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ABSTRACT

Ferrous sulfide (FeS) particles dispersed in the pores of carbon (FeS/PC) from

the polyacrylonitrile carbonization were prepared via a facile one-pot solid-state

method, which was extensively characterized by XRD, SEM, TEM, Raman

spectrum, and XPS techniques. As an anode material for lithium-ion batteries,

this FeS/PC composite can achieve a high initial discharge capacity of

1428.8 mAh/g at 0.1 C, and can maintain 624.9 mAh/g capacity after 150 cy-

cles. The porous carbon accommodates the volume change during the cycling,

and the special structure of the FeS/PC composite results in its advanced

electrochemical performance by enhancing the structure stability.

Introduction

As an important energy storage device, lithium-ion

batteries (LIBs) have been widely used in electronic

products because they have high energy density, are

light-weight, and do not cause pollution [1–6].

However, the demand for improved electrochemical

performance of LIBs is growing rapidly as the next

generation of LIBs is expected to be used in power

electric vehicles and smart grids to support the

demand for low-carbon products [7, 8]. Researchers

have exerted significant efforts to improve LIBs’

performance and meet the requirements of social

development [9–14]. As an important component of

LIBs, anode materials are important in enhancing

LIBs’ performance. To investigate anode materials,

researchers mainly focus their attention on Si, Ge, Sn,

SnO2, Li4Ti5O12, alloy, transition metal oxide, transi-

tion metal sulfide, and so on. Transition metal sul-

fides are abundant in nature, and their crystal

structures can be stable in a wide temperature range;

moreover, they have higher electronic conductivity

than transition metal oxides [1, 15–20].

As a transition metal sulfide, ferrous sulfide has

received particular research interest as an anode

material for LIBs. Apart from the common advan-

tages of transition metal sulfide, it has a much higher

electrode potential (approximately 1.3 V compared

with that of Li/Li?) than that of graphite (below

0.2 V vs. Li/Li?), which can effectively restrict the
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SEI membrane formation that usually occurs below

1.0 V versus Li/Li? [21, 22]. Yu et al. [23] reported

that FeS nanodots in porous graphitic carbon nano-

wires could deliver the capacity of 609 mAh/g for

the third cycles at 0.1 C. Xing et al. [24] found that

FeS microsheet could exhibit a first discharge capac-

ity of 772 mAh/g and maintained 677 mAh/g after

the 20th cycle. Joo et al. [25] discovered that FeS on

carbon nanofiber, as a LIB anode without current

collector, had the first discharge capacity of

845.2 mAh/g at 50 mA/g. Luo et al. [26] reported

that FeS nanoparticles wrapped in reduced graphene

oxide could deliver the first capacity of 1357 and 978

mAh/g maintained after 40 cycles at 100 mA/g.

These results show improved electrochemical per-

formance of FeS. However, its performances should

be continuously improved in view of its advantages

and the practical requirements for LIBs, which are

interesting and challenging.

In this study, we report a facile one-pot solid-state

method to prepare FeS confined in the 3D matrix of

porous carbon (carbonized polyacrylonitrile, or

CPAN), namely FeS/PC composite. FeS/PC has an

initial discharge capacity of 1428.8 mAh/g at 0.1 C,

the highest value as far as we know, and 624.9 mAh/

g capacity can be still remained after 150 cycles. The

systematic characterizations and electrochemical

study of FeS/PC composite anode material for LIBs

are presented.

Experimental

Preparation of FeS/PC composite, pure FeS,
and CPAN

All chemicals of analytical grade were directly used

in the experiment and not purified further. The fer-

rous sulfide/porous carbon (FeS/PC) composite was

prepared by heating Fe, S, and PAN with the weight

ratios of 3:3:4 in an evacuated silica tube. The heating

profile is designed as follows after many efforts. The

quartz tube was heated from room temperature to

600 �C with the speed of 0.5 �C/min and homoge-

nized at several intermediate temperatures for 2 h,

respectively. After 12 h’ reaction at 600 �C, the fur-

nace was cooled down to 300 �C in 12 h. Accordingly,

pure FeS and CPAN were prepared with the same

method. More details about this preparation method

can be found in our earlier work [27].

Material characterizations

Powder X-ray diffraction (PXRD, Bruker D8

Advance) technique to analyze the crystalline phases

of the FeS/PC composite and pure FeS were collected

at 40 kV and 100 mA for CuKa radiation (k = 1.5406

Å) at a scan speed of 5�/min at room temperature.

Energy-dispersive X-ray spectroscopy (EDS,Bruker,

Quantax) was used to confirm the element content.

