs in Poole–Frenkel conduction [43].

The further increment on permittivity due to introduction

of HPW was assigned to its high polarizability, which

provided an impact stronger than the ORMOSIL content

since PATH1 exhibited permittivity similar to PAT.

Conclusions

For the first time, free-standing hybrid materials based on

PI-ORMOSIL containing HPW were synthesized and their

chemical and physical properties explored. FTIR and NMR

analyses confirmed the formation of the ORMOSIL net-

work, as well as revealed that the HPW structure was

preserved after the synthesis procedure. The use of APTES

as a coupling agent and reduced amount of water used in

the hydrolysis of the silanes provided good compatibility

between the organic and inorganic phases. The ORMOSIL

network also improved the dispersion of HPW, leading to

the formation of non-porous films and thermally stable up

to 773 K. Moreover, ORMOSIL increased the permittivity

of the materials which was further enhanced by HPW.

Thus, the PI-ORMOSIL-HPW hybrid material system is a

potential target to be further studied, aiming at the devel-

opment of power energy storage devices and other electric

and electronic applications.
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