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Abstract Using the Eshelby equivalent inclusion theory

and the Mori–Tanaka method, a new micromechanical

model is proposed to predict the tensile modulus of carbon

fibers by considering crystallites, amorphous components,

and microvoids of the fiber structure. Factors that affect the

tensile modulus included the aspect ratio of crystallites, the

aspect ratio of microvoids, the volume fraction of crystal-

lites, the volume fraction of microvoids, and the orientation

degree of crystallites. To follow the dependence of the

tensile modulus of the fibers on microstructure, thirty dif-

ferent types of polyacrylonitrile-based fibers were pre-

pared. The aspect ratios and orientation degrees of

crystallites were calculated directly by X-ray diffraction.

The aspect ratios and volume fractions of microvoids were

obtained by small-angle X-ray scattering. The average

tensile modulus of amorphous was estimated by dealing

with thirty types of PAN-based fibers. The volume frac-

tions of crystallites were obtained by the micromechanical

model. Some relationships are concluded: (1) the tensile

modulus increased with increasing volume fractions of

crystallites, aspect ratios of crystallites and microvoids, and

orientation degree of crystallites; (2) the tensile modulus

increased with decreasing volume fractions of microvoids.

Introduction

Carbon fibers have high specific tensile modulus and

strength, and play an important role in civil engineering

construction, aerospace field, automotive materials, athletic

equipment, etc. To improve the properties of carbon fibers,

many studies have been undertaken to see the relationships

between the mechanical properties and structure. The

structure and morphology of carbon fibers have been

studied by Oberlin [1], Johnson [2, 3], and Donnet [4].

Various mechanical models were introduced. The uniform

stress mechanical model and the mosaic model of carbon

fibers, both consisting of aligned crystallites connected

with each other, were introduced to explain quantitatively

the association between the tensile modulus and the crys-

tallite orientation. The uniform stress mechanical model is

able to describe the behavior of graphitized carbon fibers

and shows the significance of the axial shear modulus on

the bulk carbon fibers tensile modulus [5, 6]. The mosaic

mechanical model can explain the measured increases in

the tensile modulus and the crystallite orientation depen-

dence on tensile stress [7]. Because the carbon fiber has a

unique microstructure which consists of carbon crystallite

layers, crystallite disorder regions (amorphous phase), and

needle-like microvoids [8], a series–parallel mechanical

model which comprises crystalline and amorphous phase is

introduced. This series–parallel model can evaluate the

heterogeneous stress distribution in the carbon fibers [9].

More recently, a two-phase composite micromechanical

model which took into account the properties of both the

crystalline and the amorphous components in the fiber

structure was established to predict the tensile modulus of

polyacrylonitrile (PAN)-based carbon fibers [10].

However, the uniform stress mechanical model and the

mosaic model are unable to predict the behavior of low
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modulus PAN-based carbon fibers because they are too

simplified and ignore the disordered structure. All models

[5–7, 9, 10] mentioned above paid no attention to the

microvoids whose content was about 10–20 volume per-

cent in carbon fibers [11]. We think that there must be a

connection between the volume percent of microvoids and

mechanical properties of the carbon fibers. In this study, we

introduce a new three-phase composite micromechanical

model to predict the tensile modulus of PAN-based carbon

fibers by considering the crystallites, the amorphous com-

ponents, and the microvoids in the fiber structure. The

combination of Eshelby’s solution [12, 13] and Mori–

Tanaka’s mean stress method [14] is used to calculate the

elastic coefficients. The X-ray diffraction (XRD) and

small-angle X-ray scattering (SAXS) methods are applied

to measure the experimental data of crystallites and

microvoids in carbon fibers. Some factors that have an

influence on tensile modulus of carbon fibers upon the

microstructure are discussed.

Theoretical model

In this section, we establish the micromechanical model

that is composed of crystallites, amorphous components,

and microvoids to predict the tensile modulus of the carbon

fibers. The amorphous components are assumed to be an

isotropic matrix. The crystallites and the microvoids are

regarded as inclusions in the isotropic matrix.

The true shape of crystallites and the microvoids are

particularly complex in carbon fibers. However, it is rea-

sonable that the shape of the crystallites is equivalent to

oblate spheroids with the carbon layer axis parallel to their

long axes. Moreover, the shape of the microvoids is

equivalent to a long rotational ellipsoid [8, 10]. See Fig. 1.

