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ABSTRACT

The working mechanism of carbon nanotube (CNT) dispersion by distinct

methacrylate ester-based polycarboxylates (PCEs), all of which are highly effi-

cient cement dispersants, was elucidated. Such duplex functionality of the PCE

saves introducing an extra surfactant, which might cause severe adverse reac-

tions in cement-based matrices. Eight PCEs exhibiting well-defined architec-

tures were synthesized, characterized by gel permeation chromatography, and

their influence on the dispersion capability of CNTs was assessed. The PCEs

varied systematically with respect to their backbone length, grafting density,

and side-chain length. Using optical microscopy, it was found that at a mass

ratio of CNT:PCE = 1:1, pronounced differences manifested themselves in the

state of the macro-dispersions, depending on the PCE architecture. However, a

clear correlation between PCE structure and dispersing efficiency could not be

established. A subsequent study applying equivalent numbers of PCE molecules

revealed clear differences in the individual PCEs’ dispersibilities. The most

efficient PCEs consisted of a long backbone combined with a high side-chain

density. Lower side-chain densities as well as short backbones resulted in

pronounced reduction in CNT-dispersing ability. Regarding side-chain length,

no significant effect was found. Finally, a model for the dispersing mechanism

leading to deagglomeration of the CNTs was proposed.
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Introduction

In the past three decades, carbon nanotubes (CNTs)

have been one of the most frequently investigated

substances in materials science due to their extraor-

dinary properties, such as high electrical and thermal

conductivity as well as mechanical properties [1, 2].

Combined with their tubular geometry and high

aspect ratio, they seem to be ideal fillers in preparing

multifunctional nanocomposites, including concretes

modified with CNTs [3–5]. In numerous applications,

the benefits of CNTs can only be exploited if the

nanotubes are spread throughout the matrix as

individual, unscrambled tubes. However, strong VAN

DER WAALS forces between CNTs commonly result in

large agglomerates with high mechanical strength

[6]. The challenges regarding their effective disper-

sion have not yet been mastered and continue to be

one of the main factors which hinder their broad

application in market-relevant fields. In particular,

incompatibility between CNTs and the desired base

fluid for the dispersion is often a problem. Later on,

embedding CNTs in a matrix can as well be ther-

modynamically unfavorable, for example in the case

of cement or polymers. DRESEL and TEIPEL reported

better CNT dispersibility in liquids when the surface

energies of the polar and dispersive parts of CNTs

and of the liquid media were similar [7]. Hence, it is

difficult to disperse non-polar CNTs in highly polar

media such as water. Still, several approaches have

been developed to enhance CNT dispersion in

aqueous media, mostly accompanied by ultrasonica-

tion [8, 9]. A very promising approach includes the

use of surfactants which physically interact with

CNTs and water molecules [10, 11]. Meanwhile,

numerous surfactants have been developed, which

possess a variety of neutral, anionic, cationic, or

zwitterionic functionalities or acrylic moieties to

enable improved CNT dispersion [8, 12–14]. The

surfactant concentration plays a crucial role regard-

ing the dispersion of CNTs [10]. Nevertheless, the

usage of such typical CNT-dispersing surfactants did

not show a significant improvement of the mechani-

cal properties of cement-based composites, which

had been intended by the implementation of CNTs

into the matrix [11].

A further approach to tailor the dispersing ability

of CNTs is the introduction of functional groups onto

CNT surfaces [15]. To achieve compatibility with

water, hydroxyl or carboxylic groups are commonly

attached to the outer walls of multi-walled carbon

nanotubes (MWCNTs) to enhance their polarity [16].

Also, the incorporation of nitrogen atoms in CNT

tubular structure can improve the hydrophilicity of

CNT surfaces [17]. However, such modification of the

carbon sheets may severely impair their resistance to

fragmentation during ultrasonication [18].

Hence, the motivation to the present study was to

systematically elucidate the ability of a renowned

group of surfactants compatible with cement for its

potency to unscramble CNT agglomerates and shed

light on the underlying dispersion mechanism. Such

duplex functionality of the CNT surfactant, first dis-

persing the CNTs and later on the mineral fines in the

cement-based paste, pares down the number of sub-

stances in the system and, consequently, potential

incompatibility phenomena among the ingredients.

