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Abstract A eutectic dendrite growth model in which the

interface, solute diffusion in the liquid, and triple-junction

(TJ) are under non-equilibrium conditions is proposed for

undercooled binary alloys. This model, compared with

previous work, is applicable to concentrated alloys.

Application of the model to the undercooled Ag–Cu

eutectic alloy obtained a good agreement between model

predictions and experimental results. An upper limit on the

eutectic growth velocity is predicted above which migra-

tion of TJ is not kinetically possible and a transition from

co-operative eutectic growth to single-phase growth occurs

for concentrated alloys and dilute alloys with linear liq-

uidus and solidus, respectively.

Introduction

Eutectic dendrite is a coupling microstructure. Its mor-

phology as a whole is that of a dendrite, whereas its

interface migration is dominated by co-operative growth of

two or more solid phases [1–4]. The dendrite structure is

formed by the well-known Mullins–Sekerka instability [5].

While taking a binary eutectic alloy as an example, one

phase a repels the solute B while the other phase b repels

the solvent A. Co-operative growth through solute diffusion

in liquid results in the eutectic structure. If the Mullins–

Sekerka instability [5] is introduced to eutectic interface, a

eutectic dendrite structure is formed:

1. Addition of a third component. If both a and b reject

the third component, its enrichment ahead of the

interface results in a concentration gradient and then

destabilization of the eutectic interface. Examples are

the directional solidification of transparent ternary [1]

and pseudo-ternary [2] eutectic alloys.

2. Eutectic growth in undercooled melts. In this case,

both a and b reject latent heat into undercooled melts

and the negative temperature gradient ahead of inter-

face results in instability. Examples are rapid solidi-

fication of undercooled Co-Sb [3] and Co-Sn [4]

eutectic alloys.

The recipe to model eutectic dendrite growth is to combine

the eutectic growth model with the dendrite growth model.

The pioneering work comes from Goetzinger–Barth–Herlach

(GBH) [6]. They adopted the Zyrd–Gremaud–Kurz (ZGK)

model [7] and the Lipton–Kurz–Trivedi (LKT) model [8] to

describe solute diffusion parallel to interface and thermal

diffusion perpendicular to interface, respectively. However,

they used the exact solution of solute diffusion equation of

Donaghey and Tiller [9] which was proposed for the linear

phase diagram with constant solute partition coefficients

ðkea; kebÞ and slopes of liquidus and solidus

ðme
La; m

e
Lb; m

e
a; m

e
bÞ. Li and Zhou (LZ) [10] followed the

Trivedi–Magnin–Kurz (TMK) model [11] in which the linear

phase diagram is simplified to two types, i.e., one cigar-

shaped in which the liquidus and solidus are parallel below

the equilibrium eutectic temperature Te
E and the other in
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which the equilibrium partition coefficients are constant and

equal (i.e., kea ¼ keb ¼ ke). For both the GBH [6] and LZ [10]

models, the eutectic dendrite in undercooled melts is assumed

to be a thermal dendrite in which there exists only the cur-

vature undercooling DTR and the thermal undercooling DTT.

The effect of a third component on the eutectic dendrite

growth was studied subsequently by Liu–Li–Zhou (LLZ)

[12]. In this case, dendrite growth not only becomes thermal-

controlled but also solute-controlled and there is an additional

constitutional undercooling DTC. Although progress has been

made for modeling of eutectic dendrite growth [6, 10, 12], a

comparative study between the predicted and measured

growth velocity V as a function of undercooling DT is not

satisfactory [4, 6, 13]. Further work needs to be done to take

into account the four effects as follows.

1. Non-equilibrium interface kinetics. There are generally

two independent dissipative processes at the interface,

i.e., trans-interface diffusion and interface migration

[14, 15]. The first solute redistribution process between

solid and liquid corresponds to solute trapping [16, 17],

that results in a deviation from the equilibrium

concentrations. The second crystallization process

results in deviation from the equilibrium temperature.

The classical Jackson–Hunt (JH) [18] and TMK [11]

models were proposed for solidification under local

equilibrium conditions. For undercooled melts, the

non-equilibrium interface kinetics can be so significant

that it needs to be considered. For the case of equal

kinetic partition coefficients ka ¼ kb ¼ k, Kurz and

Trivedi [19] substituted the kinetic slopes of liquidus

mLa, mLb for me
La, me

Lb in the TMK model [11]. The

kinetic undercooling DTK was incorporated into the LZ

[10] and LLZ [12] models but the non-equilibrium

effects on the solute partition coefficients and slopes of

liquidus were not taken into consideration. A complete

description of non-equilibrium interface kinetics was

conducted recently by Wang et al. [20, 21]; their model

however is limited to dilute alloy systems.

2. Non-equilibrium solute diffusion (NESD). Practically,

the measured growth velocity V [22] can be compa-

rable with or even larger than the solute diffusion

velocity in liquid, VDL. In this case, solute diffusion is

not only determined by its instantaneous concentration

gradient but also relevant to its local history [23–27].

