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Abstract Polytetrafluoroethylene (PTFE)-like films,

produced by electron beam (e-beam) deposition, have

shown higher hydrophobicity than those deposited by RF

sputtering under similar deposition rates. It was found that

this results from both surface chemical composition and

nano-roughness. X-ray photoelectron spectroscopy mea-

surements revealed that larger moieties of CF2 and CF3
groups were present to reduce surface energy in the e-beam

deposited films. RF sputtering led to a higher degree of

PTFE target fragmentation producing a different perfluo-

rinated film on the Si substrate. Scanning electron micro-

scopy and atomic force microscopy measurements revealed

a much larger rms roughness on the film surfaces produced

by e-beam (25.13 nm, at 20 mA) than those by RF sput-

tering (2.42 nm, at 100 W), and allowed a broad power

spectrum density analysis with determination of the jB
wetting parameter. In addition, the e-beam deposited films

presented a linear increase of contact angle with applied

electron current in the range under study (5–20 mA). This

allows easy water repellency adjustment, up to 159 ± 2�.

For a superhydrophobic state with self-cleaning, a micro-

pyramid structure was wet etched on the Si wafer, followed

by PTFE deposition, and a very low contact angle

(163 ± 2�) and hysteresis was attained (\3�). These first

results indicate that e-beam PTFE deposition with

adjustable hydrophobicity may become a useful technique

for integrated production with present Si microelectronics

technology and for Si solar cells.

Introduction

For over a decade, several methods to obtain superhy-

drophobic surfaces have been developed due to great

industrial interest in reducing flow resistance and fluidic

drag [1], in repairable superomniphobic surfaces [2], in

applications such as optical antireflection [3], corrosion

protection [4], liquid transportation [5], biochemical sepa-

ration [6], antibiofouling paints for boats, production of

food packaging, inhibition of ice or snow adhesion [7, 8],

and self-cleaning surface properties [9]. Although easy-

dewetting surfaces can be obtained in flat/smooth surfaces

even with low contact angle [10], superhydrophobic sur-

faces with self-cleaning properties are usually character-

ized by exhibiting a very high Contact Angle (CA) and low

Contact Angular Hysteresis [11].

The hydrophobic properties of these surfaces depend on

their chemistry and roughness [12]. In order to increase

surface roughness, there are two possibilities: the first one

is thorough its generation on the substrate, such as by

plasma etching [13], chemical etching [14] or embossing

[15]; the second is thorough incorporation of a coating on

the substrate, such as by electrospinning [16–18], chemical

vapor deposition [19–23], lithography [24, 25], dip coating

[26, 27], anodic aluminum oxide [9, 28], sol–gel processing
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[29, 30] or physical vapor deposition (PVD) [15, 31].

Hierarchical structures, i.e., with micro- and nanostructure,

have been reported for stability of the superhydrophobic

condition [24].

The nanostructure allows the surface to sustain the highest

pressure in nature, so as to maintain a robust Cassie state [32,

33]. At the same time, the microstructure significantly

reduces the contact area, thereby largely removing adhesion

between solid and fluid at the microscopic level [34]. On the

other hand, tuning the surfaces in terms of low surface energy

is favorable to super hydrophobic surfaces. In this context, a

variety of coatings, such as siloxanes [35], fluoroalkylsilane

[36], fluoroalkylphosphate [37], and polytetrafluoroethylene

(PTFE) [38], have been used.

Many methods to obtain nanostructure and reduce the

surface free energy are not easily scaled up, as they request

very stringent conditions of preparation and are often

obtained at high cost. In this sense, PTFE deposition by

PVD methods is a good choice to provide nanostructure

and reduce the surface free energy.

Previous reports are present in the literature on the

properties of PTFE-sputtered films [39–41]. Particularly

regarding chemical composition, wettability, and mor-

phology, RF-sputtered PTFE coatings were grown under

several bias voltages and gas compositions on silicon

wafers [42, 43]. Thermally evaporated PTFE films have

also been reported on several substrates, such as Aluminum

[9], glass [44] intermetallic oxide alloys [45], micro- and

nano-crystalline diamond-like carbon [46, 47] to promote

low surface energy and surface nano-roughness. High-en-

ergy electron irradiation was used for the chemical modi-

fication of bulk PTFE [48–52].

Comparison of film structures and properties obtained

by electron beam (e-beam) and by RF sputtering deposition

of several materials has been reported [53–56], but not of

PTFE, whose deposition by e-beam was not previously

attempted to our best knowledge.

In this work, we report that PTFE deposited by e-beam, in

one step, can significantly improve the hydrophobicity of a

flat surface, by simultaneous incorporation of low surface

energy and nanostructure. After a comparative study of the

refractive index, hydrophobicity, surface chemistry, and

nanostructure of PTFE-like coatings deposited by e-beam

and byRF Sputtering, we pursue superhydrophobic behavior

on a Si substrate.