For cement applications, polycarboxylates have been

studied for more than 30 years as dispersing agents,

widely called superplasticizers or high-range water-

reducing admixtures [19]. Recently, polycarboxylate-

based comb-type co-polymers have as well been

introduced as a potential surfactant for dispersing

CNTs in aqueous medium [3–5, 20]. The benefit of

using PCEs as a dispersing agent for CNTs is that this

kind of molecules is nowadays commonly used for

processing concretes and tailored cement-based

composites.

Basically, PCEs are comb-shaped polymers pos-

sessing a charged backbone and mostly uncharged,

but rather hydrophilic side chains [21]. Considerable

efforts have been made to explain the working

mechanisms of PCEs in cement-based pastes, mor-

tars, and concretes, including hydraulically unreac-

tive inorganic powder suspensions, while

considering the ionic loading in the liquid phase. The

most agreed-upon outcomes concerning the working

mechanisms of PCEs in these highly solids-loaded

systems include the following [19, 22–36]:

– adsorption onto the surface of any positively

charged inorganic particle present in the suspen-

sion by the charged backbone;

– the side chains protruding freely into the liquid;

– a combined dispersive force resulting from both

electrostatic repulsion and steric hindrance, the

more important part being the steric one;

– the inability of particles to agglomerate;

– the ability to cover freshly evolving surfaces

efficiently (i.e., in early hydration products of
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cement, the most important of these being ettrin-

gite); and

– significantly reduced losses of both yield stress

and plastic viscosity, whereby the specific effect of

the PCEs on each of the rheological parameters

strongly depends on the polymer composition

and architecture.

By selecting these kinds of ionic groups and co-

monomers constituting the backbone, thus defining

the positioning of the ionic groups along it, the

backbone’s length, the grafting density, and the

composition and length of the side chains, enormous

variability in molecular design can be achieved to

provide optimum performance in specific applica-

tions. PCEs have become a crucial component in

contemporary cement-based construction materials,

in both ‘‘high-performance’’ and ‘‘common bulk’’

applications. Taking this into account, one can be

sure that CNT-enhanced, cement-based materials

will contain PCEs as well. Hence, utilizing PCEs for

pre-dispersing CNTs provides an effective approach

for the production of CNT/cement composites. Such

pre-dispersion should be studied in plain water. Ionic

solutions which mimic cement pore solution should

not be utilized here because the PCE/CNT suspen-

sion will be added during the mixing processes of

mortar or concrete in the same way as any liquid

chemical admixture, i.e., as such or together with

mixing water. This approach opens a wide range of

new potential PCE applications outside the cement

and concrete industry.

Although PCEs have already been applied suc-

cessfully to disperse CNTs, the mechanism of PCEs’

action has not yet been clarified. The greatest stum-

bling block in this effort is often a lack of knowledge

of the actual structures of particular PCEs and/or

CNTs, attributed to work with commercial samples.

Still, some valuable insights have already been pub-

lished. Collins et al. compared two non-specified

PCEs and reported differences in terms of dispersion

quality [37]. Zou et al. discussed that their PCE

sample had contained active non-polar groups that

adsorbed onto the CNT surfaces as well as polar

groups which can attach to the cement particles in the

aqueous suspension [38]. Kondofersky-Mintova and

Plank used a self-synthesized, well-characterized

methacrylic acid–co-x-methoxypoly(ethylene glycol)

methacrylate ester (MPEG–MA) to disperse CNTs

[39]. Mendoza et al. reported a stable dispersion of

hydroxyl-functionalized CNTs with a commercial

superplasticizer [40]. Numerous further publications

have been launched, which describe good dispersion

qualities of CNTs in water using commercially

available superplasticizers [41–56]. Besides CNTs, the

dispersion of carbon nanofibers (CNFs)

[20, 44, 45, 48, 53, 56–61], graphene nanoplatelets

(GnPs) [45, 62–65], graphene oxide (GO) [66], and

carbon black [67] through the use of different PCEs

has been reported.

