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Abstract The discovery of graphene and carbon nan-

otubes (rolled-up graphene) has excited the world because

their extraordinary properties promise tremendous devel-

opments in many areas. Like any materials with application

potential, it needs to be fabricated in an economically

viable manner and at the same time provides the necessary

quality for relevant applications. Graphene and carbon

nanotubes are no exception to this. In both cases, chemical

vapor deposition (CVD) has emerged as the dominant

synthesis route since it is already a well-established process

both in industry and laboratories. In this work, we review

the CVD fabrication of graphene and carbon nanotubes.

Initially, we briefly introduce the materials and the CVD

process. We then discuss pretreatment steps prior to the

CVD reaction. The discussion then switches to the CVD

process, provides comparative data for thermal CVD and

plasma-enhanced CVD, and includes coverage of kinetics,

thermodynamics, catalyst choice, and other aspects of

growth as well as post production treatments. Finally,

conclusions are drawn and presented.

Introduction

Carbon allotropes

Carbon materials consist of various allotropes. Carbon

allotropes form when carbon atoms form covalent bonds

between each other. There are several known carbon

allotropes such as diamond, graphite and amorphous car-

bon. These are the traditional 3D bulk carbon materials.

More recently, with the advent of advanced observation

techniques, 2D graphene and 1D carbon nanotubes (CNTs)

are identified as other, low-dimensional sp2 carbon

allotropes.

To understand sp2 carbon, one can start with the electron

orbital hybridization [1, 2]. Carbon’s atomic number is six.

It has four valence electrons which occupy the 1s2, 2s2,

2px
1, and 2py

1 atomic orbitals. With all four of the valence

electrons contributing to covalent bonds, carbon is

tetravalent and forms sp3 carbon, which we more com-

monly know as diamond. The bonding energy between two

sp3 carbon atoms is 3.6 eV and contributes to diamonds’

great strength. Carbon can also form with sp2 hybridization

in which three electrons form in-plane r (covalent) bonds

and the fourth electron forms a weak (non-covalent) inter-

plane p bond. The p electrons are delocalized and provide

graphite (and graphene) with its electrical conductivity.

The inter-plane p bond has relatively low bonding energy

of 31 meV [3] in comparison to the very strong in-plane r
bond (6.4 eV). This means that graphite is a layered

structure formed from graphene layers that can easily slide

apart from each other and it is this easy sliding action that
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allows us to use graphite for graphical purposes (e.g., a

graphite pencil) and from which it derives its name.

Indeed, the individual graphite layers can be separated

and ultimately yield a single layer, which we term gra-

phene [1, 4]. The three equivalent sp2 r orbitals are sym-

metrically angled with 120� in the X–Y plane (forming a

characteristic hexagonal or honeycomb lattice), while non-

hybrid 2p-orbitals are perpendicular to the X–Y plane. One

can also take sections of a graphene sheet that can then be

rolled up into a ball which we call a fullerene. In this case,

some pentagon structures form amid the hexagons to allow

for curvature much like a classic leather football. One can

also roll up a graphene sheet to form a tube, and we call

these structures single-walled carbon nanotubes. When

several sheets are rolled up, we obtain multi-walled carbon

nanotubes.

Graphene and carbon nanotubes

The properties vary between the various carbon allotropes,

and thus each is of interest for a variety of applications.

Indeed, so rich are their applications it would be too much

to enter into in this review. Here, we focus only on the

chemical vapor deposition (CVD) for the fabrication of

graphene and CNTs since this growth route is the most

promising for their manufacture in the semiconducting

industry when considering both CNTs and graphene as

important future materials in the electronics industry as

well as for mass production. At first, we briefly look at the

properties of graphene and CNTs that make them so

promising and then we introduce the reader to CVD as a

growth route.

Type and properties of graphene

In terms of morphology, graphene can be classified into

planar graphene and vertical graphene. Planar graphene lies

parallel to a substrate. With increasing layer numbers,

planar graphene is usually divided into three types, namely

mono-, bi-, and multi-layer graphene. In contrast, vertical

graphene is free standing and anchor perpendicular to a

substrate.

The enormous interest in graphene has been mostly

driven by its unique electronic and electrical properties.

Monolayer graphene has three key electronic properties.