Experimental

Materials

Silicon Prime (100) wafers were supplied by Wacker

Chemitronic, polished on one side and doped as p-type.

These were sliced into rectangular, flat Si substrates

(25 9 25 9 0.6 mm3), which were cleaned in a piranha

solution (H2SO4:H2O2 at 4:1) for 10 min at 120� C. After
that, the Si substrates were rinsed in deionized water and

then immersed in ammonium hydroxide solution (NH4-

OH:H2O2:H2O 1:1:4) for 10 min at 70–80 �C, followed by

rinsing with copious amounts of deionized water and dry-

ing under nitrogen flow.

Polytetrafluoroethylene (PTFE) from Dupont was cleaned

by ultrasound in isopropyl alcohol before deposition by

physical vapor deposition (PVD), RF sputtering and e-beam,

methods. Ethanol (98.5 %), H2SO4 (98 %), H2O2 (98.5 %),

and NH4OH (98 %) were supplied by Nuclear Brazil.

Physical vapor deposition methods

Electron beam bombardment (e-beam)

Teflon-like films were deposited by e-beam, using a PTFE

target, on silicon substrates by a 3 kW Thermionics

RCR0304-BD Electron Beam source. The e-beam system

was pre-programmed to operate at a base pressure of about

4.0 9 10-6 Torr and work pressure of about 2.4 9 10-4

Torr. During deposition, the substrates remained fixed on a

rotary sample system, at a distance of 40 cm from the

target.

RF magnetron sputtering

Radio Frequency, Magnetron Plasma Sputtering of PTFE

was carried out with a Leybold Univex 450B Sputtering

System, using Ar sputtering gas plasma on a PTFE 7.5 cm

diameter target, under RF (13.56 MHz) power. The system

was pre-programmed to operate at a base pressure of about

4.0 9 10-6 Torr and work pressure of about 1.0 9 10-4

Torr. During the evaporation process, the samples were

fixed on a rotary sample system at a distance of 15 cm from

the PTFE target.

Chemical etching

1 % wt of KOH in water solution was used to etch the

Silicon surface, which was left for 40 min in the solution at

80 �C. Pyramidal structures were formed, following the (1,

1, 1) Si cleavage plane.

Deposition rates

Film thicknesses and deposition rates were monitored, in

real time, by a quartz crystal microbalance during both

PVD processes. Comparable deposition rates were estab-

lished, with regard to later comparison of the resulting

films, as shown in Table 1.
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Surface characterization

Scanning electron microscopy (SEM) and atomic force

microscopy (AFM)

The morphology of the PTFE nanostructure was imaged by

scanning electron microscopy (JEOL JSM 6060), using an

electron acceleration of 15 kV, and by Atomic Force

Microscopy (Dimension 3100 DIVM Group).

Surface Roughness and the Wetting Parameter jB, that
relates wetting with surface topography [57–60], were

evaluated using the PSD (Power Spectral Density) analysis.

X-ray photoelectron spectroscopy (XPS)

XPS spectra were obtained in a conventional electron

spectrometer (Omicron) equipped with a high performance

hemispherical energy analyzer, with a seven-channeltron

detector and using Al Ka radiation as the excitation source.

Surveys of spectra were recorded, with pass energy of

50 eV, whereas selected atomic signals were acquired with

10 eV of pass energy. In the spectra, the position of the C–

C/C–H was specified and other peaks of different carbon

environments were fixed, relative to this peak, set at

285.0 eV. The C 1 s envelope was analyzed and peak-fitted

after the subtraction of a Shirley background, using

Gaussian-Lorenzian peak shapes, obtained from the Casa

XPS software package. Sputtering of Si substrates was

carried out with a standard ion gun, using Ar ions as pri-

mary particles.

Contact angle measurement

Water contact angle was measured by the dynamic sessile

drop method using a Krüss DS-30 goniometer. Droplets of

deionized water were placed, with a motor-driven syringe,

onto the sample surface. Each equilibrium contact angle

was determined from a tangent line, appropriately posi-

tioned on the contour of the droplet with respect to the

surface plane. The advancing and receding contact angles

were measured on both sides of the drop for each sample.

The reported values are an average of more than 20 mea-

surements, performed on at least three different locations of

each sample surface, using a computer-controlled device

(provided by Krüss).

Refractive index measurement

Thickness and refractive index of PTFE-like films were

measured with the Spectroscopic Ellipsometer SOPRA

GES-5E, which uses one rotating polarizer, one fixed

analyzer and the Hadamard transform method. All mea-

surements were performed at six different micro-spots on

the sample, at a light beam angle of incidence of 68o and in

the wavelength range of 350–750 nm.