The images of EDS element mapping show the dis-

tributions of Fe, S, C, and N for the FeS/PC com-

posite. Field emission scanning electron microscopy

(SEM, Hitachi S-4800II), high-resolution transmission

electron microscopy (HRTEM, Tecnai G2 F30

S-TWIN), and transmission electron microscopy

(TEM, Philips Tecnai12) were used to observe the

surface morphology and size. Raman spectrum

(Renishaw, Renishaw inVia) was used to analyze the

chemical structures. X-ray photoelectron spec-

troscopy (XPS, Thermofisher Scientific, ESCA-

LAB250Xi) was used to determine the chemical

composition. Thermogravimetric analysis (Pyris 1

TGA) was used to determine the FeS content of FeS/

PC at a heating rate of 10 �C/min in air from room

temperature to 900 �C. Brunauer–Emmett–Teller

(BET) surface area measurements were carried out by

nitrogen adsorption and desorption using a

Micromeritics ASAP 2020 HD88 analyzer at 77 K.

Electrochemical measurements

The electrodes of the FeS/PC composite and pure FeS

were composed of 80 wt% active material, 10 wt%

carbon black, and 10 wt% polyvinylidene fluoride

(PVDF), respectively. Firstly, the slurry was prepared

by stirring the mixture in a certain amount of N-

methyl-2-pyrrolidone (NMP), and then coated the

slurry onto a copper foil. After drying at 80 �C for 8 h

and 120 �C for 12 h in a vacuum oven, the foil was

cut into disks with diameter of 1.6 cm.

The cell assembly was carried out using a CR-2032-

type coin cell with a Li foil as the counter and refer-

ence electrode, and a Celgard 2325 film as the sepa-

rator. The electrolyte used was 1 M LiPF6 in a mixed

solvent of 1: 1 DEC/EC. The cells were assembled in

a glovebox (VAC-Omni 102283) filled with argon

where oxygen and water contents were less than

1 ppm. Cyclic voltammetry (C–V) measurements

were carried out on an electrochemical workstation

(CHI660D) in 0.01–3 V at a scan rate of 0.5 mV/s.
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Electrochemical impedance spectroscopies (EIS) were

measured over a frequency range of 0.01–105 Hz. The

galvanostatic charge/discharge tests were carried out

at 0.1 C (60.9 mA/g) in the voltage range of 0.01–3 V

using NEWARE CT-3008 battery charge–discharge

system. The charge–discharge data were recorded

after the first discharge to 0.01 V.

Results and discussion

Preparation of FeS/PC composite

Solid-state method is a normal choice to synthesize

multinary metal chalcogenides, but it is unusual for

synthesizing binary metal chalcogenides for energy-

related applications. S and Fe elements are oxidized

in the air when heated to high temperature; thus, FeS

preparation has to be conducted under vacuum or

inert gas protection. In addition, N-doped C-struc-

ture in CPAN is obtained when the reaction tem-

perature is higher than 600 �C [27–31]. With the

preceding considerations, we recently invented a

facile preparation method to obtain MS/carbon (M:

transition metal) composite to prepare FeS/PC com-

posite, which has been successfully utilized to pre-

pare SeSx/CPAN composites [27]. Using this method,

we finished FeS synthesis and PAN carbonization in

one reactive system at the same time. Similar to the

preparation of SeSx/CPAN composites, heating pro-

file has to be designed carefully when the reaction

temperature is much higher than the sublimation

temperature of S. Then, some small gaseous mole-

cules are produced from PAN carbonation. This one-

pot method can be utilized to prepare other

MS/carbon composites.

Structure and morphology characterizations

Figure 1a shows the PXRD patterns of FeS, the FeS/

PC composite, and the calculated pattern of FeS. All

diffraction peaks of FeS and FeS/PC are consistent

with the calculated ones, indicating that obtained

samples are pure FeS and FeS/PC, and FeS is crys-

tallized with the hexagonal space group P6-2c (No.

190). Besides, the FeS content in FeS/PC composite is

calculated to be around 63% according to Fe2O3 mass

formed by TGA analysis (Fig. 1b). EDS element

analysis of the FeS/PC composite indicates that C, N,

Fe, and S all exist, and that Fe and S ratio is around

1:1. The EDS element mapping analysis (Fig. 2)

reveals that the C-element mapping image overlaps

with those of S, Fe, and N, thereby demonstrating the

uniform distribution of FeS in the N-doped C-matrix.

The Raman spectrum of the FeS/PC composite is

shown in Fig. 3. The peaks at 1367.03 and

1586.65 cm-1 are D-band and G-band, respectively,

indicating that partial C from PAN is graphitized

after heat treatment. The large intensity ratio between

the D and G bands (ID: IG = 1.45) shows that defects

exist on the C surface, which is consistent with the

appearance of pores on the CPAN surface [26].