These have zero carrier density at the Dirac points and are

pseudo-spin and relativistic carriers [1, 4]. These electronic

properties provide a rich series of experiments in physics,

such as modulation of carrier density with tuning gate

voltage, quantum hall effect [5, 6], and band gap engi-

neering in graphene ribbons [7, 8]. Thus, graphenes are

potentially building blocks for transistors [9]. Bilayer

graphene [10], especially with AB-Bernal stacking [11–

13], has tunable band gap depending on the gate voltage

[14, 15]. Few-layer graphene is better suited for application

in electrochemical energy systems [16–20] as opposed to

device use. Vertical (multi-layer) graphene [21–23] has a

curved and folded morphology in contrast planar graphene.

Multi-layer graphene (graphite) is generally used as a

catalyst support and as electrodes in energy systems [24–

32].

With the strong C–C bond in sp2 carbon, graphene

yields the highest intrinsic strength of known materials [33,

34]. The graphene nano-platelets can blend with polymer

for a composite [35] with reinforced mechanical strength

and electrical conductivity. The thermal conductivity of

graphene is also very high (*2000 W mK-1) and is the

highest among all the carbon allotropes [1]. The optical

conductance of graphene is independent of frequency over

a wide range [36, 37].

An ideal graphene sheet comprises a perfect hexagon

network similar to honeycomb. However, the pentagon and

heptagon pairs are commonly observed in non-perfect

graphene. The typical locations where such pairs are

observed are in grain boundaries [38, 39], folded edges

[40], and electron-irradiation-induced defects [41, 42]. The

pentagon and heptagon pairs degrade the electronic con-

ductance of graphene by introducing electron scattering

sites [43, 44]. Moreover pentagon–heptagon pairs will also

deform the graphene [45, 46]. Hence the production of

single-crystal graphene via CVD approach is highly

attractive to avoid the drawbacks of defects.

Moreover, the chemical properties of graphene can be

modified by introducing functional groups [47–52]. The

chemical functionalization can disrupt pristine graphene

with covalent bonds or van der Waals interactions of

external groups or molecules [53, 54]. The intercalation of

molecules between two graphene sheets is a means with

which to obtain graphene and few-layer flakes. The large

surface area of graphene-based complex materials (with

functional particles) is also attractive in applications such

as biological sensors [55], humidity sensors [56], antibac-

terial devices [57], complex anode material for Li-ion

batteries [58], and catalyzed H2 generation [59].

Type and properties of CNTs

CNTs are fundamentally distinct as compared to graphene

as they have curvature, viz. planar graphene has zero cur-

vature, while carbon nanotube has a diameter (chirality)-

dependent curvature [60]. The curvature influences the

physical properties of CNTs such as electrical [61–63],

vibrational [64, 65], optical [66, 67], thermal [68, 69], and

mechanical properties [70]. For ideal planar graphene, the

electrical properties are dominated by the delocalized

electrons in p orbital. For single-wall carbon nanotubes, the
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electrical properties differ because of the re-hybridization

of p–r orbitals due to the curvature effect [71–74]. When

tube diameter is small (\2 nm), the chirality plays a role in

the curvature effect and thus the physical properties [75].

In comparison to graphene, CNTs can be classified by

wall numbers into three categories. They are single-walled

nanotubes (SWNTs), double-walled nanotubes (DWNTs),

and multi-walled nanotubes (MWNTs). SWNTs can be

further divided into metallic, semi-metallic, and semicon-

ducting according to their chiral angle. DWNTs have two

layers of walls which is convenient for further functional-

ization [2, 76, 77] while preserving the straightness of the

tube (since in the SWNT case the tube wall can collapse

upon the introduction of defects/functionalization).

MWNTs have various morphologies in which, for example,

they can have parallel walls (concentric tubes within each

other) [78–80], a bamboo-like structure [81, 82], or a

herringbone structure [83].

The large scientific and industrial interests in CNTs have

been driven by the amazing electronic properties [84].

Depending on their electronic properties, SWNTs can be

divided into metallic and semiconducting types [2]. Firstly,

the metallic CNTs show ballistic transport behavior, i.e.,

electrons pass along the tube with little or no scattering. In

other words, almost no heat is dissipated inside it, viz. CNT

is capable of conducting large current while avoiding an

excessive temperature increase. This conductivity behavior

is attractive in integrated circuits in that transparent elec-

trodes can be formed with metallic CNT networks [85].

Semiconducting SWNTs transport electrons in a diffusive

manner. However, experiments show a high mobility in

semiconducting SWNTs. Indeed, the electronic property of

SWCNTs depends on their diameters and helicity [86].