As a result, complete solute trapping (i.e., ka ¼ kb ¼ 1)

happens abruptly at a finite velocity V = VDL. The

NESD effect not only influences solute diffusion in

bulk phases but also interface kinetics, as has been

verified by experiments [24–27] and atomistic simu-

lations [28]. Galenko and Herlach (GH) [29] solved the

NESD equation of liquid in the case of ka ¼ kb ¼ k,

according to which they proposed a possible transition

from eutectic solidification to partitionless solidifica-

tion at V = VDL.

3. Non-equilibrium triple-junction (TJ) kinetics. It can

considerably influence the formation of eutectic pat-

terns. One example is directional solidification of CBr4–

C2Cl6 eutectic system [30, 31]. Although the deviation

of contact angles from the normal direction of eutectic

interface is too small (e.g., 1�) to detect, its significant

effect on stability is precisely measurable. Specific

eutectic growth where both the a and b phases are

stoichiometric compounds (SCs, Ca ¼ constant,

Cb ¼ constant) was studied recently [32]. In contrast

to conventional understanding (e.g., Refs. [33, 34]), an

exact solution of solute diffusion equation is available,

in which the eutectic composition is necessarily found at

TJ. The TJ kinetics could play such an important role in

eutectic solidification [35] that it should be considered.

4. Concentrated alloys. The assumption of dilute alloys

with linear liquidus and solidus prevails in the classical

dendrite [8, 37] and eutectic [11, 18] growth models.

These models are helpful to understand the solidifica-

tion phenomena but may lead to significant deviation

from the actual solidification process. The significant

effects of non-linear liquidus and solidus, interaction

between solute and solvent on interface kinetics [15,

38], stability of planar interface [39–41], and dendrite

growth [42–44] have been studied recently. For den-

dritic solidification of one solid phase, dilute alloys may

be possible but linear liquidus and solidus are applicable

only to small values of DT [42], whereas for eutectic

solidification of two or more solid phases, the assump-

tion of dilute alloys with linear liquidus and solidus is

actually not that practical.

In the current work, the non-equilibrium interface, TJ

kinetics and NESD in liquid are integrated to propose a

lamellar eutectic growth model. The model is then combined

with the thermal dendrite growth [45, 46] model to obtain

the current eutectic dendrite growth model. The eutectic

dendrite growth model is applied to the undercooled Ag–Cu

eutectic alloy which involves two solid solution phases

(SSP). A good agreement between model predictions and

experimental results [47] is obtained. The significant roles of

the four effects abovementioned are shown and two new

mechanisms for the upper limit of eutectic growth velocity

are found.

Eutectic dendrite growth model

Let us start from lamellar eutectic growth under steady-

state conditions (see Fig. 1a). First, a new solution of

NESD equation in liquid in which kinetics of TJ is a
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necessary boundary condition is derived. After that, the

average interface kinetic condition [35] is formulated to

uniquely determine the relation between the lamellar

spacing k and the interface undercooling DTI (¼ Te
E � TI)

for a given V by the minimum undercooling principle [18].

Finally, a negative temperature gradient is imposed to the

growing lamellar eutectic interface to generate instability

(Fig. 1b). The relation between the dendrite tip radius R

and the thermal undercooling DTT is determined uniquely

for a given V by the thermal dendrite growth model of

Galenko et al. [45, 46]. Noting that DT ¼ DTI þ DTT, the

current eutectic dendrite growth model is obtained by

combining the lamellar eutectic model with the thermal

dendrite growth model according to which k, R; and DT are

determined for a given V .

Solution of NESD equation in liquid

Attaching the co-ordinate system to the assumed planar

interface (Fig. 1a), the NESD equation can be written as [29]

o2CL

oX2
þ w

o2CL

oZ2
þ V

DL

oCL

oZ
¼ 0: ð1Þ

where CL and DL are the solute concentration and the

diffusion coefficient in liquid, respectively. w ¼
1 � V2

�
V2

DL is the relaxation factor as in Ref. [29]. The

boundary conditions far away from the interface and the

periodic conditions at the interface are

CL ¼ C1 at Z ¼ 1; ð2Þ
oCL

oX
¼ 0 at X ¼ 0 and X ¼ Sa þ Sb; ð3Þ

where Sa and Sb are the half widths of the lamellae a and b;
respectively. The solution of Eq. 1 with the boundary

conditions Eqs. 2 and 3 is

CL X;Zð Þ¼ C1þ
P1

n¼0

Bn cos bnXð Þexp � V

DLw
xnZ

� �
; V\VDL

C1; V�VDL

8
<

:
;

ð4Þ

where bn ¼ 2np=k (n¼ 0;1;2; . . .) and xn ¼

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þw 2np=Peð Þ2

q� ��
2 with Pe ¼Vk=2DL being the

Peclet number. The Fourier coefficients Bn are evaluated

from the average mass conservation law at the interface

[32, 35]

