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Abstract Adaptive remeshing finite element model is

used for the prediction of material behavior and tempera-

ture histories in friction stir welding (FSW). Then, Monte

Carlo method with nucleation in every MC step is used for

the simulation of the grain growth in FSW. In addition, the

process of dynamic recrystallization which results in the

nucleation of new grains has been modeled. The model is

validated by comparison of both experiments and numeri-

cal results from the literature. The width of the stirring

zone has been estimated by monitoring the movements of

the traced material particles and by identifying the region

containing dynamically recrystallized fine grains. The inner

border of the heat-affected zone has been determined by

monitoring the material flow, while the outer border has

been identified by monitoring the average grain size as a

function of the lateral distance from the weld. The effect of

two FSW process parameters, tool rotational speed and tool

shoulder diameter, is investigated. An increase in either of

these two parameters has been found to increase the overall

grain size as well as the width of the welding zones.

Introduction

As an important solid-state joining technique, friction stir

welding (FSW) has been widely used in industries [1, 2]. In

FSW, the welding tool is inserted into the welding line. A

tight joint can be then formed with the rotation and trans-

verse movement of the welding tool. Both the heat genera-

tions and the material flows can affect the microstructural

evolutions in the welding zone [3, 4]. According to the

different microstructures, the welding zone can be divided

into different regions: the stirring zone (SZ), the thermo-

mechanically affected zone (TMAZ), and the heat-affected

zone (HAZ) [5, 6]. The changes of the microstructures in the

welding zone can obviously affect the mechanical properties

of friction stir-welded joints, i.e., the hardness [7–9], the

tensile strength [10], the fatigue properties [11, 12], the

corrosion resistance [13, 14], etc. This is the reason for the

development of the numerous numerical models on the

microstructural evolutions. Polycrystal plasticity and CFD

model were used by Cho et al. [15] for the prediction of the

texture evolutions in the welding zone. A smoothed particle

hydrodynamics model was established by Pan et al. [16] for

the simulation of grain sizes, textures, and microhardness in

FSW of AZ31. The cellular automata finite element (CAFE)

model was used by Saluja et al. [17] to predict the grain size

distribution during FSW and the influence of weld defects

on the forming of FSW sheets. Arora et al. [18] simulated

the temperature distribution and estimated the grain size

during FSW by using finite difference equations. A chain of

integrated models were developed by Simar et al. [19] to

study various properties related to microstructure evolution

during FSW. The hardness profile and the evolution of rel-

evant strengthening precipitates across the welds were

studied by Hersent et al. [20] in FSW of 2024-T3 aluminum

alloy. Buffa et al. [21] investigated the micro- and macro-
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mechanical characteristics of friction stir-welded Ti-6Al-4V

lap joints numerically and experimentally.

Monte Carlo (MC) method is valid and efficient for the

prediction of grain growth and topological features. The

application aspects of MC method include the fields of

welding [22, 23], abnormal and anisotropic grain growth [24,

25], grapheme growth [26], polycrystalline microstructures

[27], etc. Details of the MC technique can be found in the

literature [25, 28, 29].

Grain evolution in welding zones is one of the key

factors for the determination of the sizes of the HAZ and

SZ, which is very important for the controlling of the

welding quality and for the investigation on the FSW

mechanism. Detailed grain growth process in FSW has

seldom been reported. So, MC method with consideration

of nucleation rate in each MC step is implemented for the

simulation of the grain growth in FSW of AA6082-T6 in

the present work. The influences of the rotation speeds and

the shoulder diameters on the microstructural changes are

studied in detail. The regions of the welding zones are then

determined from the predicted grains.

Model description

Finite element model

The dimensions of the welded plates are 80 9 50 9 3 mm.

The plates are initially meshed into 6265 nodes and 25152

elements in the commercial FEA code DEFORM-3DTM, as

shown in Fig. 1. In accordance with the simulation carried

out in the previous work [30], the initial mesh size is taken

as 0.75 mm in the regions in and near the welding zone,

and the mesh sizes vary from 1.5 to 3 mm in the other

regions. The physical and mechanical properties of the

welding material AA6082-T6 are considered as the func-

tions of temperatures [31]. Viscoplastic constitutive model

is used for the simulation of the material behaviors of the

welding material [30],

_�e ¼ A0 sinh a0 �rð Þ½ �n0e �Q=RTabsð Þ; ð1Þ

where Tabs is the absolute temperature; Q is the activation

energy; R is the Universal Gas Constant; n0, a0, and A0 are

equation coefficients, which are derived from the experi-

mental tests [32]; and n0, a0, and A0 are taken as 6.49,

0.0238, and 8.0 9 109, respectively. _�e is the equivalent

strain rate. �r is the flow stress.