The concept of representative volume element (RVE) V in

the carbon fibers is introduced. We assume that the RVE is

subjected to remote boundary conditions, e.g., see Ref. [15,

16]. We also assume that (1) the amorphous carbon has a

Poisson’s ratio of 0.3 [10]; (2) the coefficients of the elastic

tensor of the crystallites are the same as those of graphite

[17]; (3) the shape of the crystallites is an oblate spheroid,

and the aspect ratio of the oblate spheroid xc is given by

xc ¼ La= Lc;where La is the crystallite diameter and Lc is

the crystallite thickness, both of them are measured by

XRD; (4) the shape of the microvoids is a rotation ellip-

soid, and the aspect ratio of the rotation spheroid xv is

given by xv = L/a, where L is the half length of rotation

axis of the microvoid and a is the radius length, both of

them are determined by SAXS; (5) the total volume frac-

tion of crystallite, amorphous carbon, and microvoid is

equal to unity.

A global coordinate system O-x1x2x3 is established in

carbon fibers to ensure that the axis x3coincides with the

fiber axis. Two local coordinate systems O � x01x
0
2x

0
3 and

O � x001x
00
2x

00
3 in the crystallite and microvoid are also

established, respectively. Let the axis x03 coincide with the

rotation axis of crystallite and the x003 coincide with the

microvoid rotation axis.

The carbon fiber is subjected to a uniform applied stress

r0, by Eshelby equivalent inclusion theory [17], we derive

that the relation within the crystallite ðO � x01x
0
2x

0
3Þ is

described by

C0 e00 þ ~e0 þ S1e
�0 � e�

0
� �

¼ C1 e00 þ ~e0 þ S1e
�0

� �
; ð1Þ

where C0 and C1 are the elastic coefficients of the amor-

phous carbon and the crystallite carbon in the fibers, S1 is

the fourth-order Eshelby tensor of the crystallite inclusion

which has an oblate spheroid shape, e.g., see S1 in [18]. e00

is the strain in the isotropic matrix having no crystallites

and microvoids, ~e0 is the average perturbed strain that

Fig. 1 a model of the carbon

fiber, b the structure of (a),

(c) the modeling of (b)
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caused by interactions between crystallites and microvoids,

e�
0

is the equivalent eigenstrain of the crystallite.

Similarly, we can derive that the relation in the micro-

void ðO � x001x
00
2x

00
3Þ. The mentioned relation is

C0 e000 þ ~e00 þ S2e
��00 � e��

00
� �

¼ 0; ð2Þ

where S2 is the fourth-order Eshelby tensor of the microvoid

inclusion which has a rotational ellipsoid shape, e.g., see S2

in [19], e000 is the strain in the isotropic matrix having no

crystallites and microvoids, ~e00 is the average perturbed strain

that caused by interactions between crystallites and micro-

voids, and e��
00

is the equivalent eigenstrain of the microvoid.

From (1) and (2), we obtain the equivalent eigenstrain of

the crystallite e* and the equivalent eigenstrain of the

microvoid e** in the carbon fiber ðO � x01x
0
2x

0
3Þ by coor-

dinate transformation. The expressions for e* and e** are

e� ¼ � T�1
1

� �T
DCS1 þ C0ð Þ�1DCTT

1 e0 þ ~e
� �

; ð3Þ

e�� ¼ � T�1
2

� �T
S2 � Ið Þ�1

TT
2 e0 þ ~e
� �

; ð4Þ

where DC = C1 - C0, I is the unit matrix, T1 and T2 are

transformation matrices between the two local coordinate

systems and the global coordinate system, respectively. See

T1 and T2 in the appendix. e0 is the strain in the isotropic

matrix having no crystallites and microvoids, ~e is the

average perturbed strain that caused by interactions

between crystallites and microvoids.

We let hei1 and hei2 be the average strains in a crystallite

and a microvoid, and we obtain

hei1 ¼ e0 þ ~eþ e1; hei2 ¼ e0 þ ~eþ e2 ð5Þ

where e1 ¼ T�1
1

� �T
S1T

T
1 e

� and e2 ¼ T�1
2

� �T
S2T

T
2 e

�� are the

perturbed strains by the crystallite and the microvoid.