�DLw
V

oCL

oZ

� �

Z¼0

¼
�C�

La � �C�
a ; 0�X\Sa

�C�
Lb � �C�

b; Sa\X\Sa þ Sb

	
; ð5Þ

where

�C�
La ¼

1

Sa

Z Sa

0

CL X; 0ð ÞdX

¼ C1 þ B0 þ
X1

n¼1

Bn

npfa
sin npfað Þ; ð6Þ

Fig. 1 Schematic diagram for modeling of eutectic dendrite growth

in undercooled melts: lamellar eutectic (a) and eutectic dendrite (b)

growth under steady-state conditions. Following the classical eutectic

growth models [11, 18], a planar interface (a) is first assumed to

obtain the solution of solute diffusion equation of liquid. Then, the

interface kinetic conditions of the curved a=L and b=L interfaces are

averaged to determine the unique relation between the lamellar

spacing k and the interface undercooling DTI for a given velocity V

by the minimum undercooling principle [18]. After that, a negative

temperature gradient is imposed on the eutectic interface to generate

its instability to dendrite growth (b). Because the dendrite tip radius R

is several orders larger than the lamellar spacing k (e.g., Fig. 5), the

common method [6, 10, 12] to combine the eutectic growth with the

dendrite growth model is adopted to formulate the current model. For

eutectic growth, not only lateral but longitudinal diffusion is also

limited to the length scale of lamellar spacing; please see, e.g.,

Figures 2 and B1 in Ref. [32]. This is the reason why the eutectic

dendrite is approximated as a purely thermal dendrite [6, 10] even if

there is solute diffusion in liquid
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�C�
Lb ¼ 1

Sb

Z SaþSb

Sa

CL X; 0ð ÞdX

¼ C1 þ B0 �
X1

n¼1

Bn

npfb
sin npfað Þ; ð7Þ

are the average liquid concentrations at the a=L and b=L
interfaces, �C�

a , �C�
b are the corresponding average solid

concentrations, and ‘*’ denotes the value at the interface.

Substituting Eqs. 4, 6, and 7 into Eq. 5 yields

C1 ¼ fa �C
�
a þ fb �C

�
b; ð8Þ

Bn ¼
2 sin npfað Þ

xnnp
�C�
b � �C�

a


 �
,

1 �
X1

m¼1

2 sin2 mpfað Þ
xmm2p2fafb

" #

ðn� 1Þ;

ð9Þ

where fa and fb are the volume fractions of lamellas a and

b. Compared with the JH [18], DT [9], and TMK [11]

solutions, it is the global mass conservation law (Eq. 8),

but not the Fourier coefficient B0 that is obtained. There-

fore, one more boundary condition is needed, which is the

‘‘extrinsic’’ kinetics of TJ [32, 36]

C�
L X¼Saj ¼ C^

L ¼ Cne
EL: ð10Þ

Combining of Eq. 4 with Eq. 10, B0 is expressed as

B0 ¼ C^
L � C1 �

X1

n¼1

Bn cos npfað Þ: ð11Þ

In contrast to our understanding from textbooks [33, 34],

the kinetic eutectic composition Cne
EL is necessarily found at

the TJ and it can be obtained from the following equations

[35]:

V

V I
DL

¼ RgTI

C^
L � C^

a

o~l^L
oC^

L

� ��1

w 1 � exp
DlA^a=L

� DlB^a=L

RgTI

 !" #

;

ð12Þ

V

V
a=L
0

¼ 1 � exp
C^

LDl
B^
a=L

þ 1 � C^
L

� 

DlA^a=L

RgTI

" #

; ð13Þ

V

V I
DL

¼� RgTI

C^
L �C^

b

o~l^L
oC^

L

� ��1

w 1� exp
DlB^b=L

�DlA^b=L

RgTI

 !

;

" #

ð14Þ

V

V
b=L
0

¼ 1 � exp
C^

LDl
B^
b=L

þ 1 � C^
L

� 

DlA^b=L

RgTI

" #

: ð15Þ

where the superscript ‘^’ denotes the values at TJ, V I
DL is

the solute diffusion velocity of interface, V
i=j
0 is the upper

limit velocity for the migration of i=j interface, li is the

chemical potential, and ~li ¼ lBi � lAi is the solute diffusion

potential for the i component, DlB^
i=j ¼ lB^i � lB^j ,

DlA^
i=j ¼ lA^i � lA^j , Rg is the gas constant, and TI is the

interface temperature. A comparative study between the

solutions with and without TJ kinetics was carried out in

Ref. [32]. The current solution is an extension of previous

solution [32, 35] to the case of NESD and in comparison to

the GH solution [29], is applicable to concentrated alloys.

Average interface conditions and lamellar spacing

In the case of linear liquidus and solidus, the average

interface undercoolings of a=L and b=L interfaces are

averaged again by the slopes of equilibrium [6, 10–12, 18]

or non-equilibrium [19] liquidus of a and b phases. This

treatment is not convenient here because the interface

undercooling contributions DTC, DTR; and DTK cannot be

obtained analytically in the case of non-linear liquidus and

solidus. Therefore, the average interface kinetic conditions

for migration of a=L and b=L interfaces are averaged by the

volume fractions of a and b phases [35].