The welding tool is simplified as a rigid body. Shear

model is used for the definition of the contact behaviors on

the tool-plate surface,

f ¼ m0 � k; ð2Þ

where f is the frictional stress, k is the yield shear stress,

and m0 is the frictional factor and is taken as 0.3 to make

sure that the model can match the measured tool forces and

temperatures [33]. This value has been validated in the

previous work [30, 34]. A limitation on the friction stress

by shear failure can be valid especially for the cases in

higher rotating speeds [35].

The influences of the different rotation speeds and

shoulder diameters on the microstructures are then inves-

tigated in the welding zones. The welding parameters of

the simulated cases are shown in Table 1. The adaptive

remeshing finite element formulations are implemented in

the computation process to solve the problems of mesh

entanglements and distortions caused by the large defor-

mation and the material flow in FSW. The details of the

remeshing technique can be found in Ref. [30].

Air cooling condition is used after FSW to obtain the

complete temperature histories which are used for the

calculations on grain growth in the MC model. The

boundaries of the welding plate are set to be at room

temperature, and the convective heat transfer coefficient is

set to be 30 W/(m2K):

Monte Carlo model

In the MC model, a two-dimensional matrix with lattice

points N 9 N is used. The values on grid points represent

the grain crystallographic orientations (1 * q). Adjacent

grid points with the same grain crystallographic orienta-

tions are regarded as a grain. The free energy is determined

by the present crystallographic orientation and neighbor-

hood orientations at the randomly selected point. At each

lattice point site, the grain-boundary energy is calculated

by the Hamiltonian [22]:

E ¼ �J
Xm

i¼1

dqiqj � 1
� �

; ð3Þ
Fig. 1 FEM model of case 1

J Mater Sci (2016) 51:1882–1895 1883

123



where J is a positive constant which represents the grain-

boundary energy, m is the total number of the sites near the

lattice point, d is the Kronecker symbol, and qi is the ori-

entation of the lattice point near the calculated grid site.

The grain growth is activated by the grain-boundary

migration kinetics. For the randomly selected grain site, the

change of the energy is determined by the change of the

present crystallographic orientation to its neighborhood,

p ¼
1; DE� 0

e
� DE

kBT ¼ e
�ðm2�m1ÞJ

kBT ; DE[ 0

�
; ð4Þ

where DE is the change of grain-boundary energy due to

reorientation, kB is the Boltzmann constant, T is the tem-

perature, and m1 and m2 are the number of different ori-

entations before and after the reorientation. If DE� 0, the

new crystallographic orientation of the randomly selected

grain site is accepted; else it is accepted with the Boltz-

mann probability [23, 36].

In one MC step, the algorithm described above is iter-

ated for N2 times. Through the MC simulation, the

microstructure is represented by the orientation matrix. For

the equiaxed grains, the average grain size is measured by

the line intercept counting method. For microstructure with

unequiaxed grains, the average grain size is computed from

the average grain area:

L ¼
ffiffiffiffiffi
S

ng

s
; ð5Þ

where S is the simulated area and ng is the number of grains

in the simulated area. An empirically fitted relation

between the simulated grain size and the number of MC

steps can be obtained as [23]:

L ¼ K1kðMCSÞn1 ; ð6Þ

where k is the discrete grid spacing of the utilized grid

model, and K1 and n1 are model constants which can be

obtained from the simulated data by regression analysis.