This leads to exciting application potential in devices such

as diodes, field-effect transistors [87, 88], field emitters,

and memories [89]. CNTs can also be mixed into com-

posite materials for energy applications such as electrodes

for fuel cells [90], lithium/sodium ion batteries [91, 92],

and super capacitors [93, 94] and used as a catalyst for

photo-electricity transformation [95, 96] and as a sup-

porting matrix [97].

As previously mentioned, the electrical properties of

SWNTs are strongly related to their chirality. One can

image SWCNT as a rolled-up graphene nanoribbon. Thus,

the SWNT structure can be indexed with an integer pair (n,

m), which serves as a rolling vector [98–102]. When n is

equal to m, the SWNTs have an armchair tube opening.

They are metallic CNTs (no band gap) [103, 104]. Arm-

chair SWNTs remain metallic regardless of tube diameter.

When (n-m)/3 is a non-zero integral, the tube edges are

zigzag. They are semi-metals with a small bandgap [99,

105, 106]. Each of their bandgaps is proportional to the

inverse of the diameter squared [99, 107–109]. When

(n-m)/3 is any other value (non-integer), the SWNTs have

a chiral angle, depending on (n, m). Each of these semi-

conducting SWNTs has a bandgap that is proportional to

the inverse of the tube diameter [110–112]. The represen-

tative values of the band gap are listed in Table 1.

Perfect CNTs have hexagon lattice structure. However,

like graphene, the introduction of pentagon and heptagon

pairs will alter the tube helicity and therefore its electronic

structure [99, 117–122]. One advantage of the introduction

of a pentagon and heptagon pair is the creation of on-tube

tuning of tube chirality/helicity. For example, a semicon-

ducting/metallic junction (8, 0)/(7, 1) can form when

introducing pentagon–heptagon pairs along the (8, 0) axial

direction [122]. A semiconducting heterojunction (10, 0)/

(9, 1) can form when inserting a pentagon–heptagon pair

on a (10, 0) tube axis [122]. A complicated configuration of

pentagon and heptagon pairs can build up a metal–metal

junction such as (12, 0)/(6, 6) and (9, 0)/(6, 3) as well

[123].

Another attractive property of CNTs is their mechanical

properties [124, 125]. The tensile strength of the stiffest

CNTs is approximately fifty times larger than that of steel,

while their Young’s modulus is five times larger than that

of steel. CNT can tolerate 30 % induced strain so that

structural enhancement can be achieved when using CNT

in polymer composites [124, 126–129], metal powders

[130], and ceramic matrices [131]. Besides, functionaliza-

tion of MWNT with silane molecules enables the better

solubility (chemical compatibility) for polymer matrix

composites [132]. Also, CNT can be used as robust

microscope probes [133] and nanoscale tweezers [134].

The thermal conductivity of MWNTs (from arc-evapora-

tion production) exceeds 3000 W mK-1 [135]; however,

MWNTs from catalytic CVD methods show a significant

drop in thermal conductivity down to 200 W mK-1 [136].

Probably, the presence of catalysts impurities (usually

metal particles) degrades the thermal conductivity by cre-

ating scattering sites.

The chemistry of CNT is more rich than that of gra-

phene since it has a different chemistry on its inside and

outside. This is one advantage of CNT over graphene, in

which both sides are symmetric and show no difference.

Moreover, one can take the advantage of the nanoscale

space inside a SWCNT [137]. The filling of heterogeneous

substances into CNTs can also be achieved [138–140].

Some fillings hold potential in magnetic material engi-

neering [80, 141]. The inside of a CNT can also be used to

adsorb gas molecules, such as hydrogen [142–145], nitro-

gen monoxide [146], nitrogen, and oxygen [147] as well as

Xe [148]. The tube interior can work as a nano-channel of

fluidics to let water [149] or solutions flow [150] through.

The filling of CNT with water can work as a valve to

switch on/off the transport of gas molecules [151] and a
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hydroelectric power generator [152]. With water filling, the

phase transformation can be observed inside the tube, for

example, ordered water [153] and ice crystals [154]. CNT

with encapsulated catalyst particles can function as a nano-

reactor for ethanol production [155], Pd-catalyzed hydro-

genation [156], Pt-catalyzed fuel cell [157], and inner

smaller CNT growth [158]. The encapsulated catalysts

exhibit a confinement effect [159] from the tube diameter.