V ¼
X

i¼a;b

fiV
i=L
0

	
1 � exp

�C�
LiD�lB�i=L þ 1 � �C�

Li

� 

D�lA�i=L � Vm

�Ki=Lri=L

RgTI

" #)

:

ð16Þ

where ri=L is the interface tension for i=L interface. The

average curvature �Ki=L is [18]1:

� �Ki=L ¼ 2 sin hi
kfi

ði ¼ a;bÞ: ð17Þ

The contact angles ha and hb are obtained from the

‘‘intrinsic’’ kinetics of TJ [35], which in the case of 1-D

steady-state growth reduce to

ra=L cos ha � rb=L cos hb ¼ 0;

V ¼ MTJ ra=L sin ha þ rb=L sin hb � ra=b
� 


:
ð18Þ

The averaged interface kinetic conditions for trans-in-

terface diffusion are [35]

V

V I
DL

¼ RgTI

�C�
La � �C�

a

o�~l�L
o �C�

La

� ��1

w 1 � exp
D�lA�a=L �D�lB�a=L

RgTI

 !" #

;

ð19Þ

V

V I
DL

¼ � RgTI

�C�
Lb � �C�

b

o�~l�L
o �C�

Lb

 !�1

w 1 � exp
D�lB�b=L � D�lA�b=L

RgTI

 !" #

:

ð20Þ

1 At the tip of eutectic dendrite, � �Ki=L ¼ 2 sin hi=kfi þ 2=R is

obtained where the first and the second term on the right-hand side

are the contributions from the eutectic and dendrite structures,

respectively. However, R is several orders larger than k (Fig. 5) and

thus it is advisable to omit the second term.
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The relation between k and DTI can be determined

uniquely for a given V if the minimum undercooling

principle [18] is assumed to be the operation point of

eutectic growth:

oDTI

ok
¼ 0: ð21Þ

Thermal dendrite growth and dendrite tip radius

For a purely thermal-controlled dendrite growth, DTT can

be obtained from the Ivantsov solution [8, 37] as

DTT ¼ D �Hf

�CL
P

Iv PTð Þ; ð22Þ

where D �Hf (¼ faD �Ha
f þ fbD �Hb

f ) is the average latent heat of

fusion, �CL
P (¼ fa �C

La
P þ fb �C

Lb
P ) is the average specific heat of

undercooled melts, PT ¼ VR=2aL with aL the thermal

diffusion coefficient is the thermal Peclet number. Equa-

tion 22 gives a relation between VR and DTT. To find a

unique solution, a second equation is needed, e.g., from the

solvability theory [45, 46]:

R ¼
�C

r0e7=4

� �
= PTD �HfnT=2 �CL

P

� �
; ð23Þ

where nT ¼ 1
�

1 þ aTeP2
T

� 

, �C (¼ fa �CLa þ fb �CLb; where

�CLi ¼ ri=LVm

�
D�Sif and D�Sif is the average entropy of fusion

of the i=L interface) is the average Gibbs–Thompson

coefficient, e is the anisotropy coefficient, r0 ¼ 1=0:42 and

aT ¼ 0:3. For a given V, R, and DTT can be determined by

Eqs. 22 and 23.

Until now, the eutectic dendrite growth model for

undercooled binary alloy has been developed. One can

obtain k, R, and DT for a given V by integrating Eqs. 6–9

and 11–23. The current work in comparison with the pre-

vious eutectic dendrite growth models [6, 10, 12] can be

summarized as follows. (1) The non-equilibrium interface,

TJ kinetics, NESD, and its effect on the interface kinetics

are integrated. (2) It is applicable to a concentrated alloy

system. A simplification to the case of dilute alloys with

linear liquidus and solidus is given in Appendix.

Application to undercooled Ag–Cu eutectic alloy

The current model was applied to undercooled Ag–Cu

eutectic alloy. The thermodynamic assessment by Subra-

manlan and Perepezko [48] was applied to obtain the

thermodynamic properties lAi , lBi , DHi
f , CLi

P ; and DSif
(i ¼ a; b denote, respectively, the Ag and Cu phases).

Accordingly, we have Te
E ¼ 1053:7 K, Ce

EL ¼ 0:3944,

Ce
Ea ¼ 0:136, Ce

Eb ¼ 0:952, TAg
m ¼ 1235:3 K; and TCu

m ¼

1357 K from the equilibrium phase diagram; please see the

solid lines in Fig. 8a. Other physical parameters used are

summarized in Table 1.

A fluxing melt technique was applied to undercool the

Ag–Cu eutectic alloy, and a high-speed camera was used to

record the propagation of recalescence fronts by Clopet

et al. [47]. Figure 2 shows a comparison between model

predictions and experimental results for the V * DT rela-

tion. The current model (the solid line) reproduces the

experimental results well except for the data point at

DT = 60 K.2 Although Clopet et al. [47] believed that the

sharp decrease of V at DT = 60 K is real, it cannot be

predicted currently. We would like to note that if the

mobility for interface migration and solute diffusion coef-

ficient are temperature dependent, a transition from ther-

modynamics-controlled to kinetics-controlled growth

happens and a first increase of V with DT is followed by a

decrease [35, 49]; such transition, however, happens at

very large DT.

Figure 3 shows the evolutions of DTT and DTI with DT.