Substituting (3) and (4) into (5) and let e0 þ ~e ¼ heiM , we

have

hei1 ¼ I � T�1
1

� �T
S1 DCS1 þ C0ð Þ�1DCTT

1

h i
heiM; ð6Þ

hei2 ¼ I � T�1
2

� �T
S2 S2 þ Ið Þ�1

TT
2

h i
heiM ; ð7Þ

Based on Mori–Tanaka method, we derive that the

average strain field heiV in V as follows:

heiV ¼ 1

V

Z

V�V1�V2

heiMdV

Z
þ 1

V

Z

V1

hei1dV

þ 1

V

Z

V2

hei2dV ; ð8Þ

where V1 is the sum of the volume of all crystallites in V,

and V2 is the sum of the volume of all microvoids in V.

Substituting (6) and (7) into (8), and considering orienta-

tion distribution of crystallites and microvoids, we have

heiV ¼ I � f1 T�1
1

� �
A1TT

1

� �
1 angle

h

� f2 T�1
2

� �T
A2TT

2

n o
2 angle

�
heiM;

ð9Þ

where A1 ¼ S1 DCS1 þ C0ð Þ�1DC; A2 ¼ S2 S2 � Ið Þ�1; f1
and f2 are the volume fractions of the crystallites and the

microvoids, f0 = 1 - f1 - f2 is the volume fraction of

amorphous, �f gi angle¼
R2p
0

Rp
0

�giðhÞsinhdhdu=2p
Rp
0

giðhÞ

sin hdh; i ¼ 1; 2; and g1(h) and g2(h) are the distribution

densities of the crystallites and microvoids, respectively.

Similarly, the average stress field hriV in the carbon

fiber can be derived as

rh iV¼
1

V

Z

V�V1�V2

hriMdV þ 1

V

Z

V1

rh i1dV; ð10Þ

where hri1 is the average stress of a crystallite, and hriM is

the average stress of amorphous. The expressions are

rh i1¼ T1C1T
T
1 ðe0 þ ~eþ e1Þ ¼ T1C1T

T
1 hei1; ð11Þ

rh iM¼ T1C0T
T
1 ðe0 þ ~eÞ ¼ T1C0T

T
1 eh iM¼ C0 eh iM: ð12Þ

So

hriV ¼ 1

V

Z

V�V1�V2

C0heiMdV þ 1

V

Z

V1

T1C1T
T
1 eh i1dV ð13Þ

by substituting (11) and (12) into (10) yields

Substituting (6) into (13), then

hriV ¼ f0C0 þ f1 T1C1 I � S1 DCS1ð½f½

þ C0Þ�1DC
i
TT

1

o
1 angle

�heiM

¼ f0C0 þ f1 T1C1 I � A1
	 


TT
1

� �
1 angle

h i
heiM ð14Þ

Note that hriV ¼ �CheiV , we have

�C ¼ f0C0 þ f1 T1C1 I � A1
	 


TT
1

� �
1 angle

h i

� I � f1 ðT�1
1 ÞT

A1TT
1

n o
1 angle

�f2 ðT�1
2 ÞT

A2TT
2

n o
2 angle

� �

ð15Þ

3566 J Mater Sci (2016) 51:3564–3573

123



Experimental

Materials

In order to research the dependence of the mechanical

properties of the carbon fibers on nanostructure, we pre-

pared thirty different types of PAN-based carbon fibers,

with Young’s moduli in the range 200–500 GPa. All

experimental fibers were supplied by tuozhan fiber Co., Ltd

and were measured by XRD and SAXS. Their properties

are listed in Table 1.

XRD measurements

The XRD experiment was performed at National Labora-

tory of tuozhan fiber Co., Ltd. Weihai, China using CuKa
radiation (k = 0.1541 nm) under the operating conditions

of 40 kV and 40 mA. We carried out axial scan, radial

scan, and azimuth angle scan with 2h-scan step 0.02� and

0.504�, respectively.

SAXS measurements

SAXS measurement was carried out at the beam line

(BL16B1) of the Shanghai synchrotron radiation facility

with a wavelength of 0.124 nm. The distance from sample

to the detector was 5120 mm.