The confinement effect can enhance the capacitance of

encapsulated MnO2 [160] and the electron spin of encap-

sulated transition metals [161] such as Gd [162]. The filling

of DNA molecule inside a tube enables biological appli-

cation [163]. Moreover, a single-molecule biological

activity (with retinal molecule inside a carbon nanotube)

can be imaged dynamically in response to light exposure

[164].

The outside of a CNT has the merit of a large surface-to-

volume ratio, which provides a reactive surface. The

chemistry of CNT exteriors can be tuned with covalent or

non-covalent functionalization. Covalent functionalization

aims to solubilize the CNTs by attaching hydrophilic spe-

cies to them [165]. This aggressive process though can

disrupt the structure of the tube walls. In contrast, non-

covalent functionalization binds molecules gently to CNTs

via Van der Waals forces without degrading the tube [166–

168]. When the biological molecules such as protein and

DNA are used, biological functionalization can be obtained

[169]. Functionalization of carbon nanotube can work as a

drug delivery platform [170]. As above, the functional-

ization occurs at/over the wall structure. One can also dope

CNT by replacing C in the wall with other elements such as

B and N [171–173], and BN nanotube was individually

synthesized when C is totally replaced by both B and N

[174–176].

Chemical vapor deposition

CVD is a sophisticated synthesis technique for both

industry production and laboratory research. CVD is

applied in many areas, such as crystal growth, thin-film

coating, and fiber and powder production. CVD is also well

developed for the synthesis of graphene and carbon nan-

otubes. The principles of CVD [4] for sp2 carbon include

two steps, firstly thermal decomposition of carbon feed-

stock and thereafter re-assembly of carbon radicals into sp2

carbon nanostructures.

The carbon feedstock varies according to the hydro-

carbon selected. Examples include gaseous methane,

ethylene, and acetylene, as well as solvents such as

methanol, ethanol, isopropanol, and acetone and aromatic

hydrocarbons. Usually, catalytic metals are used during

CVD to enhance decomposition of the feedstock and per-

haps also to aid sp2 carbon assembly.

Catalyst choices are often transition metals, for example,

Fe, Co, and Ni for CNT growth and Cu and Ni for graphene

CVD growth. However, the non-catalytic substrates are

emerging for sp2 carbon growth and also, for example, Si/

SiO2 wafers.

In terms of the heating source, there are two types of

CVD, conventional thermal CVD and plasma-enhanced

CVD. In a thermal CVD system, the heat generated from a

resistance heating element is transferred to the target sub-

strate and feedstock gas.

Table 1 The relation between the type, the bandgap, and SWNT index is listed. The small band gap dependent on the diameter shows a

curvature effect for semi-metallic and semiconducting SWNTs, viz. the band gap increases with decreasing tube diameter

Type (metallic, semi-metallic, semiconducting) Diameter (nm) Bandgap (eV) SWNT index (n, m) Ref.

Metallic 0.81 0 (6, 6) [103]

Metallic 1.08 0 (8, 8) [103]

Metallic 1.21 0 (9, 9) [104]

Semi-metallic 0.47 0.21, 0.05 (6, 0) [73, 107]

Semi-metallic 0.70 0.08 (9, 0) [105]

Semi-metallic 0.93 0.04 (12, 0) [105]

Semi-metallic 1.17 0.03 (15, 0) [105]

Semiconducting 0.43 2.02 (4, 2) [113]

Semiconducting 0.48 1.77 (4, 3) [114]

Semiconducting 0.70 1.42 (6, 4) [114, 115]

Semiconducting 0.74 1.27 (6, 5) [116]

Semiconducting 0.81 1.21 (7, 5) [116]

Semiconducting 0.96 1.00 (9, 5) [116]

Semiconducting 1.01 0.98 (8, 7) [116]
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In a plasma-enhanced CVD oven, a plasma source is

added to assist the thermal cracking of the carbon feed-

stock. Plasma CVD has certain benefits, such as that it

decreases the growth temperature and thus, for example,

minimizes catalyst particle agglomeration which is

important for CNT growth. However, in terms of synthetic

graphene by plasma CVD it is very desirable for growing

vertical graphene but has limited potential for nano-crys-

talline planar graphene (thus far).