Results and discussion

Figure 1 shows a comparative summary of the PTFE-like

film properties, deposited on polished Si (100) substrates,

by RF Sputtering and by e-beam. Contact angles and

Table 1 PVD deposition parameters during PTFE-like film

production

PVD method Power (W) or

current (mA)

Deposition

rate (nm/s)

RF sputtering 100 0.2

RF sputtering 150 0.3

RF sputtering 200 0.4

e-beam 5 0.2

e-beam 10 0.3

e-beam 20 0.4

Fig. 1 Contact Angle and Refractive Index at 633 nm of PTFE-like

films deposited on polished Si flat substrates by: a RF Sputtering at

different Ar ion-beam energies, and b e-beam at different currents.

Lines were drawn as an aid to the eye
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refractive indices are shown, in Fig. 1a, for films deposited

by RF argon plasma sputtering at three different powers

(100, 150, and 200 W) and, in Fig. 1b, for films deposited

by e-beam at three different currents (5, 10, and 20 mA).

Comparatively, as shown in Fig. 1 and Table 2, PTFE-

like films deposited by RF Sputtering (Fig. 1a), present

higher refractive indices than those obtained by e-beam

(Fig. 1b). The refractive index of the RF-Sputtered films

increased with deposition power (Fig. 1a) as expected,

since higher Ar plasma energies promote molecular

mobility during deposition, and thus higher film packing

densities. Also sputtered molecules arrive at random angles

on a near substrate, whereas a more collimated molecular

flux arrives at longer distances during e-beam deposition.

In this case, larger voids and thus smaller refractive indices

can be produced, as shown in Fig. 1b and Table 2.

As reported in the literature, the contact angle of PTFE-

like films, deposited by RF Sputtering, depends on Ar ion-

beam energy [40, 41]. Basically, when large moieties of

CF2 and CF3 groups are generated, the surface energy is

reduced and thus the contact angle increases. Also the

contact angle of PTFE-like films, obtained by e-beam

(Fig. 1b and Table 2), increases with electron beam

current.

Additionally, PTFE-like films obtained by e-beam can

present higher contact angles than those obtained by RF

Sputtering (see Fig. 1 and Table 2). These results can be

originated from two factors: (1) the distinct surface

chemical compositions of the treated samples, and (2) their

different roughnesses, due to the presence of nanostructure.

XPS and SEM measurements were carried out to study

in detail the surface chemical composition and morphology

of both PVD methods. Figure 2 shows the C 1 s spectra of

the PTFE-like films obtained by e-beam and by RF Sput-

tering. Both PVD methods produced a very different sur-

face chemical composition of the prepared coatings. The C

1 s envelope of the e-beam method resembles a PTFE-like

film [61], but with a value of the high-energy peak moved

to even higher energies than a typical –CF2– signal in pure

PTFE (292.53 eV). Therefore, the C 1 s signal position of

294.0 eV (Fig. 2a) can be assigned to a –CF3 functionality

[15, 42, 43, 62]. On the contrary, RF Sputtering led to a

high degree of PTFE target fragmentation and recombi-

nation of the desorbed species on the surface of the Si

substrate. Several C 1 s fluorinated chemical environments

overlap in the deconvolution as shown in Fig. 2b. Oxidized

functionalities, such as C=O or COO, can be included in

the fittings as presented in Fig. 2b due to overlapping in

binding energies. Partial oxidation of the surface was not

observed in the XPS survey spectrum and therefore the

contribution of functionalities such as C=O or COO can be

ruled out. The larger moieties of CF3 groups showed in

Fig. 2a, as compared to Fig. 2b (RF Sputtering), may

explain the higher contact angle of the films deposited by

e-beam, since higher fluorine concentration at the surface

given by the -CF3 group would decrease even more the

surface free energy compared to the RF Sputtering coating.

The second factor that contributed to higher contact

angles from the e-beam deposited films, compared to those

Table 2 Properties of PTFE-

like films on Si, deposited by

RF sputtering and e-beam

processes

PVD method Contact angle

(uncertainty: ± 28)
Thickness

(nm)

Refractive

index

RF sputtering (100 W) 114 192 1.366

RF sputtering (150 W) 119 224 1.368

RF sputtering (200 W) 117 204 1.374

e-beam (5 mA) 152 74 1.250

e-beam (10 mA) 154 78 1.217

ce-beam (20 mA) 158 70 1.168

Hysteresis could not be measured because water drops did not move even with samples in a vertical

position. In one run, even with sweeping, e-beam film thicknesses are smaller than those produced by rf

sputtering due to higher consumption of deposition material where the e-beam energy was focused

Fig. 2 XPS wide scan spectra of PTFE-like films deposited by: a e-

beam with current of 20 mA and b RF Sputtering with power of

100 W

J Mater Sci (2016) 51:1316–1323 1319

123



from the RF-sputtered films, is the higher roughness of the

former, which is evident in SEM Fig. 3 and AFM Fig. 3.