DTT is dominated at low and medium DT, whereas with

2 It must be pointed out that breakdown of eutectic growth to single

dendrite growth happens at DT & 70 K according to the experimen-

tal results of Clopet et al. [47]. Similar result was also found by Wang

and Herlach [50, 51] and Zhao et al. [52, 53] and was ascribed to the

limit of T0 line. For such small undercooling DT\ 70 K, the non-

equilibrium effects are actually negligible. According to the current

model prediction, however, eutectic growth holds until an upper limit

of eutectic growth velocity V = 0.177 m s-1 where DT = 350 K is

much higher than 70 K; please see the extended dashed line in Fig. 2.

Regarding that eutectic growth always holds through the whole

experimentally accessible undercooling for some alloys, e.g., Fe–B

[36], Ni–Sn [13], extension of current model prediction to high

undercooling may be helpful to show at least qualitatively the non-

equilibrium effects during rapid eutectic growth as well as the effect

of concentrated alloys.

Table 1 Physical parameters for simulation of undercooled Ag–Cu

eutectic alloy

Parameters Values

V I
DL (m s-1) 0.526

VDL (m s-1) 1

V
a=L
0 (m s-1) 100

V
b=L
0 (m s-1) 100

DL (m2 s-1) 3.8 9 10-9

MTJ (m3 J-1 s-1) 2

aL (m2 s-1) 3 9 10-6

Vm (m3 mol-1) 7.58 9 10-6

ra=L (J m-2) 0.3

rb=L (J m-2) 0.5

e (–) 0.0078
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further increase of DT, there is a faster increase of DTI

resulting in DTI being larger than DTT. This suggests that

non-equilibrium interface kinetics plays an important role

at high DT. Because it is not possible to distinguish DTC,

DTK, and DTR from DTI in the case of concentrated alloys,

evolutions of the average concentrations at the a=L, b=L
interfaces ( �C�

a , �C�
b, �C�

La,
�C�

Lb) and the concentration at the

TJ (C^
L ¼ Cne

EL) with DT are calculated (Fig. 4). At small

DT, �C�
a ¼ Ce

Ea, �C�
b ¼ Ce

Eb and �C�
La ¼ �C�

Lb ¼ C^
L ¼ Ce

EL. The

local equilibrium conditions hold at not only interfaces but

also at TJ. The liquid concentration at the interface can

approximately be given as the equilibrium eutectic com-

position (i.e., C�
L ¼ Ce

EL) (e.g., the JH model [18]). With an

increase in DT, �C�
a , �C�

b, �C�
La,

�C�
Lb; and C^

L deviate gradually

from their equilibrium values. The concentrations are

varied along the interface and their deviation from the local

equilibrium conditions are so significant that not only JH

[18] but even TMK [11] models are inapplicable. A result

of evolutions of �C�
a and �C�

b with DT is the corresponding

variation of fa and fb due to the global mass conservation

law Eq. 8; denoted by the dotted and dash-dotted lines in

Fig. 3. In other words, the non-equilibrium effects influ-

ence not only the eutectic growth kinetics but also the

volume fractions of the lamellae.

Evolutions of k, R, and their ratio R=k with DT are

shown in Fig. 5. The extremely large ratio of R=k implies

that the dendrite can be taken as a planar interface at the tip

compared with the lamellar spacing. Therefore, a direct

combination of lamellar eutectic growth with thermal

dendrite growth that occurs at different length scales is a

reasonable recipe [10].

Fig. 2 The growth velocity V as a function of undercooling DT:

current model predictions, the solid line; extension of the model

predictions to high undercooling, the dashed line; experimental results

of Clopet et al. [53], the solid circles

Fig. 3 The undercooling contributions (the thermal undercooling

DTT, the solid line; the interface undercooling DTI, the dashed line)

and the volume fractions (of the a phase fa, the dotted line; of the b
phase, the dash-dotted line) as a function of undercooling DT

Fig. 4 The average solid, liquid concentrations at the a=L, b=L
interfaces ( �C�

a , the solid line; �C�
b, the dashed line; �C�

La, the dotted line;

�C�
Lb, the dash-dotted line) and the concentration at TJ (C^

L , the short-

dashed line) as a function of undercooling DT

Fig. 5 The lamellar spacing k (the solid line), the dendrite tip radius

R (the dashed line) and their ratio R=k (the dotted line) as a function

of undercooling DT
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Discussion

Effect of concentrated alloys

Most of the previous eutectic growth models are estab-

lished for dilute alloys with linear liquidus and solidus,

e.g., Refs. [6, 7, 9–12, 18, 19]. For an actual eutectic alloy,

the liquidus and solidus are non-linear and the interaction

between the solute and the solvent is not negligible any-

more. A comparison between the models for concentrated

alloys and dilute alloys with linear liquidus and solidus is

shown in Fig. 6. The DT * V relations are indistinguish-

able for DT\100 K and difference between them becomes

significant with further increase of DT . The k * V rela-

tions are the same at small V and the differences between

them are not too large even at large V. This means that the

assumption of dilute alloys with linear liquidus and solidus

is only applicable to small V (DT). The significant devia-

tion at large V (DT) clearly shows the necessity to propose

the current model for concentrated alloys. Note that for

both cases, there is a critical velocity above which coop-

erative eutectic growth cannot hold; please see our dis-

cussion in the following sections.