In terms of gas pressure during CVD synthesis, one can

work at atmospheric pressure or at low pressure. Generally,

low-pressure CVD facilitates rapid growth due to the larger

probability of carbon species at the substrate. In contrast,

ambient-pressure CVD is economic as it avoids the need

for a complicated vacuum system but has lower growth

kinetics.

CVD growth of graphene

There are many routes with which to fabricate graphene.

These include mechanical exfoliation [177], reduced gra-

phene oxide [178–180], (electro-) chemical exfoliation

[181, 182], ribbon formation by unzipping CNTs [183,

184], bottom-up synthesis from aromatic molecular pre-

cursors [185], epitaxial growth over silicon carbide [186,

187], segregation upon transition metals on cooling [188–

191], organic molecule adsorption with post hydrogen

annealing [192], e-beam irradiation-driven graphene

growth [193], and CVD [16, 23, 194–196]. When synthe-

sizing graphene for electronic devices, graphene is gener-

ally required to form over a large area. Moreover, graphene

should ideally be crystalline with negligible defects.

Balancing the production cost and the above prerequisites,

CVD is the most promising route to produce large-area

device-grade graphene. Indeed, graphene synthesis by

CVD is one of the most popular techniques because of its

potential to be scaled up, and it is already well established

both in industry and in research labs.

Substrate pretreatment

Prior to graphene synthesis by CVD, substrate preparation

is important. Substrates for graphene growth can be clas-

sified into two categories. They are metals and non-metals.

When using metals such as Cu, the pretreatments before

CVD include general surface cleaning via organic solvent

soaking [197], partial Cu surface etching with strong HNO3

[198] or weak acetic acid [199], smoothing the surface with

electrical or chemical mechanical polishing [200, 201],

passivating the surface with oxygen [199] or argon expo-

sure [202], surface rearrangement and grain size increase

with H2 annealing [4], liquefied Cu above its melting point

[203, 204], and thorough removal of carbon contamination

by air sintering [195, 205].

Without any pretreatment, second-layer flakes form

probably beneath a full coverage of monolayer graphene

from trapped carbon species [206]. With pretreatments

[200, 201, 207], carbon diffusion is suppressed because

there is a lack of carbon-trapping sites (e.g., Cu grooves

and contamination from the supplier processing).

Oxygen, in particular, plays an important role in fabri-

cating both single-crystal graphene [199, 202] and large-

area strict monolayer graphene film [195, 205]. Oxidation

treatment is vital to remove surface organic contaminant,

as shown in Fig. 1.

In terms of Ni supports, the optimization of the thick-

ness of Ni film upon a support (e.g., Mo foil or Si/SiO2

wafer) is crucial to control the number of graphene layers

and the homogeneity of the graphene layers by controlling

the C solubility which is high in Ni [188, 190, 208].

When employing non-metal substrates, for example,

silicon oxide or silicon nitride, usually cleaning in organic

solvents is used initially [209]. Oxygen treatment (air

burning 800 �C for 1 h) [210] is also implemented, and this

has been shown to enhance the nucleation of graphene.

Thermal chemical vapor deposition

Thermal CVD typically results in planar graphene with

controlled layer numbers such as mono-, bi-, and multi-

layer graphene. In a thermal CVD procedure, Ni and Cu are

the most popular substrates to grow graphene [4] though a

few works use Ru [211], Co [212], Fe [213, 214], and Ag

[215]. Polycrystalline Ni films (on Si/SiO2 support) facil-

itate the formation of thin continuous graphene films (layer

number varies from 1 to 10) at ambient pressure [216, 217]

and also at low pressure [218]. Single-crystal Ni (111) is

good for the efficient growth of monolayer graphene

(coverage ca. 90 %), while Ni polycrystalline foil has a

lower yield (72 %) [4]. Among all the substrates, Cu cur-

rently attracts the most attention because it is far easier to

grow monolayer graphene due to the low carbon solubility

found in Cu. In general, the polycrystalline graphene grain

sizes found with Cu are larger than those found in Ni [4]. In

polycrystalline Cu, monolayer graphene is usually argued

to grow in a self-limited manner [194]. A further advantage

of Cu as a substrate is that it can be scaled up relatively

easily for large-area graphene fabrication such that even

30-inch graphene transparent films transferred in a roll-to-

roll approach have been demonstrated [219]. In an effort to

remove the need to etch copper away from synthetic gra-

phene after synthesis, the use of thin Cu films over Si/SiO2

[220] can be advised as it sublimes during the reaction such

that at the end only graphene remains [221].
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Another approach to avoid transfer (which can damage

and contaminate the graphene) is to directly synthesize

graphene over a non-metal substrate with no metals pre-

sent. Non-metallic substrates include quartz [222], sapphire

[223], Si/SiO2 [210], Si3N4 film [224], MgO crystals [225],

and hexagonal BN [226–228]. This form of CVD growth is

slower than when using metals; however, at times there are

advantages, for example, the electron mobility of graphene

grown over Si3N4 was shown to exceed that of transferred

graphene grown over Cu [224].