In order to simulate the grain growth process in FSW,

the relation between Monte Carlo steps and real time–

temperature cycles of the welded material should be

established. In the current work, the changing rate of the

average grain size is assumed to be the function of the

migration velocity of grain boundaries (v):

dL

dt
¼ avn; ð7Þ

where a and n are ratio constants, a is taken as 3.0 in HAZ

and 1.0 in SZ, and n is taken as 0.1. The equation constants

are used to make sure that the grain growth kinetics agree

well with the real grain growth. The values used during the

calculations are determined by trial and error method. v is

defined as [28]:

v ¼ AZV2
m

N2
ah

exp
DSf
R

� �
exp � Q

RT

� �
2c
L

� �
; ð8Þ

where A, Z, Vm, R, Na, and h are physical constants. DSf and
c are material parameters of AA6082-T6. The material

parameters and the ratio constants of AA6082-T6 used in

Eqs. (7)–(8) are summarized in Table 2 [37–39]. From

Eqs. (6)–(8), the relation between real time and MC steps

can be obtained as the following discrete form:

ðMCSÞðnþ1Þn1 ¼ L0

K1k

� �nþ1

þðnþ 1ÞaCn
1

ðK1kÞnþ1

X
expn � Q

RTi

� �
ti

� 	
;

ð9Þ

where C1 ¼ 2AcZV2
m

N2
a h

expðDSa
R
Þ, L0 is initial average grain size,

Ti is the average temperature in every time interval, and ti
represents the value of time interval.

In SZ, a 300 9 300 lattices system with randomly initial

orientations is used to model the area in SZ of

Table 1 Welding parameters of the simulated cases

Case Transverse speed v (mm/min) Rotation speed w (r/min) Shoulder diameter D (mm) Pin diameter d (mm)

1 100 1000 10 3

2 100 1500 10 3

3 100 1000 13 3

Table 2 Material parameters and ratio constants [37–39]

Physical property Value

Average number per unit area (Z) 4.31 9 1020 atoms/m2

Planck’s constant (h) 6.624 9 10-34 J s

Accommodation probability (A) 1.0

Avogadro’s number (Na) 6.02 9 1023/mol

Atom molar volume (Vm) 1.0 9 10-5 m3/mol

Fusion entropy (DSf) 11.5 J/mol/K

Activation enthalpy (Q) 140000 J/mol

Boundary energy (c) 0.5 J/m2

Gas constant (R) 8.31 J/mol/K

Ratio constant (a) 3.0 (HAZ and TMAZ), 1.0 (SZ)

Ratio constant (n) 0.1

DRX constant (N0) 1024 (1/s/m3)
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500 9 500 lm2. Materials in SZ undergo both high tem-

perature and large plastic deformation. So, dynamic

recrystallization (DRX) phenomenon should be considered

in the simulation of grain growth. In this model, DRX

procedure is simulated by implementing a nucleation rate

in every MC step. The nucleation rate is considered as a

function of both temperature and strain rate according to

[40]:

_n ¼ N0
_�e exp � Q

RT

� �
; ð10Þ

where N0 is a constant and is taken as 1024 (1/s/m3), _�e is the
equivalent strain rate in SZ, which is assumed to be uni-

form in SZ and can be estimated by the following [41],

e
�
¼ wpre

Le
; ð11Þ

where re and Le are the effective (or average) radius and

depth of the dynamically recrystallized zone (SZ),

respectively. re here is represented by 0.78 of the radius of

SZ, and Le is assumed to be the length of the pin. Number

of nuclei in every MC step is calculated from the nucle-

ation rate, and lattice points at grain boundary are picked to

change to random orientations to create new nuclei. From

Eq. (10), it can be seen that the nucleation rate is not a

constant during the simulation. Higher temperature and

equivalent strain rate can lead to higher nucleation rate.

Experimental results reported by Sato [42] are used to

validate the simulation method of DRX in SZ. The simu-

lated area is 500 9 500 lm2, and the grid system was

300 9 300 in cases 1–3. The thermal cycles used are the

same to the experimental measured values, and equivalent

strain rates are calculated according to Eq. (11). Two

working conditions with rotation speeds of 1600 rpm and

2450 rpm are modeled. The computed relationship

between Log10MCS and Log10L is shown in Fig. 2, which

are used to determine the constants K1 and n1. MC steps

calculated from the two thermal cycles [42] are 119 and

216, respectively. Simulated average grain sizes agree well

with the measured results, which can validate the simula-

tion method used to model the DRX in SZ, as shown in

Table 3. For further validation, friction stir-welded

AA6082-T6 plate is modeled with the same welding con-

ditions as the experimental conditions [43]. Average grain

size in SZ is calculated by the MC method. The result is

compared to the experimental observations [43] as sum-

marized in Table 4. The error between the current

numerical model and the experimental value is 6.2 %,

suggesting that the present computational procedure can be

used to predict grain-microstructure evolution during the

FSW process with reasonable accuracy.