However, no systematic study investigating the

improvement in the dispersion of CNTs in water and

the impact of specific PCE structures has been pub-

lished, whereby the CNTs themselves had not been

characterized thoroughly. Understanding the struc-

ture-to-efficiency relation will be an essential step

toward developing a model for the working mecha-

nism of CNT dispersion by using PCEs from the

viewpoint of interface science and polymer chem-

istry. The present manuscript focuses on the influ-

ence of specific PCE architectures relative to their

ability to disperse MWCNTs. For this purpose, dif-

ferent MPEG-based PCEs possessing different back-

bone lengths, various side-chain lengths, and altering

side-chain densities were synthesized, characterized,

and investigated with respect to their dispersing

efficiency when mixed with CNTs. Dispersion was

generally supported by well-defined ultrasonication.

Two approaches were followed: the first being the

comparison of dispersibility at equivalent mass ratios

of CNT to PCE and the second the use of equivalent

amounts of PCE molecules. These experiments and

considerations of the architectural features of PCEs

were used to develop a plausible model with respect

to their effect when dispersing CNTs.

Experimental part

PCE design, synthesis, and characterization

All copolymers under investigation are methacrylic

acid–co-x-methoxypoly(ethylene glycol) methacry-

late ester (MPEG–MA) PCEs [19]. They consist of a

polymethacrylic backbone with poly(ethylene glycol)

(PEG) side chains (Fig. 1). Eight PCEs were designed,

synthesized, and characterized (Table 1). They were

prepared by grafting methoxypolyethylene glycol

(obtained from Clariant, Gendorf/Germany) onto

polymethacrylic acid (obtained from DOW Chemical,
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Schwalbach/Germany), following a procedure pub-

lished by Lange and Plank [35].

The first column in Table 1 represents the PCEs of

short backbone length, ‘‘sb,’’ which is composed of

approximately 83 methacrylic units (based onMw). In

contrast, the second column describes the PCEs

exhibiting a long backbone, ‘‘lb,’’ made of about 295

methacrylic units (based on Mw). Additionally, both

groups possess two different side-chain lengths as

expressed by the numbers ‘‘17’’ and ‘‘45’’ which

indicate the number of ethylene glycol units in the

laterals. The third parameter in the variation of the

PCE structures is their side-chain density. Those with

a low side-chain density have one MPEG side chain

covalently bonded at every seventh carboxylic moiety

of the backbone, the molar ratio of free acid to MPEG

ester hence being 6:1 (‘‘PC6’’). The second half of the

PCE samples possesses a high side-chain density of

1.5:1 (‘‘PC1.5’’). All polymer samples were character-

ized by size exclusion chromatography and static

light scattering in an aqueous medium according to

the procedures published earlier [35, 68].

Aqueous CNT–PCE dispersions

Multi-walled carbon nanotubes (MWCNTs) of ‘‘grade

SMW210’’ were obtained from SWeNT (Norman/OK,

USA). They have a bulk density of 0.07 g/cm3 and a

carbon content of 85.92 wt%. According to the sup-

plier, this material represents the primary product as

obtained from the synthesis reactor. Hence, it is

denominated ‘‘as-produced’’ and the CNTs contain

no purposely introduced functional groups.

Deionized water was used to dilute the PCE

polymers and to prepare the CNT–PCE aqueous

suspensions. Each aqueous dispersion consisted of

17.5 g with a constant CNT content of 0.05 wt%,

corresponding to 0.00875 g of absolute CNT mass. In

the first part of the study, the CNT-to-PCE mass ratio

was fixed at 1:1, based on the content of solids in each

PCE solution. Such an approach, which ignores molar

masses or other features of the individual PCE sam-

ples, is common in practical applications. Subse-

quently, another study was performed, whereby all

samples contained the same number of PCE mole-

cules and at a CNT content of 0.05 wt%. The mass-

based study revealed that polymer 17PC1.5-lb had

performed best. Hence, the molar amount of this

sample, which was considered to be particularly

efficient, was calculated. It was taken as standard and

from all other PCE samples the same molar amounts

were added to the CNT–PCE suspensions.