Plasma chemical vapor deposition

Plasma CVD leads to the formation of vertical graphene

and also planar graphene. With plasma-enhanced CVD,

one can grow vertical graphene on various substrates

including metals and non-metals [22, 23]. Moreover,

PECVD can speed up the growth rate of planar graphene

on non-metal supports by 15 min to achieve full coverage,

[229] as compared to thermal CVD by at least 4 h [210]. In

addition, PECVD can decrease the growth temperature

significantly, for example, at 600 �C [230] one can gen-

erate high-quality graphene, while thermal CVD usually

requires temperatures of 1100 �C or above [222].

Carbon feedstock

The carbon feedstock for graphene growth is typically a

hydrocarbon. They can be categorized into gas, liquid, and

solid. The most frequently applied is gaseous methane

(CH4) [194, 196, 231, 232] in Cu-based CVD. Also,

ethylene (C2H4) [233] and acetylene (C2H2) [212, 225]

have been used successfully for growing graphene. Liquid

carbon source commonly seen in laboratory CVD growth

of graphene includes alcohols [234–240] (for example

methanol, ethanol, isopropanol), acetone [234], large

hydrocarbons [241–243] (pentane, hexane), and aromatic

hydrocarbons [235, 244–246]. Solid carbon sources have

also been explored such as carbon doping into bulk metals

[247, 248], amorphous carbon [249–251], self-assembly

monolayer [252], camphor [253–256], DNA [257], insect

protein [258], flower petal [259], PMMA [260–266], PS

polymer [267], and waste plastics [268].

The carbon feedstock for carbon nanotube growth is

similar to that for graphene. They are methane [269, 270],

ethylene [271–275], acetylene [276–278], alcohol [80,

279–285], and aromatic hydrocarbons [286–288]. Carbon

monoxide [289] has also been used to grow single-walled

carbon nanotubes.

Fig. 1 Influence of oxidation pretreatment on the graphene formation

over Cu foil. CVD-grown graphene without pretreatment: a Raman

mapping of full width half maximum of 2D mode, b SEM images of

graphene transferred on Si/SiOx, and c AFM images of the same

graphene. And graphene growth with oxidation pretreatment: e Raman

mapping of FWHM 2D, f SEM images of graphene transferred on Si/

SiOx, and g AFM images of the graphene. The SEM images of Cu foil

before CVD growth: d without pretreatment, graphene flakes form

h with oxidation pretreatment, Cu surface remains clean without

graphene flake formation. Reprinted (adapted) with permission from

Ref [195]. Copyright (2015) American Chemical Society
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Growth mechanisms and dynamics

Thermodynamics describes the possibility of a reaction. It

can be evaluated through the activation energy (Ea). The

reaction process initializes when one satisfies certain con-

ditions to overcome the reaction energy barrier (e.g., by

increasing temperature, introducing a catalyst, etc.).

Kinetics, however, describes the reaction rate. The kinetics

can be evaluated using kinetic constants, for example, the

growth rate of graphene (such as increase rate in size,

density, or coverage of graphene flake over Cu substrates).

The kinetic constants can be obtained from statistics of the

experimental data. To obtain thermodynamic information

such as activation energies, one can plot the so-called

Arrhenius plot which is the logarithm of a kinetic constant

against the reciprocal of temperature.

Thermodynamics and activation energy

Now, we turn to the parameters that affect the Ea such as

gas pressure, type of feedstock, type of substrate, oxygen

incorporation, plasma enhancement, and catalyst. The

activation energies are in the range of 1.5–3.7 eV in low-

pressure Cu–methane CVD [199, 290–292]. When

increasing the pressure to ambient atmosphere, Ea increa-

ses by ca. 3 eV [292].