Results and discussion

XRD

Lc and La can be obtained from (002) diffraction peak of

axial scan profile and (100) diffraction peak of radial scan

profile using Scherrer’s formula

Table 1 Physical and mechanical properties of the carbon fibers

Type Tensile modulus (GPa) Density (g/cm3) Lc (nm) La (nm) xc d002 (nm) H (�) Xc (%) f2 (%) P (%)

TC35-3K 223.58 1.80 1.58 – – 0.3479 – – 7.52 –

UMS40-12K 380.00 1.79 3.66 – – 0.3442 – – 11.24 –

T700-12K 230.56 1.80 1.93 4.19 2.18 0.3543 37.03 71.77 9.46 79.43

HTS40-12K 239.04 1.76 1.91 – – 0.3561 – – 10.98 –

M46JB-12K 391.96 1.84 4.34 – – 0.3426 – – 10.41 –

TC36S-12K 237.97 1.81 1.68 – – 0.3552 – – 9.75 –

M35JB-6K 301.07 1.75 3.11 – – 0.3482 – – 12.94 –

A42-12K 240.00 1.80 1.85 – – 0.3552 – – 9.97 –

TC35-24K 210.62 1.76 1.56 – – 0.3573 – – 9.23 –

M40JB-6K 349.80 1.75 3.76 – – 0.3430 – – 11.66 –

STS40-24K 219.72 1.76 1.73 – – 0.3564 – – 9.84 –

TC42S-12K 231.52 1.81 1.98 – – 0.3540 – – 10.69 –

UM40-24K 355.59 1.79 3.43 – – 0.3451 – – 11.46 –

CCF300-3K 213.69 1.76 1.86 – – 0.3558 – – 12.08 –

CCF700-12K 234.66 1.79 1.86 – – 0.3537 – – 10.70 –

T300-3K 211.05 1.76 1.69 3.73 2.21 0.3558 36.26 68.36 9.73 79.68

T800HB-6K 278.30 1.81 2.10 – – 0.3517 – – 9.28 –

M40JB-12K 351.67 1.75 3.58 10.27 2.87 0.3443 22.14 81.49 11.87 87.70

TR50S-6K 240.01 1.82 1.89 – – 0.3532 – – 10.45 –

HS40-12K 388.29 1.85 4.44 – – 0.3428 – – 13.56 –

M35JB-12K 320.76 1.75 3.00 9.47 3.16 0.3456 24.72 79.20 12.61 86.27

SGL50K 215.80 1.79 1.65 – – 0.3550 – – 10.83 –

TC36-3K 206.55 1.81 2.04 – – 0.3493 – – 9.76 –

A49-12K 238.86 1.79 2.17 – – 0.3504 – – 12.60 –

HTA40-1K 240.85 1.78 2.12 – – 0.3481 – – 10.53 –

HTA-W3K 236.50 1.76 1.92 – – 0.3566 – – 10.02 –

TC35-12K 230.71 1.80 1.72 – – 0.3576 – – 9.09 –

TC35-48K 216.71 1.81 1.83 – – 0.3545 – – 10.75 –

TC33-3K 237.55 1.80 1.76 – – 0.3556 – – 10.64 –

T800H-12K 283.75 1.81 1.98 4.62 2.33 0.3543 28.77 72.94 8.92 84.02
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L ¼ Kk=B cos h; ð16Þ

where h is the scattering angle, k is the wavelength of the

X-rays used, and B is the full width at half maximum

(FWHM) of diffraction peak. The form factor K is 0.9 for

Lc and 1.84 for La [20]. The FWHM of an azimuthal scan

through the (002) reflection H can be directly obtained

from azimuth angle scan profile. The value of the average

interlayer spacing d002 can be calculated using Bragg’s law

d002 ¼ nk=2 sin h; ð17Þ

where n is an integer. The apparent crystallinity of the

carbon fiber Xc is given by [21]

Xc ¼ Sc=St � 100%; ð18Þ

where Sc is the area of (002) diffraction Peak and St is the

total area under the diffraction curve in the interval [14�,
34�]. The degree of crystallites orientation P can be cal-

culated applying the formula

P ¼ 180� � Hð Þ=180� � 100%: ð19Þ

Detailed data are presented in Table 1.