The mixing was performed under ultrasonication

using a Bandelin Sonopuls 3100 instrument

Table 1 Composition of the synthesized PCE samples in respect of their backbone lengths, side-chain lengths, and side-chain densities

PCE sample Architectural features

Short backbone Long backbone Side-chain length

(EO units)

Molar ratio COO-/side chains,

grafting density

17PC6-sb 17PC6-lb 17 6:1, low

17PC1.5-sb 17PC1.5-lb 17 1.5:1, high

45PC6-sb 45PC6-lb 45 6:1, low

45PC1.5-sb 45PC1.5-lb 45 1.5:1, high

Figure 1 Chemical

composition of the MPEG-

based PCE copolymers (left)

and a schematic drawing of

their molecular architecture

(right).
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combined with a sonotrode VS70T (Bandelin, Berlin/

Germany). A 30 % amplitude and 5 min of mixing

time were selected as mixing parameters. These

parameters result in an overall energy input of

approximately 10 kJ during the entire process and

had proven least harmful with respect to CNT length

shortening. Reasoning of the selected amplitude,

time, and overall energy input has recently been

published by Fuge et al. [18]. Ultrasonication was

performed in an iced water bath to prevent heating

and water evaporation.

CNT characterization

The characterization of the as-received MWCNTs

comprised Raman spectroscopy and environmental

scanning electron microscopy (ESEM). The Raman

spectrum was recorded on a DXR Smart Raman

instrument (Thermo Scientific, Waltham, USA),

operating at a laser wavelength of 532 nm. The

morphology of the CNT agglomerates was assessed

by an ESEM Quanta 250 FEG (FEI, Eindhoven/The

Netherlands).

Characterization of the aqueous CNT–PCE
dispersions

The dispersions were qualitatively characterized

with an optical microscope AXIOTECH (Zeiss,

Jena/Germany) equipped with a live camera (Ax-

ioCam ICc 3, Zeiss, Jena/Germany). Images were

recorded in the grey-level mode immediately after

mixing the samples. In the optical micrographs, the

black areas were taken as an indicator of the

effectiveness of the PCEs regarding dispersion

because such areas represent the non-dispersed

CNT agglomerates. In the sample preparation, two

to three drops of the ultrasonicated slurries were

placed between two glass slides using a PASTEUR

pipette, the slit having a thickness of about 75 lm,

maintained by a spacer. Thus, non-dispersed CNT

agglomerates with a native diameter exceeding

75 lm are compressed during the preparation. As a

consequence, any CNT agglomerates with sizes

larger than 75 lm were not taken into account for

quantitative image analysis. However, they appear

strikingly large in the micrographs, thus clearly

indicating poor deagglomeration.

Results and discussion

Characterization of the PCEs

The results of the gel permeation chromatography

(GPC) analysis of the PCEs are summarized in

Table 2. From the results obtained, distinct differ-

ences between the eight PCEs regarding their archi-

tectural features can be recognized.

CNT characterization

The Raman spectrum of the as-received CNTs shown

in Fig. 2 exhibits the typical signals for non-purified

MWCNTs. A strongly pronounced ID peak was

found at *1380 cm-1, representing a high content of

disordered carbon structures including amorphous

carbon structures. The IG peak, which corresponds to

the graphitic structure or the state of sp2 hybridiza-

tion in the CNTs, can be found at *1580 cm-1 and is

significantly lower than the ID peak. This results in an

ID/IG ratio of *1.3. In combination with the pro-

nounced G‘ peak at *2690 cm-1, the entire spectrum

indicates a typical MWCNT structure with a fairly

high amount of amorphous carbon and some

impurities.

Table 2 Molecular weights of

the PCE samples as measured

by light scattering

PCE sample Mw (Da) Mn (Da) PDI = Mw/Mn Architectural features

Side chain Grafting

17PC6-sb 14.800 7.900 1.87 Short Low

17PC1.5-sb 27.900 13.800 2.02 Short High

45PC6-sb 27.700 14.900 1.85 Long Low

45PC1.5-sb 60.700 31.500 1.93 Long High

17PC6-lb 119.700 28.800 4.16 Short Low

17PC1.5-lb 201.200 46.400 4.34 Short High

45PC6-lb 159.800 43.600 3.67 Long Low

45PC1.5-lb 433.300 105.200 4.12 Long High
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The typical MWCNT structure was also found in

the ESEM images of the as-received samples; see

Fig. 3a. The CNTs are arranged in large agglomerates

having rather spherical shapes with diameters of up

to 1 mm. At a higher magnification (Fig. 3b), indi-

vidual strongly entangled CNTs become visible,

which feature diameters of up to 30 nm.