With respect to the influence of carbon feedstock choice,

when using ethane (C2H4) as an alternative carbon feed-

stock in low-pressure CVD, activation energies are similar

in the range from 2.4 to 3.1 eV [293, 294]. When using

small-molecule solvents (ethanol, acetone, and iso-

propanol), Ea decreases to 1.4–1.6 eV [192]. When using

large aromatic hydrocarbons (C22H14 and C24H12), the Ea

drops to 1.46 and 1.87 eV, respectively [246].

In terms of substrate choice, when using Co and Ru

substrates (under vacuum), the activation energies show no

significant difference to that found for Cu (1.4–2.9 eV)

[294, 295]. However, when switching to non-catalytic

oxides, large increases in Ea occur such as 4.75 eV for

SiO2 [210] and 6.75 eV for Si3N4 [224]. This highlights the

importance of a catalyst in decreasing the reaction energy

barrier.

A tiny amount of oxygen adsorbed on a Cu surface can

reduce the Ea [199]. Oxygen incorporated with H2 in the

reactions can lead to the formation of OH radicals which

decrease the energy barrier. Compared to thermal CVD,

plasma-enhanced CVD (PECVD) significantly reduces the

Ea to 1.03 eV [296]. In addition, metal promoters such as

Ni [290] reduce the Ea to 1.7 eV from 3.7 eV. Indeed, Ni

foil [290] (in the upstream of target substrates) has been

shown to enhance the decomposition of the carbon feed-

stock and thereafter accelerate graphene growth. We list

the Ea values in Table 2 for an overview.

We now look at the growth kinetics of graphene. The

kinetic constants can be accelerated by increasing reaction

temperature, reactant concentrations, and catalyst activity.

Firstly, an increase in CVD temperature can accelerate

graphene growth. Indeed at temperatures below 1000 �C,
full graphene coverage does not occur and pores remain in

the film even after 150 min of CVD growth [291]. With

temperatures in the range from 720 to 800 �C, graphene
growth saturates to 50–80 % coverage [297]. However, at

the elevated temperature of 1000 �C full coverage can be

achieved within 10 min of CVD reaction time [291, 297].

Secondly, the growth kinetics can be enhanced by an

increase in reactive carbon species. Reactive species con-

centrations increase either with an increase in the methane

partial pressure [298] or an increase in reactive carbon

species. The carbon species concentration can also be

enlarged by an increase in temperature [299, 300]. The

amount of carbon (larger than the equilibrium level for

nucleation) is attributed only to the carbon source choice

[291].

Thirdly, the catalytic activity of Cu and Ni can improve

the growth kinetics. Indeed, CVD on Cu or Ni substrates

typically requires\ 1 h to achieve full coverage graphene

growth [194, 196, 216, 218]. However, the CVD duration

over a non-catalytic ceramic oxides requires several hours

or days [210, 222, 224].

Furthermore, metal vapor is an efficient means to speed

up the growth kinetics [196, 301]. Specifically, Cu vapor

trapping facilitates graphene full coverage growth in 10 s

[195, 196], whereas 15 min CVD growth times are

required in a non-trapping setup with the same growth

conditions [196]. Methane decomposition into reactive

carbon species is probably enhanced by the trapped Cu

vapor.

To better understand the thermodynamic and kinetic

aspects of graphene growth, in situ characterization tech-

niques are being developed, e.g., in situ SEM [302, 303],

LEEM [304, 305], and XPS [306].

Reaction mechanisms over Cu

Cu is probably the most often used substrate since, because

of its low carbon solubility, monolayer graphene with full

coverage can easily be obtained with monolayer ratios

exceeding 95 %, [194] and strictly (100 %) monolayer

graphene [195, 309, 310]. A surface-mediated self-limited

mechanism [194] is proposed such that once the Cu surface

is fully covered, the catalytic process of Cu ceases and

hence so does graphene growth. However, the surface-

mediated mechanism cannot account for the secondary

formation of graphene. For example, second-layer (addi-

tional) patches emerge in full coverage monolayer gra-

phene film [195, 196, 309], and even agglomerate into
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parallel lines [311] and achieve full coverage for bilayer

graphene [310].