Thirty different types of experimental carbon fibers were

prepared to obtain the tensile modulus of amorphous, see

Table 1. Figure 2 shows the bulk tensile modulus Ebulk

versus their crystallite thickness Lc. The tensile modulus of

fibers that are composed of amorphous carbon and micro-

voids Ea?m = 111.48 GPa. This value was obtained by

extrapolating the straight linear line (linear regression) of

Ebulk versus Lc to zero position [9]. To simplify the cal-

culations, let the shape of microvoids in the carbon fibers

degenerate the sphere-like. Substituting Ea?m into (15) and

let the average microvoids volume fraction of thirty types

carbon fibers replace f2, we obtain the tensile modulus of

amorphous carbon Ea, the value is 137.98 GPa.

SAXS

In order to obtain the radius of gyration Rg, the Guinier

analysis is the most popular method in the SAXS analyses

[22, 23]. According to Guinier theorem, we derive the

expression of the intensity

IðhÞ ¼ I0 exp �
h2 R2

g

3

 !
; ð20Þ

where h = (4p sin h)/k, k is the wavelength of X-ray, 2h is

the scattering angle, and I0 is the scattered intensity when

h = 0. We can estimate the Rg value of the microvoids

from the slope of the Guinier plot lnI(h) versus h2. The

Jellinek Successive tangents method is used here [24]. We

divide the microvoids size into three classes according to

the tangent line of the Guinier plot. We derive each class of

the gyration radius Rgi, i = 1, 2, 3. The volume fraction of

each class microvoids Wi, i = 1, 2, 3 and the average

gyration radius Rg can be calculated respectively, by

Wi ¼
Ki=R

3
giP

i Ki=R
3
gi

i ¼ 1; 2; ð21Þ

Rg ¼
X
i

RgiWi i ¼ 1; 2; 3; ð22Þ

where Ki is the intercept of the ith class tangent line in the

vertical axis of the Guinier plot.

The radius of gyration at the direction of equator Rgc is

independent of the length of rotation ellipsoids. Applying the

formula a ¼
ffiffiffi
2

p
Rgc, we can calculate the radial radius of the

microvoids a. The difference of the microvoids in size is very

small at the direction of equator [25], so we do not need to

divide the radius of gyration at the direction of equator Rgc

into three classes. We only divide the radius of gyration at

the direction of meridian Rgm. Substitute a into the formula

Rgmi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

5
þ Li

5

r
i ¼ 1; 2; 3; ð23Þ

then L =
P

iWiLi i ¼ 1; 2; 3: Detailed data are pre-

sented in Table 2.

The volume fraction of microvoids f2 is given by the

equation [26, 27]

f2 ¼ 2pm2c4

e4k3ðDqÞ2
DtAI0

Z1

0

IaðhÞh dh; ð24Þ

where Ia(h) is the absolute X-ray intensity, which is

determined by the direct method [28], Dq is the electron

density difference between the voids and the solid, m is the

electron mass, c is the velocity of light, e is the elementary

electric charge, D is the sample-to-detector distance, t is

the specimen thickness, and AI0 is the incident X-ray beam

flux. See f2 in Table 1.

Fig. 2 Linear fiting plot of the data that reflect the relationship

between the Lc and the tensile modulus for thirty different types of

carbon fibers
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Calculated volume fractions of crystallites

To determine the volume fractions of crystallites of T series

carbon fibers—T300, T700, and T800—and MJ series—

M35J and M40J—the distribution density function of

crystallites and microvoids must be first confirmed. In the

case of carbon fibers with a high degree of crystallite ori-

entation in the present study, the distribution density

function g1(h) of the orientation angle h between the nor-

mal of the carbon layer and the fiber axis can be closely

approximated by an orientation distribution function of the

form [29]

g1ðhÞ ¼ K sinx h; ð25Þ

where

K ¼ C xþ 3ð Þ=2½ �
2p3=2C xþ 2ð Þ=2½ �

x ¼ � ln 2= ln sin pP=2ð Þ½ �

C(x) is a gamma function having the following property

C(x ? 1) = xC(x) (real x[ 0).

Assume that the rotation axis of crystallite is almost

vertical to the rotation axis of microvoid. The orientation

distribution function of microvoids is determined by the

formula [30]

g2 hð Þ ¼ xþ 1

4p
cos hj jx; ð26Þ

where x ¼ �ln2=ln sin pP=2ð Þ½ �:
The volume fractions of crystallites of five samples can

be calculated by substituting (25) and (26) into Eq. (15).