Effect of non-equilibrium kinetics

For eutectic growth in undercooled melts, the interface, TJ,

and solute diffusion in liquid are under local non-equilib-

rium conditions. To show their respective effects, different

combinations of non-equilibrium kinetics are adopted to

calculate the model for dilute alloys with linear liquidus

and solidus; please see Fig. 7a, b. Let us first consider the

case with all of the three types of non-equilibrium effects:

C^
L ¼ Cne

EL (non-equilibrium interface and ‘‘extrinsic’’ TJ

kinetics), VDL = 1 m s-1 (a finite value of VDL corre-

sponds to NESD), and MTJ = 2 m4 J-1 s-1 (a finite value

of MTJ corresponds to ‘‘intrinsic’’ TJ kinetics [35]). The

predicted DT * V and k * V relations are shown as the

solid lines in Fig. 7.

Then, we set MTJ ! 1, so that is there is no ‘‘intrinsic’’

TJ kinetics; please see the dashed lines in Fig. 7. Compared

to the first case, both DT and k becomes larger at high V,

suggesting that the TJ kinetic effect could be significant.

Let us further set VDL ? ?, that is, solute diffusion in

liquid is under local equilibrium conditions; please see the

dotted line in Fig. 7. A comparison between the second and

third cases shows that NESD does not have a significant

effect on DT and k even at high V . In contrast to GH [29], a

complete eutectic growth model is derived currently. Our

simulation results, however, show that the NESD effect is

not that important compared to dendrite growth upon

Fig. 6 The undercooling DT and lamellar spacing k as a function of

the growth velocity V for the cases of concentrated alloys (the solid

and dashed lines) and dilute alloys with linear liquidus and solidus

(the dotted and dash-dotted lines)

Fig. 7 The undercooling DT (a) and the lamellar spacing k (b) as a

function of the growth velocity V for different combinations of non-

equilibrium kinetics. The concentration at the TJ C^
L equals the

kinetic eutectic composition Cne
EL (or the equilibrium eutectic com-

position Ce
EL), meaning there is a (or is no) non-equilibrium interface

and ‘‘extrinsic’’ TJ kinetics. A finite VDL ¼ 1 m s-1 (or an infinite

VDL ¼ 1) implies that solute diffusion in liquid is (or is not) under

local non-equilibrium conditions. A finite MTJ ¼ 2 m3 J-1 s-1 (or an

infinite MTJ ¼ 1) means that there is (or is no) non-equilibrium

‘‘intrinsic’’ kinetics of TJ
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which a transition to partitionless solidification is followed

by a change of growth mechanism from a power law to a

linear law at V = VDL [26, 27, 42–44]. The reason is that

for both the concentrated and dilute alloys, co-operative

eutectic growth fails when V is much smaller than VDL;

please see Figs. 6 and 7. Finally, we set C^
L ¼ Ce

EL, that is,

there are no interface and ‘‘extrinsic’’ TJ kinetics [36]. In

this case, the interface, TJ and solute diffusion in liquid are

all under local equilibrium conditions. The extreme devi-

ations from the above three cases for DT when

V[ 0.05 m s-1 and k when V[ 0.35 m s-1 show the

important roles of non-equilibrium interface and ‘‘extrin-

sic’’ TJ kinetics. In one word, the effects of concentrated

alloys, non-equilibrium interface ,and TJ kinetics play

important roles in eutectic growth but not the NESD effect.

Upper limit of eutectic growth velocity

Two different mechanisms are given by TMK [11]. One is

the temperature-dependent diffusion coefficient that leads

to a transition from thermodynamics-controlled to kinetics-

controlled growth [35, 49]. The other is the limit of

undercooling constrained by the phase diagram. If the

interface temperature reaches the solidus temperature for a

given phase, a transition from co-operative eutectic growth

to single-phase growth happens. In the current work, an

upper limit of eutectic growth velocity is found for both

concentrated and dilute alloys (Figs. 6, 7). The physics

behind each case is, however, different from TMK [11].

Co-operative eutectic growth occurs by migration of TJ

at which two or more solids are solidified simultaneously

from one liquid. Therefore, eutectic growth can occur only

when migration of TJ is kinetically possible. Figure 8a

shows the kinetic phase diagrams of concentrated Ag–Cu

eutectic alloy. The equilibrium phase diagram (V = 0) is

shown as the solid lines. With the increase of V, the

absolute value of the slope of liquidus increases and that of

solidus decreases, e.g., the dashed lines for V = 0.1 m s-1.

The kinetic liquidus of Ag and Cu phases interact with each

other at a kinetic eutectic point. However, when V

increases to a critical value V = 0.177 m s-1, there is no

kinetic eutectic point anymore. Taking V = 0.18 m s-1 as

an example, the kinetic liquidus and solidus temperatures

of the Cu phase decrease gradually with the decrease of Cu

composition, whereas for the Ag phase, they first decrease

and then increase again with the decrease of Ag compo-

sition; please see the dotted lines. For the case of

V = 0.4 m s-1, there is no kinetic eutectic point because

the kinetic liquidus and solidus of the Ag phase interacts

with each other primarily; please see the dash-dotted lines.