The initial grain size in HAZ is selected to be 80 lm
according to experimental observation [43], and a

150 9 150 lattices system is used to model the area in

HAZ of 1000 9 1000 lm2. Randomly distributed Voronoi

elements are used to model the initial distribution of the

grains in HAZ. Material particles in TMAZ are affected by

both mechanical elongation and temperature rises. For the

determination of the stretch in TMAZ, two series of

material particles on top and bottom surface of the plate at

the cross section are traced. The initial distance between

the two particles is 0.5 mm, as shown in Fig. 3. The flow

behaviors of the traced material particles are used to dis-

tinguish the welding zones and to calculate the elongation

of grains in TMAZ. A randomly generated configuration of

grains with the same average elongation ratio calculated

from traced particles is used to simulate the initial grain

microstructure in TMAZ, and the lattice system used in

TMAZ is the same of HAZ.

Results and discussion

Temperature distributions and materials flow

The calculated temperature fields of three cases are shown

in Fig. 4. In the simulated cases, the temperature fields are

symmetrical to the welding seam. The peak temperatures

appear at the contacting surfaces of welding tools and the

welding plates. In case 1, the peak temperature is 676 K.

Both the increases in rotation speeds and shoulder diame-

ters can lead to increased heat generation. When the

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.8

1.0

1.2

1.4

n1=0.27,K1=0.56

 1800 rpm
 2450 rpm

Lo
g 10

L

Log10MCS

n1=0.29,K1=0.57

Fig. 2 Growth kinetics in SZ

Table 3 Validation of DRX simulation in SZ

Measured (lm) [42] Simulated (lm) Error (%)

1600 rpm 12.28 13.27 8.1

2450 rpm 17.67 17.30 2.1
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rotation speed increased from 1000 to 1500 rpm in case 2,

the peak temperature reaches 778 K. When the shoulder

diameter increases from 10 to 13 mm, the peak tempera-

ture reaches 788 K in case 3. Peak temperature histories of

the traced material particles in different cases are shown in

Fig. 5.

In order to validate the calculated temperature fields,

numerical results in case 1 and the experimental observa-

tions reported by Buffa [44] are compared. The experi-

mental conditions are the same with case 1. The

comparison of the peak temperature profile on the cross

section is shown in Fig. 6. As seen in this figure, the cal-

culated temperature profile matches well with both the

numerical and experimental results in Ref. [44].

Ten material particles in the middle layer of the work

piece with the distance intercept of 0.5 mm are traced in

the three cases to study the detail of material flows. Fig-

ure 7 shows the movements of particles when the welding

tool reaches the particles. In case 1, as shown in Fig. 7a,

P1, P2, and P3 at the advancing side are stirred and finally

moved back to the advancing side. This flow phenomenon

indicates a sufficient material flow, and the defects are not

likely to happen at the advancing side by this condition

[45]. P4 and P5 do not rotate with the tool pin, but expe-

rience considerable amounts of deformation. So, P4 and P5

are most likely to belong to the TMAZ. At the retreating

Table 4 Validation of predicted grain size

Modeled and

experimental

conditions

Maximum

temperature

in SZ

Calculated

average

MC steps

Predicted average

grain size

in SZ (lm)

Measured average

grain size in

SZ (lm) [43]

Error (%)

715 r/min

71.5 mm/min

D = 10 mm

d = 3 mm

639 K 124 13.5 12.7 6.2

Fig. 3 Traced material particles

Fig. 4 Temperature distributions on welding plates. a Case 1, b case

2, c case 3
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side, particles have not been stirred to rotate around the pin.

P6 moves to nugget zone, although the rest of particles still

remain at the retreating side and belong to TMAZ. It

indicates that the welding joint is formed by the materials

from the retreating side. These results agree well with the

studies of material flows reported by Marzbanrad et al. [46]

and Shojaeefard et al. [47].