See Fig. 3. The volume fractions of crystallites of five

samples have a trend along the growth direction of tensile

modulus. This trend is the same as the trend of apparent

crystallinity.

Influence factors of tensile modulus

The orientation degree of crystallites P, aspect ratios of

crystallites xc, aspect ratios of microvoids xv, volume

fractions of crystallites f1, and volume fractions of micro-

voids f2 are calculated by Eq. (15). Figure 4a (horizontal

Table 2 Experiment results of microvoids for the PAN-based carbon fibers

Type Size of microvoids at the direction of equator Size of microvoids at the direction of meridian xv (L/a)

Rgc (nm) a (nm) Rgmi (nm) Wi (%) Li (nm) L (nm)

T300 1.04 1.48 1.97 98.07 3.88 4.02 2.72

4.44 1.70 9.71

9.90 0.23 22.04

T700 0.96 1.36 1.81 95.65 3.56 3.81 2.79

3.79 3.24 8.26

6.80 0.91 15.07

T800 0.97 1.38 2.09 94.37 4.25 4.82 3.33

4.13 4.51 9.02

6.75 1.12 14.96

M35J 1.03 1.46 1.97 95.73 3.90 4.16 2.85

4.07 3.67 8.87

7.65 0.60 16.98

M40J 0.99 1.40 2.16 95.44 4.40 4.67 3.34

4.21 4.09 9.20

8.74 0.47 19.43

Fig. 3 Calculated volume fractions of crystallites
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axis represents the increment of a factor, the same below)

shows that the tensile modulus increases with increasing P.

The high modulus of a carbon fiber stems from the fact that

the carbon layers, though not necessarily flat, tend to be

parallel to the fiber axis [31]. The greater the degree of

alignment of the carbon layers parallel to the fiber axis, the

greater the fiber’s tensile modulus. Comparing T series

carbon fibers with MJ series carbon fibers, we can find that

the MJ series have larger P than the T series.’ Five curves

in Fig. 4a are different in length, because the five orien-

tation degrees of crystallites had different initial values,

which lie in the range 79–88 %, and the limit of orientation

degree is 100 %. With P close to 100 %, increases of

tensile modulus gradually become slow. In Fig. 4b, the

tensile modulus is plotted against xc. It can be seen that the

tensile modulus increases linearly with xc in the interval

0 % B xc B 24 %. In a carbon fiber, there can be graphite

regions of size Lc perpendicular to the carbon layers

(crystallites) and size La parallel to the carbon layers. Both

Lc and La grow with increasing heat treatment temperature

in the processing of production of carbon fibers [20, 31,

32]; the greater the size of crystallites and xc, the greater

the tensile modulus. We can find that the MJ series carbon

fibers have larger size of crystallites and xc than the

T series’. Figure 4c shows that the tensile modulus

increases linearly with increasing xv, and five curves are

almost horizontal lines. Elongated microvoids in carbon

fibers along the fiber axis result in a high tensile modulus.

On the contrary, dumpy microvoids can degrade the

properties of carbon fibers. Figure 4d illustrates the tensile

modulus plotted against the volume fractions of crystallites

f1. It is found that the tensile modulus shows a non-linear

behavior with f1. Usually, the greater the f1, the higher the

tensile modulus. Figure 4e shows that the tensile modulus

increases linearly with descending f2. It is obvious that the

reduction of microvoids is good for the increase of the

Fig. 4 Relationships between

the tensile modulus and the

factors for the bulk PAN-based

carbon fibers
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tensile modulus of carbon fibers, because the reduced

volume of microvoids whose tensile modulus is zero

transformed either crystallites or amorphous components or

both of them.

Factors comparisons

The five factors P, xc, xv, f1, and f2, which affect the

tensile modulus of PAN-based carbon fibers, are discussed.

Figure 5 shows the tensile modulus against the five factors

for T300, T700, T800, M35 J, and M40 J (note that the

curve of f2 is in the second quadrant of the coordi-

nate system, see Fig. 4e, we transform it into the first

quadrant for comparison). In Fig. 5, we can see that xc, f2,

and xv have a smaller influence on the tensile modulus by

considering the slope of curves. We can see that xc most

affects the tensile modulus and f2 is the next and xv is the

last. P and f1 have a greater effect on tensile modulus than

xc, f2, and xv except for P of M40J within the interval

12 % B P B 15 %, see Fig. 5e. Compare P with f1, and

we can find that P has a greater effect than f1 in initial;

with the increase of P and f1, the effect of P on tensile

modulus is surpassed by f1 as shown Fig. 5a–e.