The chemical composition and valence of FeS/PC

composite were determined through XPS (Fig. 4).

Figure 1 a Powdered XRD patterns of FeS/PC composite (blue) and pure FeS (red). The calculated one is obtained using the single-

crystal structure data of FeS (ICSD No. 156618); b TGA curves of pure FeS, FeS/PC, and pure CPAN samples.
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The N 1 s spectrum (Fig. 4a) exhibits two character-

istic peaks located at 398.58 and 400.48 eV, corre-

sponding to the pyridinic and graphitic N,

respectively [32]. The strong C 1s spectrum (Fig. 4b)

further shows C=C, C=N, C–N, and C–C bonds,

which are located at 287.68, 286.58, 284.78, and

284.48 eV, respectively. The Fe 2p (Fig. 4c) spectrum

has two peaks at 709.08 and 724.78 eV, which proves

that Fe is divalent in the sample. The S 2p spectrum

(Fig. 4d) also has two distinct peaks at 161.48 and

163.78 eV, which is consistent with those of the S2-

spectrum. All these XPS peaks prove that the sample

is the composite of FeS and N-doped C, which agrees

with the results of PXRD, EDS, SEM element map-

ping, and Raman spectrum.

The SEM images of the FeS/PC composite, pure

CPAN, andpure FeS are shown in Fig. 5. Bothpure FeS

(Fig. 5a) and pure CPAN (Fig. 5b) particles are

aggregated into blocks with uneven sizes. For FeS/PC

composite, theCPANsurfacehasmanyporeswith size

ranging from scores of nm to around 200 nm, and FeS

particles disperse in these pores or on the surface of the

CPANmatrix (Fig. 5c). Therefore, as their SEM images

suggest, adding PC to FeS can effectively reduce FeS

particle aggregation. Also, as the TEM (Fig. 5d) and

HERTEM (Fig. 5e) images show, some FeS particles

dispersewith sheet-likeCPAN. In addition, the porous

structure of FeS/PCwas further investigated usingN2

adsorption/desorption analysis (Fig. 5f). The hys-

teresis loop for FeS/PC composite corresponds to the

Figure 3 Raman spectrum of FeS/PC composite.
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Figure 2 a EDS analysis for FeS/PC composite; b EDS elemental mapping images for C, N, Fe, and S in FeS/PC composite.
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Type-IV isotherm, which indicates that the sample has

a mesoporous structure. The Brunauer–Emmett–

Teller (BET)-specific surface area was measured to be

about 226 m2/g, and the distribution of pore size was

mainly centered at 10–20 nm.

Electrochemical performance

Cyclic voltammetry (C–V) measurement is completed

to analyze the redox reaction mechanism. The first

three cycles for pure FeS and FeS/PC composite are

recorded in Figs. 6a, b. For pure FeS (Fig. 6a), the

reduction peak is found at 0.97 V for the first cycle,

which could be explained by the following reaction

[21, 33]:

2FeSþ 2Li þ 2e� ! Li2FeS2 þ Fe: ð1Þ

The broad peak at 2.25 V is due to the oxidation

reaction from Fe to Li2-xFeS2 [33]. After the first cycle,

the peaks that appeared indicate that the redox

reaction is different. One peak at 0.45 V is relevant to

the reduction reaction from Li2-xFeS2 to Li2FeS2
[26, 33]. The reduction peak at 0.97 V, however, dis-

appeared after the first cycle. The oxidation peak

moved to 2.2 V after the first cycle, which indicated

the beginning of the delithiation process (Li2FeS2 to

Li2-xFeS2) [26, 33, 34].

Li2FeS2 þ xe� �Li2�xFeS
x�
2 þ xLi: ð2Þ

The first cycle’s C–V curve of the FeS/PC com-

posite is similar to that of pure FeS (Fig. 6b). How-

ever, the former shows considerably small changes in

the following cycles. The near overlapping of all

curves suggests the excellent reversibility of the

electrochemical reactions and advanced structure

stability [35]. The C–V curves of FeS/PC composite

after 100 cycles are reported in Fig. 6c. The reduction

peak at 0.97 V for the first three cycles moves to

Figure 4 XPS spectra of FeS/PC composite: a N 1 s; b C 1 s; c Fe 2p; d S 2p.
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1.35 V after 100 cycles, which can also be attributed to

Li2FeS2 formation, while the peak at 2.2 V is replaced

by that at 2.0 V [36]. Compared with other C–V

results [21, 23–26, 33], ours are a little different

because of the unique preparation method, and the

exact explanation may need support from some

in-situ techniques.