In case 2 and case 3, as shown in Fig. 7b and c, the

ranges of materials particles affected by welding tool are

obviously increased with the increase of rotation speed and

shoulder diameter. When the rotation speed increases to

1500 r/min in case 2, material particles P1, P3, and P4 are

adhered to the stir pin and transverse with the pin for some

distance. It indicates that at higher rotation speed, the

materials flow more severely and experience larger

deformations.

Figure 8 shows the traced material particles on top and

bottom surfaces in the three cases after welding. The region

of SZ can be determined by the material flows. The width

of SZ in each case is summarized in Table 5. Both the

increases of rotation speed and the shoulder diameter can

lead to the increase of the width of SZ. The grains in HAZ

are only affected by heat generation. The movements of the

traced material particles are not affected by the stirring

effect from the welding tool. This is the criterion for the

determination of inner border of HAZ. The outer border of

the HAZ is determined by the grain growth process.

Between the SZ and the HAZ, the TMAZ exists as a

transient region. Certainly, in some cases, TMAZ is

ambiguous and hard to determine [2].

TMAZ is quite narrow and can be only distinguished by

several particles which are close to the inner border of

HAZ. In case 1 shown in Fig. 8a, for example, TMAZ at

RS is represented by point P and point Q. The elongated

ratio is computed from the distance elongated by the

welding tool. The elongated ratios of the two points are 276

and 335 %, respectively. The width of SZ at the bottom

surface is narrower than that on top surface. The larger

welding tool can obviously increase the width of SZ, as

shown in Fig. 8b, c and Table 5.

Simulation of grain growth

Figure 9 shows the simulated grain growth kinetics of the

2D grid systems in different welding zones of the three

cases. The values of grain growth exponents in HAZ and

TMAZ agree well with 0.41, reported by Anderson et al.

[48] and Grest et al. [49] in similar models. The grain

growth exponents in SZ are smaller than that in HAZ and

TMAZ, and this phenomenon is due to the refinement

effects of DRX nuclei. Different thermal cycles and

equivalent strain rates lead to different nucleation rates in

every MC step, and this causes variations in the growth

exponents.

The thermal cycles of the traced material particles

together with the annealing times are shown in Fig. 10. At
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Fig. 5 Temperatures of traced particles along welding seam
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Fig. 6 Validation of peak temperatures in case 1
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Fig. 7 Material flows in

different cases. a Case 1, b
case 2, c case 3
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t = 0 s, the temperature starts to raise up and reaches the

peak temperature at about t = 50 s for case 1. Material

particles with higher peak temperatures need more time to

cool down to room temperature. Based on the thermal

cycles, MC steps of the positions at simulated cross sec-

tions can be computed according to Eq. (9).

As described before in the model description part, DRX

phenomenon in SZ is affected by the temperature and

equivalent strain rate. Figure 11 illustrates the DRX

microstructure evolutions in the three cases, 1 mm from

welding seam on RS. The nucleation process happen

mainly during the high temperature periods, and at the

iteration steps in cooling periods with low temperatures,

there are nearly no new nuclei to form. In case 1, tem-

perature and equivalent strain rate keep on a low level and

the nucleation rate is the smallest, the highest nucleation

rate is only 6133 1/mcs at mcs = 28. With higher rotation

speed and shoulder diameter, the nucleation rates are much

higher, reaching 24051 and 19085 1/mcs in case 2 and case

3, respectively. Figure 11 also shows the microstructure in

SZ at the highest nucleation rate points. From the grain-

microstructure graphs, the DRX phenomenon can be easily

recognized by the small nuclei on the grain boundaries.

The density of nucleated cores indicates the nucleation rate

in different cases. The nuclei formed from DRX phe-

nomenon also grow during the grain growth simulation,

and this is the main effect of grain refinement caused by

DRX.

Microstructures of grain growth in 3 cases on top sur-

face are shown as examples in Figs. 12, 13, and 14.

Compared to TMAZ, SZ and HAZ are wider and more

important in determining the quality of welding joints, thus

only SZ and HAZ are investigated in case 2 and case 3 to

study the influence of shoulder diameters and rotation

speeds.