Conclusions

Our new three-phase micromechanical model which is

established by applying the Eshelby equivalent inclusion

theory and Mori–Tanaka’s mean stress method can be suc-

cessfully employed to predict the tensile modulus for carbon

fibers. Using this micromechanical model, the volume frac-

tions of crystallites of carbon fibers can be calculated which is

able to apply to the quantitative calculation. It is noted that the

present study has important implications for understanding the

microstructural parameters that control the tensile modulus of

Fig. 5 Comparison between the

factors for the bulk PAN-based

carbon fibers
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PAN-based carbon fibers, such as the orientation degree of

crystallites, volume fractions of crystallites and microvoids,

and aspect ratios of crystallites and microvoids. By analyzing

the new three-phase micromechanical model, we derive the

tensile modulus of carbon fibers increase with increasing the

orientation degree of crystallites, volume fractions of crys-

tallites, aspect ratios of crystallites and microvoids, and the

tensile modulus of carbon fibers increase with decreasing the

volume fractions of microvoids. Comparing the five factors

that influenced the tensile modulus of carbon fibers, we find

that the volume fractions of crystallites and the aspect ratios of

crystallites have the most significant effect for tensile modu-

lus. The present study can provide useful help for improving

mechanical properties and in the manufacturing process of

carbon fibers.
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Appendix: coordinate transformation

Consider vector u in the global coordinate system

O - x1x2x3 and u
0

in the local coordinate system

O� x01x
0
2x

0
3. See Fig. 6. The transformation relation

between two coordinate systems can be expressed u
0
= Qu,

where Q is a Transformation tensor. It can be written in

matrix form as

Q ¼
cos h cosu � cos h sinu sin h

sinu cosu 0

� sin h cosu sin h sinu cos h

2
4

3
5:

For second-order stress tensors r in the global coordi-

nate system and r
0
in the local coordinate system, we have

r = QTr
0
Q. Similarly, e = QTe

0
Q, where e and e

0
are sec-

ond-order strain tensors in the global coordinate system

and the local coordinate system, respectively.

Stress tensors and strain tensors can also be written in

vectors form

r ¼ ðr1r2r3r4r5r6ÞT ; e ¼ ðe1e2e3e4e5e6ÞT

r0 r01r
0
2r

0
3r

0
4r

0
5r

0
6

� �T
e0 ¼ e01e

0
2e

0
3e

0
4e

0
5e

0
6

� �T
;

then the transformations of stress vectors and strain vectors

are r = Tr
0
and e ¼ T�1ð ÞT

e0; where T and T�1ð ÞT
are the

stress transformation matrix and strain transformation

matrix, T-1 is inverse of the T, and T�1ð ÞT
is transpose of

the T-1. T and T�1ð ÞT
can be expressed as

T ¼ TA 2TB
TC TD

� �
; T�1
� �T¼ TA TB

2TC TD

� �
;

where

Fig. 6 Diagram of the global coordinate system and local coordinate

system

TA ¼
cos2 h cos2 u sin2 u sin2 h cos2 u
cos2 h sin2 u cos2 u sin2 h sin2 u

sin2 h 0 cos2 h

2
4

3
5;

TB ¼
� sin h cosu sinu � cos h sin h cos2 u cos h cosu sinu
sin h cosu sinu � cos h sin h sin2 u � cos h cosu sinu

0 cos h sin h 0

2
4

3
5;

TC ¼
� cos h sin h sinu 0 cos h sin h sinu
cos h sin h cosu 0 � cos h sin h cosu

� cos2 h cosu sinu cosu sinu � sin2 h cosu sinu

2
4

3
5;

TD ¼
cos h cosu � cos2 h sinu� sin2 h sinu cosu sin h
cos h sinu cos2 h cosu� sin2 h cosu sin h sinu

� cos2 u sin hþ sin h sin2 u 2 cos h sin h cosu sinu cos h cos2 u� cos h sin2 u

2
4

3
5:
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