CNT dispersion properties at a PCE:CNT
mass ratio of 1:1

Figure 4 shows the optical micrographs of the CNT–

PCE samples after ultrasonication. Clear differences

in the quality of dispersion are obvious among these

samples prepared with a CNT content of 0.05 wt%.

Most of the samples contain numerous non-dis-

persed agglomerates. This indicates that the input of

ultrasonication energy in combination with the dis-

persive force of the PCE present at 0.05 wt% was

insufficient. On the other hand, some specific samples

yielded a good macro-dispersion containing no or

only very few CNT agglomerates. In particular, the

PCEs with long backbones (‘‘lb’’) tended to disperse

the CNTs better than those with shorter ones (‘‘sb’’).

Among the PCEs with the long backbone, the ones

with shorter side chains produced higher dis-

persibility, i.e., ‘‘17PC’’ better than ‘‘45PC.’’

It is here worth to note that a shorter backbone

translates into a lower molecular weight compared to

PCEs with a longer backbone, provided, of course,

that side-chain length and grafting density are alike.

Additionally, each ‘‘17PC’’ possesses a lower molar

mass than its ‘‘45PC’’ counterpart with the same

backbone length and grafting density. Hence, among

the eight PCE samples investigated, 45PC1.5-lb con-

tains the fewest molecules per unit of weight

(Table 3); however, this PCE sample proved quite

good in puncto dispersibility. On the other hand, the

PCE sample containing the greatest number of

molecules, i.e., 17PC6-sb, produced inferior CNT

dispersions.

To summarize, not a single molecular parameter

could be found, which appeared to be responsible for

the dispersing force of the PCE samples tested.

However, large differences in the amounts of PCE

molecules present in the suspensions were observed.

Thus, it was investigated whether the number of

molecules present was the critical parameter for the

dispersing effectiveness.

Dispersion effectiveness at equivalent
number of PCE molecules

Pronounced differences in CNT dispersion were

obtained when using equivalent numbers of PCE

molecules as the surfactant (Fig. 5). Similar to the first

part of the study, the CNT concentration in the sus-

pension was 0.05 wt%.

Figure 3 a ESEM images of

the MWCNT sample as

received showing large

agglomerates and b detail of a

section.

500 1000 1500 2000 2500 3000

ID/IG ~ 1.3

Raman shift [cm-1]

Figure 2 Raman spectrum of the as-received CNTs.
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As already mentioned, the samples containing the

long-backbone PCEs feature significantly better CNT

dispersion than those with the short-backbone PCEs.

Among these samples with the short backbone

length, neither the side-chain length nor the side-

chain density was critical to their performance.

Instead, their performance was rather uniform and

weak. Contrarily, the dispersing force of the PCEs

with long backbones shows differences with respect

to grafting density and side-chain length. A higher

side-chain density generally yields better dispersing

ability, irrespective of the side-chain length. How-

ever, the performance is similar for the same side-

chain length or grafting density. Consequently, the

two PCE samples exhibiting long backbones and a

high side-chain density, i.e., 17PC1.5-lb and 45PC1.5-

lb, can produce optimal macro-dispersions which are

very nearly free of agglomerates.

short backbone long backbone 
17PC6-sb

(short side chain)
45PC6-sb

(long side chain)
17PC6-lb

(short side chain)
45PC6-lb

(long side chain)
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n
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(long side chain)
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(long side chain)
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gh

 si
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n
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ns

ity

Figure 4 Optical micrographs

of dispersions prepared with

different PCEs after

ultrasonication, a CNT:PCE

mass ratio of 1:1, and a CNT

concentration in the

suspension of 0.05 wt%.