Electrochemical impedance spectroscopies of

pure FeS and FeS/PC composite (Fig. 7) are mea-

sured to analyze their interface performance. The

semicircle radius of FeS/PC composite is signifi-

cantly smaller than that of pure FeS as p-conjugated
units of C=N, C=C, C–N, and C–C bonds which can

effectively improve the electrical conductivity of

Figure 5 SEM images of pure FeS (a), pure CPAN (b), and FeS/PC composite (c); TEM image of FeS/PC composite (d); HRTEM image

of FeS/PC composite (e); Nitrogen adsorption–desorption isotherm and pore size distribution of FeS/PC composite (f).
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the FeS/PC composite [37–39]. In addition, the

straight line of the low-frequency region is

approximately 45�, indicating better Li? ion

diffusion for the FeS/PC composite electrode than

that for pure FeS.

Stable cyclic performance of the electrode material

is important for its practical application. The cycling

stabilities of the FeS/PC composite (Fig. 8a) and pure

FeS (Fig. 8b) electrodes are examined at 0.1 C

between 0.01 and 3.0 V. The composite delivers a

considerably high initial discharge capacity of

1428.8 mAh/g, which is so far the highest for FeS and

significantly exceeds the theoretical capacity of FeS.

The first charge capacity is only 1100.0 mAh/g. This

indicates an irreversible capacity loss of 328.8 mAh/

g, around 23.0% of the first discharge capacity, which

can be explained by SEI layer formation [26]. In

comparison, the initial discharge capacity of the pure

FeS electrode prepared under the same conditions is

only 796.3 mAh/g. The reason for this ultra-high

capacity may be attributed to the capacity contribu-

tion of the N-doped PC matrix as the graphitized

carbon can intercalate and de-intercalate Li? ions.

After the first cycle, the Coulombic efficiency is close

Figure 6 The C–V curves for fresh pure FeS (a), fresh FeS/PC (b), and FeS/PC after 100 cycles (c) for the first three cycles.

Figure 7 Nyquist plots for FeS/PC composite and pure FeS in

frequency range of 0.01–105 Hz.
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to 100% for all the 150 cycles, thereby demonstrating

its reversibility. The FeS/PC composite still has a

capacity of 678.8 mAh/g and a Coulombic efficiency

approaching 99.9% after the 50th cycle, which is more

than twice the capacity of 312.2 mAh/g for pure FeS.

As shown in Fig. 8c, the FeS/PC composite exhibits a

discharge capacity of 624.9 mAh/g after 150 cycles,

which is approximately 67.2% of the second capacity.

This promising cycling stability shows that the

graphitization of carbon can help enhance the experi-

mental capacity and protect the structure of FeS/PC

composite from the damage during charge and dis-

charge. The FeS/PC composite prepared by one-pot

solid-state method has the enhanced capacity that

exceeds those reported by previous studies [40–42].

Recent developments on the electrochemical data of

FeS are summarized in Table 1. Almost all the other

methods to synthesize FeS or its composite with

various carbon materials employ wet-chemical meth-

ods, while ours are solid-state one. Compared to the

liquidmethod, the solid-statemethod is closer to large-

scale industrial production, although shape control

and size reduction are less available. Compared to the

results shown in Table 1, the electrochemical data on

FeS/PC are satisfactory; therefore, developing elec-

trode materials for energy-related application using

the pure solid-state method seems reasonable.

To elucidate the advantage of FeS/PC composite in

lithium storage, its rate capabilities are determined

(Fig. 8d). The specific capacities are decreased along

with the increase of discharge/charge rates from 0.1

to 10 C. The fifth-cycle discharge capacities remain at

813.7, 537.6, 515.7, 266.4, and 162.0 mAh/g at 0.1, 0.5,

1, 5, and 10 C, respectively. These results reveal that

incorporating CPAN into pure FeS can enhance its

rate performance [25, 44].

Figure 8 The charge and discharge curves of FeS/PC composite

(a) and pure FeS (b) electrodes during the initial 50 cycles;

c cyclic stability of FeS/PC composite and pure FeS electrodes for

150 cycles at 0.1 C; and d rate capabilities of FeS/PC composite at

various current densities.
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Conclusions

A novel FeS/PC composite was successfully pre-

pared using a facile one-pot solid-state method. This

composite has the highest initial discharge capacity

of 1428.8, and 624.9 mAh/g capacity could still

remain after 150 cycles. Furthermore, the composite

showed perfect Coulombic efficiency and enhanced

rate capability. The advanced electrochemical per-

formance is attractive for LIB development with high

power densities.
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