When V C VDL = 1 m s-1, complete solute trapping

happens and the kinetic liquidus and solidus of the Ag and

Cu phases coincide with each other; please see the short-

dashed (V = 1 m s-1) and short-dotted (V = 2 m s-1)

lines. In this case, the Ag phase does not repel Cu atoms

and the Cu phase does not repel Ag atoms. Co-operative

eutectic growth through solute diffusion in liquid fails

completely. In short, there is a critical velocity above

which there is no kinetic eutectic point and the upper limit

of eutectic growth velocity is constrained by the ‘‘extrin-

sic’’ TJ kinetics. Evolutions of Cne
EL and Tne

E with V are

summarized in Fig. 8b. The considerable deviations of Cne
EL

and Cne
EL from Ce

EL and Te
E again highlight the need to

incorporate non-equilibrium kinetics into current work.

For dilute alloys with linear liquidus and solidus, the

absolute value of the slope of liquidus increases and that of

solidus decreases continuously with V until they coincide at

V ¼ VDL. Because the kinetic liquidus and solidus hold as

linear lines in the kinetic phase diagrams, there is always a

kinetic eutectic point for V\VDL. The upper limit of

eutectic growth velocity was regarded to be the solute

diffusion velocity in liquid VDL [29], which is however not

the case; please see Fig. 7. Because the DT * V and

k * V relations are similar for all of the four cases, the

upper limit of eutectic growth velocity is independent of

the non-equilibrium effects.

Fig. 8 The kinetic phase diagrams of concentrated Ag–Cu eutectic

alloy (a) and the corresponding kinetic eutectic composition Cne
EL (the

solid line) and temperature Tne
E (the dashed line) as a function of the

growth velocity V (b)
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In the original JH model [18], it was found that an

appreciable change in the ratio of lamellar spacing Sb
�
Sa

negligibly changes eutectic growth kinetics. Therefore, fa
and fb are assumed to be constants, which followed from

all of the previous eutectic growth models [6, 7, 10–12,

18–21]. In the current work, the incorporation of TJ

kinetics spontaneously releases this assumption. fa and fb
are not given for the model simulations but are the sim-

ulation results; please see Fig. 3. Let us now consider a

special case without non-equilibrium kinetics; please see

the dash-dotted lines in Fig. 7. Evolutions of fa and fb are

shown as the dashed and dotted lines in Fig. 9. fa
increases gradually to 1 whereas fb decreases gradually to

0 with the increase of V. At the critical velocity

V = 0.677 m s-1, a transition from eutectic growth to

single-phase growth happens. This mechanism may seem

similar to but is actually different from the second

mechanism of TMK [11]. First, kea ¼ 0:345 and keb ¼
0:079 are not close to 1. Second, the minimum interface

undercooling 986.57 K is much larger than the solidus

temperature of Ag 708.66 K in the linear phase diagram;

please see the solid line in Fig. 9.

Conclusions

In this paper, a eutectic dendrite growth model is devel-

oped for the undercooled binary alloys and applied to the

undercooled Ag–Cu eutectic alloy. Our main conclusions

are as follows.

1. The model is applicable to concentrated eutectic alloys

and a good agreement between model predictions and

experimental results is obtained for the undercooled

Ag–Cu eutectic alloy. The effects of concentrated

alloys, non-equilibrium interface, and TJ kinetics play

important roles but not the NESD effect because the

upper limit of eutectic growth velocity is much smaller

than the solute diffusion velocity in liquid.

2. The incorporation of TJ kinetics into the current model

results in two new mechanisms for the upper limit of

eutectic growth velocity. One is that migration of TJ

could not be kinetically possible and the other is that a

transition from co-operative eutectic to single-phase

growth happens at high V. In contrast to GH [29], who

proposed a possible transition from eutectic solidifica-

tion to partitionless solidification from their solution of

NESD equation for a liquid, our work shows that

eutectic growth fails already before the occurrence of

partitionless solidification.

Further work needs to be carried out because the

experimentally observed sharp decrease of V at DT = 60 K

and breakdown of eutectic growth to single dendrite

growth at DT & 70 K cannot be predicted currently for the

undercooled Ag–Cu eutectic alloy.
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Appendix

Dilute alloys with linear liquidus and solidus

In the case of linear liquidus and solidus, the equilibrium

concentrations Ce
a, Ce

La, Ce
b; and Ce

Lb at the eutectic tem-

perature can be expressed as

Ce
a ¼

TI � TA
m

me
La

kea; C
e
La ¼

TI � TA
m

me
La

;

Ce
b � 1 ¼ TI � TB

m

me
Lb

keb; C
e
Lb � 1 ¼ TI � TB

m

me
Lb

; ð24Þ

where

kea ¼
Ce
a

Ce
La

; keb ¼
1 � Ce

b

1 � Ce
Lb

; ð25Þ

are the equilibrium partition coefficients and,

TA
m ¼ Te

E � me
LaC

e
EL; T

B
m ¼ Te

E þ me
Lb 1 � Ce

EL

� 

; ð26Þ

are the melting temperatures of pure A and B. For dilute

alloys in which the interaction between solute and solvent

is negligible, the chemical potentials follow Henry’s law

Fig. 9 The interface temperature TI (the solid line), volume fractions

of a, b phases fa (the dashed line), fb (the dotted line) as a function of

the growth velocity V for the case of dilute alloys with linear liquidus

and solidus
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DlA�i=L ¼ RgTI ln
1 � C�

i

� 

1 � Ce

Li

� 


1 � C�
Lð Þ 1 � Ce

ið Þ ;