Table 3 Amount n of PCE molecules in each sample at 0.05 wt% PCE dosage

PCE sample Mols per

sample (10-8 mol)

PCE molecules per

sample (1017)

Side-chain length Side-chain density

Short backbone 17PC6-sb 111 6.67 Short Low

17PC1.5-sb 63 3.82 Short High

45PC6-sb 59 3.54 Long Low

45PC1.5-sb 28 1.67 Long High

Long backbone 17PC6-lb 30 1.83 Short Low

17PC1.5-lb 19 1.14 Short High

45PC6-lb 20 1.21 Long Low

45PC1.5-lb 8.3 0.50 Long High

short backbone long backbone
17PC6-sb

(short side chain)
45PC6-sb

(long side chain)
17PC6-lb

(short side chain)
45PC6-lb

(long side chain)
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45PC1.5-lb
(long side chain)
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Figure 5 Optical micrographs

of dispersions prepared with

the different PCEs after

ultrasonication, containing

equivalent numbers of PCE

molecules per CNT unit mass;

CNT concentration in the

suspension was 0.05 wt%.
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To sum up, a clear order of efficiency in dispersing

the CNTs only exists when equal numbers of PCE

molecules are compared. A rather long backbone and

a high grafting density are very beneficial, whereas

the side-chain length plays no significant role and

lower grafting density results in lower efficiency.

Furthermore, a shorter main-chain length in the

comb-type polymers worsens their dispersing force.

Using equal dosages of various PCE products does

not allow to constitute a clear structure/efficiency

relationship for the PCEs.

Potential dispersing mechanism for CNTs
with PCEs

Based on the experimental results as presented, a

dispersion mechanism of CNTs using the PCEs under

investigation is proposed. Firstly, it must be consid-

ered that any PCE copolymer is amphiphilic, which

reduces the surface tension of water. This permits

better wetting of the pronounced hydrophobic CNT

agglomerates. Adding PCE decreases the surface

tension of water from 72.8 mN/m for DI water to 60

to 65.5 mN/m, depending on the specific PCE

architecture [69]. Furthermore, the two main con-

stituents of PCEs—polymer backbone and graft

chains—distinctly affect the surface tension. The

polymethacrylic acid part reduces it only very

slightly due to the dissociative anionic carboxylic

moieties. Ishimuro and Ueberreiter reported a surface

tension of more than 72 mN/m at a pH of 7.82 for

polymethacrylic acid [70]. Contrary to this, the PEG

side chains reduce the surface tension much more,

and this effect becomes even more pronounced with

increasing molecular weight of the PEG, i.e., with

increasing side-chain length [71–73]. Consequently,

PCEs with more and longer PEG side chains reduce

the surface tension more strongly than those with

fewer and shorter ones [69].

Thus, with respect to the surface tension, it is more

likely that the PEG part of a PCE attaches to the CNT

surface, rather than the backbone does. The more

PEG side chains are present in a PCE copolymer, the

more intense the interaction between PCE and CNT

becomes. Thirdly, longer PEG side chains can be

expected to interact even more strongly than the

shorter ones. Thus, the polar PCE backbone is most

probably oriented toward the water molecules pre-

sent in the bulk solution, whereas the less polar PEG

side chains of the PCE interact with the CNT

agglomerates; see Fig. 6.

Considering the different architectural features of

the copolymers, the following effects can be con-

cluded with regard to differences in the quality of

CNT dispersion. The following considerations are

based on the experiments using equal amounts of

PCE molecules with respect to CNT.

First, a PCE molecule with a longer backbone

possesses a higher specific surface area than the one

with a shorter backbone, assuming equal grafting

density and side-chain lengths. It is thus more

probable for a larger PCE molecule to come in contact

with a CNT agglomerate in aqueous suspension than

for a smaller one.

Second, at equal mass-based dosage of PCEs with

the same grafting density and side-chain length, the

same number of PEG dangling bonds is present in

the solution, irrespective of backbone length.

Hence, when a PCE molecule and a CNT agglom-

erate come into contact with each other, a PCE with

a longer backbone initially brings more PEG side

chains into the closest vicinity to, or even into

contact with, the CNT agglomerate as compared to

a PCE with a shorter backbone at equal grafting

density and side-chain length. According to the

experimental results, such a PCE has higher CNT-

dispersing ability when compared to other PCE

architectures, cf. Figure 5. Thus, in this respect the

long trunk chain is the most important architectural

feature of the PCE.