From the different AFM scan areas, the isotropic PSD

functions can be combined into a single PSD function [60,

63] that contains the spectral representation of the mor-

phology in a wide spectral range, as shown in Fig. 5. Here

the PSD function related with the e-beam deposited films

presents a peak around 10 lm-1. This peak represents the

micro- and nanostructure, with dimensions between 65 and

120 nm, presented in Fig. 4a.

From the PSD functions related to the e-beam and

sputtering processes in Fig. 5, roughnesses and wetting

parameters, whose values correspond to the areas below the

PSD functions, can be calculated directly [57–60] and are

shown in Table 3.

The sub-micrometer roughness produced by the e-beam,

shown in Table 3, contributes to increasing the contact

angle to values higher than those obtained by RF Sputter-

ing. According to the necessary criterion for superhy-

drophobicity, jB[ 0.4 [58, 60], the jB value for the

e-beam deposition is close to the threshold for the super-

hydrophobic state. Also, the jB value for RF Sputtering in

Table 3 explains why by this method a superhydrophobic

state could not be obtained, even with the existence of a

fluorinated coating (see Fig. 2b).

Due to the two major factors, low surface energy and

high roughness, PTFE-like films deposited by e-beam

showed a superhydrophobic static behavior. Good adhesion

of all the PTFE-like films on the Si (100) surfaces was

verified by the Scotch tape test. However, their Contact

Angular Hysteresis was high and thus full superhy-

drophobicity was not achieved. For this, before PTFE

deposition, the Silicon substrate was subjected to chemical

etching.

The resulting micro-pyramidal structures, shown in

Fig. 3c, with the PTFE-like coating nanostructure, lead to a

high contact angle (163 ± 2�) and very small hysteresis

(\3�), unlike those coated by RF sputtering (154 ± 2� and
40�, respectively), which demonstrate that a full superhy-

drophobic state can be achieved by e-beam deposition of

PTFE on silicon.

The Thermionics e-beam system presents a maximum

power of 3KW, whereas the RF sputtering unit can reach

a voltage of 3 kV. Since also the Ar? mass is five orders of

magnitude larger than that of the electron, the former

presents a much larger momentum than the latter. Electron

Fig. 3 SEM images of PTFE-like films deposited by: a e-beam on flat Si with current of 20 mA, b RF Sputtering on flat Si with power of 100 W

and c e-beam on etched Si with current of 20 mA
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bombardment is essentially a thermal process, whereas

momentum transfer dominates in ion bombardment.

This implies that sputtering leads to a higher degree of

PTFE target fragmentation and recombination of the des-

orbed species on the Si surface, as observed by XPS in

Fig. 2, and also that the higher Ar plasma momenta pro-

mote molecular mobility during deposition, and thus higher

film packing densities, resulting in higher refractive indices

(Fig. 1; Table 2) and smaller roughnesses, as shown by

SEM (Fig. 3) and by AFM (Fig. 4), as well as (via PSD,

Fig. 5) in a smaller jB Wetting Parameter (Table 3).

Conclusions

A comparative study between PTFE-like coatings depos-

ited by e-beam and by RF Sputtering, under similar

deposition rates on flat Silicon substrates, was presented,

based on SEM, XPS, Sessile drop, and Ellipsometric

measurements. As discussed, Sputtering produces higher

film packing densities, and thus higher refractive indices,

with lower roughnesses. These, combined with the larger

moieties of CF2 and CF3 groups that decrease surface free

energy on the e-beam deposited films, result in higher

contact angles, which can be linearly adjusted with applied

current in the studied range (5–20 mA), up to 159 ? 2�,
although still with high hysteresis. Further micro-

Fig. 4 AFM topography with 200-20,000 nm Scan Range area windows square side, where Root Mean Square (rms) roughnesses are shown for

PTFE-like films deposited by: a e-beam with current of 20 mA and b RF Sputtering with power of 100 W

Fig. 5 PSD functions in a wide frequency range for PTFE-like films

deposited by: (red) e-beam with current of 20 mA and (black) RF

Sputtering with a power of 100 W (Color figure online)

Table 3 Roughness and jB wetting parameter obtained from the

PSD functions of PTFE-like films

PVD method Roughness (nm) jB Wetting parameter

E-beam (20 mA) 25.13 0.36

RF sputtering (100 W) 2.42 0.05
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structuring of the pre-coated Si surface by chemical etching

allows an even higher contact angle (165 ? 2�) with very

low hysteresis (\3�). These first results indicate that one-

step e-beam deposition is a promising production tool with

present Si microelectronics technology, such as for digital

microfluidic or lab-on-a-chip devices and for Si solar cells.
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