DlB�i=L ¼ RgTI ln
C�
i C

e
Li

C�
LC

e
i

ði ¼ a; bÞ;
ð27Þ

o~l�L
oC�

L

¼ RgTI

C�
L 1 � C�

Lð Þ : ð28Þ

For the a phase, Eq. 27 can be reformulated as

DlA�a=L ¼ RgTI C�
L þ Ce

a � C�
a � Ce

La

� 

;

DlB�a=L ¼ RgTI ln
ka

kea
;

ð29Þ

whereas for the b phase, we have

DlA�b=L ¼ RgTI ln
kb

keb
;

DlB�b=L ¼ RgTI C�
b þ Ce

Lb � Ce
b � C�

L


 �
:

ð30Þ

Substituting Eqs. 24–30 into the following kinetic

eutectic equations at steady-state [35]:

V

V I
DL

¼ RgTI

C�
L � C�

a

o~l�L
oC�

L

� ��1

w 1 � exp
DlA�a=L � DlB�a=L

RgTI

 !" #

;

ð31Þ
V

V
a=L
0

¼ 1

� exp
C�

LDl
B�
a=L þ 1 � C�

L

� 

DlA�a=L � VmKa=Lra=L

RgTI

" #

;

ð32Þ

V

V I
DL

¼� RgTI

C�
L �C�

b

o~l�L
oC�

L

� ��1

w 1� exp
DlB�b=L �DlA�b=L

RgTI

 !" #

;

ð33Þ
V

V
b=L
0

¼ 1

� exp
C�

LDl
B�
b=L þ 1 � C�

L

� 

DlA�b=L � VmKb=Lrb=L

RgTI

" #

:

ð34Þ

the non-equilibrium solute partition coefficients (ka,kb) and

interface undercooling (DTI) are given as

ki � keið Þw ¼ ki 1 � kið Þ V

V I
DL

ði ¼ a; bÞ; ð35Þ

DTI ¼ me
LaC

e
EL � mLaC

�
L � me

La

1 � kea

V

V
a=L
0

þ me
La

1 � kea

Vmra=L

RgTI

Ka=L;

ð36Þ

DTI ¼ �me
Lb 1 � Ce

EL

� 

þ mLb 1 � C�

L

� 


þ
me

Lb

1 � keb

V

V
b=L
0

�
me

Lb

1 � keb

Vmrb=L

RgTI

Kb=L;
ð37Þ

where

mLi ¼
me

Li

1 � kei

1 � ki þ ln
ki

kei

� �
ði ¼ a; bÞ ð38Þ

is the kinetic slope of liquidus. Note that linear thermo-

dynamics is assumed for interface migration during the

derivation of Eqs. 36 and 37.

In contrast to Kurz and Trivedi [19] in which the same

interface kinetic model is adopted for the a=L (Ce
Ea\Ce

EL)

and b=L (Ce
Eb [Ce

EL) interfaces (please see Eqs. 17–19 in

Ref. [19]), the solute trapping model (Eq. 35) is the same

but not the model for interface undercooling (Eqs. 36, 37).

In other words, one cannot substitute directly mLi for me
Li in

the original TMK model [11] to incorporate non-equilibrium

interface kinetics. Note that the solute trapping model is not

equivalent to that of Sobolev [24], whereas, the model for

interface undercooling is actually the same as the model

with solute drag [17]. For the planar interface, the concen-

tration at the TJ C^
L can be obtained from Eqs. 36 and 37 as

C^
L ¼ 1

mLa � mLb
me

LaC
e
LE þ me

Lb 1 � Ce
LE

� 

� mLb

h

� me
La

1 � kea

V

V
a=L
0

�
me

Lb

1 � keb

V

V
b=L
0

#

:

ð39Þ

The average interface kinetic condition for interface

migration Eq. 16 can be rewritten as

DTI ¼
me

LaC
e
EL � mLa

�C�
La

� 
 kea�1ð ÞVa=L

0
fa

me
La

þ �me
Lb 1 � Ce

EL

� 

þ mLb 1 � �C�

Lb


 �h i
1�kebð ÞVb=L

0
fb

me
Lb

kea�1ð ÞVa=L

0
fa

me
La

þ 1�kebð ÞVb=L

0
fb

me
Lb

þ V

kea�1ð ÞVa=L

0
fa

me
La

þ 1�kebð ÞVb=L

0
fb

me
Lb

þ
� Vm

RgTI
fara=LV

a=L
0

�Ka=L þ fbrb=LV
b=L
0

�Kb=L


 �

kea�1ð ÞVa=L

0
fa

me
La

þ 1�kebð ÞVb=L

0
fb

me
Lb

ð40Þ
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The first, second, and third terms on the right hand side

of Eq. 40 are DTC, DTK; and DTR. One can then obtain k,

R; and DT for a given V by integrating Eqs. 6–9, 11, 17,

18, 21–23, 35, and 38–40.
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