Third, the higher the grafting density of such PCE

copolymers, the more PEG is available for interaction

with the CNTs. This results in further improvement

of CNT dispersion, as observed for the four PCEs

possessing long backbones, e.g., ‘‘PC1.5-lb’’ compared

to ‘‘PC6-lb.’’

Finally, the length of the PEG laterals should be

considered. However, according to the optical

micrograph in Fig. 5 this molecular parameter

Figure 6 Assumed orientation of MPEG–MA-based PCE comb

copolymers along a CNT agglomerate in water.

J Mater Sci (2017) 52:2296–2307 2303



obviously has only a moderate effect on the dispers-

ing force.

Conclusion

This study focused on the effect of various PCE

samples on their dispersion efficiency regarding

CNTs in an aqueous phase. For the very first time,

specific architectural features of the PCEs were taken

into account to clarify their impact on the dispersion

of CNTs. COLLINS et al. had reported a different state

of macro-dispersion using two different commer-

cially available PCE solutions, but had not further

focused on mechanistic details [37]. Numerous

studies dealt with CNT dispersion by PCE but did

not pursue the understanding of distinct efficiencies

of individual PCE architectures [38–58]. In general, a

PCE product was found to be superior in dispersing

CNF when compared to a b-naphthalene sulfonate-

based (BNS) superplasticizer sample, the latter spe-

cies having been reknown as a good cement disper-

sant for more than 50 years. The explanation was

based on the combined electrostatic and steric

repulsion evolved by the PCE in contrast to the

merely electrostatically acting BNS [20]. Stepping

beyond this state of knowledge, the present study

provides specific insights to the molecular architec-

tures of PCEs determining their efficiency in dis-

persing CNTs and the working mechanism behind it.

Eight MPEG-based PCEs were synthesized, each

possessing specific architecture with respect to their

backbone lengths, side-chain lengths, and side-chain

densities. After mixing accompanied by ultrasonica-

tion, pronounced differences regarding the quality of

CNT dispersion at equal dosages of PCEs under

investigation were observed by means of optical

microscopy. The mass-based PCE dosages, in the first

place, were deliberately chosen because they repre-

sent a common approach in practical applications.

However, a satisfying structure/effectiveness rela-

tionship could not be derived from these

experiments.

Using equivalent numbers of PCE molecules (cal-

culated from their Mw) with respect to CNT mass

enabled the disclosing of a clear structure/perfor-

mance relationship. The best dispersion was achieved

by PCEs with a long backbone and a high grafting

density of PEG laterals.

From these findings, a plausible mechanism was

derived in proposing that the PEG side chains inter-

act with CNT agglomerates, while the backbone is

toward the water phase [38], similar to the arrange-

ment of surfactant molecules in micelles. Conse-

quently, the PCEs having longer backbone and

higher side-chain densities outperform their coun-

terparts which possess short main chains and lower

grafting densities.

Interestingly, it was found that side-chain length

was far less important when compared to the other

two architectural features of the comb copolymers,

even despite a strong reduction of the surface tension

by increasing PEG molecular weight [71–73].

Our results prove that CNTs are well dispersed by

a long-backbone PCE to be incorporated into a

cementitious matrix or other water-compatible

matrices. Common CNT-dispersing surfactants such

as sodium dodecyl sulfate (SDS) or polyoxyethylene

(23) lauryl ether (Brij� 35), which improved the

mechanical properties of cementitious composites

only insignificantly [11], can now be replaced by

PCEs. These findings contribute strongly to the

community of nanotechnology in construction mate-

rials, which intensely tries to use PCEs for dispersing

carbon-based fillers [3–5].

Looking ahead, the structure/efficiency relation of

PCEs should experimentally be extended to further

types of CNTs and pooled with recent findings of a

most appropriate and gentle ultrasonication proce-

dure [18]. Implementation of the pre-dispersed CNT/

PCE suspensions in cement-based construction

materials as well as further aquatic, highly loaded

inorganic particle suspensions will shed light on the

duplex functionality of the PCEs. Effects on hydra-

tion, rheological properties, and mechanical perfor-

mance (bending and compressive strengths) of the

cement-based materials will be considered in due

course as well. Further characteristic features will be

taken into account in application-oriented experi-

ments with other particle suspension, respectively.
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