In SZ, the materials undergo severe plastic flow and

broke into fine equiaxed small grains early during the

stirring process. The average grain size at the initial time

(MCS = 0) was 5.4 lm in the three cases. Microstructure

evolved with the progress of the MC simulation, the

Fig. 7 continued
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Fig. 8 Traced material particles. a Case 1, b case 2, c case 3

Table 5 Width of SZ (mm)

Case 1 Case 2 Case 3

Top surface 8 10 12

Bottom surface 4 4 6

Fig. 8 continued

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.8

1.2

1.6

2.0

  Case 2 SZ
K1=0.57, n1=0.3

Lo
g 10

L

Log10MCS

HAZ and TMAZ
K1=0.8, n1=0.43

Case 1 SZ
K1=0.57, n1=0.31

  Case 3 SZ
K1=0.58, n1=0.29

Fig. 9 Growth kinetics of the three cases
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average grain size increased visibly as shown in Figs. 12a,

13a, and 14a. Higher rotation speed and larger shoulder led

to the increase in temperatures, and also influenced the

average grain size in different cases. DRX phenomenon

happened during the early periods when the temperature

was high, and the DRX phenomenon led to a microstruc-

ture consisting of a mixture of large grains and small

nuclei, as shown in Fig. 11. But in the cooling periods, the

nucleation level decreased quickly. DRX-formed nuclei

and normal grains were both simulated to grow according

to the same algorithms. The final average grain sizes in SZ

of case 1, case 2, and case 3 were 17.6, 18.9, and 20.8 lm,

respectively. The average grain sizes can be increased due

to the increase of the shoulder diameters and the rotation

speeds. This is in accordance with the work reported by

Shojaeefard et al. [50]. Similar to the grains in SZ, grains in

HAZ were equiaxed grains and their size increased during

the post-weld cooling period.

The original grain microstructure of the TMAZ, a nar-

row zone between the SZ and HAZ, is represented by

randomly elongated grains and is shown in Fig. 12b. The

evolution of the TMAZ grain microstructure was com-

pleted in 90 MC steps, and the average grain size increased

from 60.1 to 77.5 lm. The final TMAZ microstructure

contained unequiaxed grains, a finding which is consistent

with the experimental results of Liu et al. [51].

Figure 15 illustrates the average grain sizes at the sim-

ulated cross sections after welding. The FSW-joint is

clearly composed of distinct weld zones according to the

average grain sizes, as summarized in Table 6. Relation-

ship between the rotation speed and the HAZ width in

current work is similar to the optical microscopic investi-

gations reported by Shojaeefard et al. [52]. In the SZ, the

average grain sizes are almost uniform in the three cases.

The grains on top surface are slightly larger than those on

the bottom surface; similar results were reported by Chang

et al. [41]. Due to the friction between the shoulder and the

workpieces, the SZ is wider on the top surface than the

bottom surface. The largest grains appear at the inner

border of the HAZ. With increasing distance from the

welding seam, the grains in the HAZ become smaller and

finally transit to grains in base metal at the outer border of

the HAZ. Compared to case 1, higher rotation speed and

larger shoulder can clearly increase the width of welding

zones.
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Fig. 11 DRX microstructure evolution in SZ. a Case 1, b case 2, c
case 3
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Conclusions

1. Monte Carlo method is employed to simulate the grain

growth process in FSW of AA6082-T6.

2. The predicted grain size distributions are symmetrical

about the welding seam, and the grain sizes on the top

surface of the weld are larger than that those on the

bottom surface.

3. Increasing the rotation speed and shoulder diameter

can lead to larger grains. Higher rotation speed and

larger shoulder can also increase the width of welding

zones.

4. It has been demonstrated that the width of the SZ can

be estimated by monitoring the motion of traced

material particles. The SZ is wider on the top surface

of the weld than the bottom surface.

5. The inner border of the HAZ can be determined by

material behavior and the outer border can be distin-

guished by the predicted grain size distribution after

welding.

Fig. 12 Microstructure of grain

growth in case 1. a SZ on top

surface, 1 mm from welding

seam, RS; b TMAZ on top

surface, 4.5 mm from welding

seam, RS; c HAZ on top

surface, 5 mm from welding

seam, RS
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Fig. 13 Microstructure of grain

growth in case 2. a SZ on top

surface, 1 mm from welding

seam, RS; b HAZ on top

surface, 6 mm from welding

seam, RS

Fig. 14 Microstructure of grain

growth in case 3. a SZ on top

surface, 1 mm from welding

seam, RS; b HAZ on top

surface, 7 mm from welding

seam, RS
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