It is argued that part of the reason for this is carbon

diffusion into/out of Cu grain boundaries. For one case, the

outside of Cu pocket is found to grow bilayer graphene

[310]. However, with a tungsten foil inside the Cu pocket,

monolayer graphene was achieved with tungsten argued to

suppress carbon diffusion from the inside to outside of the

pocket [310]. In another case, pulsed methane doses [309]

as opposed to a continuous flow were introduced to deplete

carbon for graphene growth to avoid carbon accumulation

at Cu grain boundaries (and thereafter C diffusion to form

second-layer flakes) Adsorbed solvent on the Cu substrate

can also account for the additional graphene flake forma-

tion [192].

Some researchers propose that the carbon can diffuse

through an initial graphene layer, nucleate, and form sec-

ond-layer flakes underneath full coverage monolayer film

[312–314]. They discuss second-layer graphene growing

above the full first layer of graphene [13, 315, 316]. In

short, the origin of second-layer flakes is still not fully

understood.

Liquid Cu substrates can play an important role in the

growth of single-crystal monolayer graphene. Cu foils

liquefy at elevated temperatures above its melting point

(1080 �C). Monolayer single-crystal graphene (either

round or hexagonal shaped) were fabricated over liquid Cu

[203, 204, 317]. The grain boundary free Cu surface sup-

presses carbon diffusion into the Cu bulk and thereafter

avoids the formation of second-layer flakes from carbon

extrusion (from accumulated sites in the Cu bulk, e.g.,

grain boundaries). The advantage of liquid Cu also applies

to other metals such as In [204] and Ga [318]. In contrast,

solid Cu suffers from the evolution of polycrystalline

graphene [319].

The geometry and quality of graphene flakes are prob-

ably dependent on Cu grain orientation (in solid Cu).

Cu(101) and Cu (110) facilitate four-lobe graphene domain

formation [320]. Moreover, graphene ribbon can be

selectively grown on Cu twin-crystal striped surfaces like

the (001) facet [321] by controlling the methane partial

pressure, whereas Cu (111) facets produce higher quality

monolayer graphene with a higher growth rate than Cu

(100) facets [322]. The shape of graphene flakes can also

be influenced by the gas conditions. Initially, square-

shaped graphene domain can be controlled by growth

conditions, e.g., methane partial pressure [323], regardless

of the Cu lattice orientation. Generally, a high hydrogen

flow ratio (in comparison to methane pressure) facilitates

hexagonal graphene [206, 316], while low hydrogen partial

pressure facilitates square graphene domains. Moreover,

annealing with high-partial pressure H2 single gas can etch

the square-shaped graphene flakes into hexagons [206].

Reaction mechanism over Ni

Ni as a substrate for graphene growth exhibits carbon

segregation and precipitation [216, 218, 324]. Initially, in a

CVD reaction, carbon atoms dissolve [325] into the Ni bulk

forming a carbide [326]. Carbon segregation and precipi-

tation from meso-stable Ni2C [327] occur upon cooling.

However, graphene grown on pure Ni foil is

Table 2 Thermodynamic activation energy (Ea) is listed from different works in the literature. The growth conditions are also included

Support Carbon source Ea (eV) Temperature (oC) CVD type Pressure Ref.

Cu CH4 5.0 950–1080 Thermal Ambient [292]

Cu CH4 3.7 850–1000 Thermal Low [290]

Cu CH4 2.74 900–1050 Thermal Ambient [307]

Cu CH4 2.6 750–1000 Thermal Low [291]

Cu CH4 2.0 950–1080 Thermal Low [292]

Cu CH4 1.5, 1.76 835–1035 Thermal Low [199, 308]

Cu CH4 1.7 850–1000 Ni-promoted thermal Low [290]

Cu CH4 1.03 500–900 Plasma-enhanced Low [296]

Cu CH4 0.92 835–1035 Oxygen-assisted thermal Low [199]

Cu C2H4 2.4–3.1 900–1050 Thermal Low [293]

Cu C3H6O, C3H8O, C2H6O 1.4-1.6 800–1025 H2 annealing Low [192]

Cu C22H14, C24H12 1.46, 1.87 550–1000 Thermal Vacuum [246]

Co C2H4 1.4, 2.9 340–360 Thermal stage Vacuum [294]

Ru C film 2 470–800 Thermal stage Vacuum [295]

Si3N4 CH4 6.75 1150–1190 Thermal Ambient [224]

SiO2 CH4 4.75 1050–1190 Thermal Ambient [210]
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inhomogeneous in layer numbers, ranging randomly from 1

to 10 layers.

Therefore, one needs to engineer the substrate to achieve

homogeneous graphene layer formation. One example is to

employ Ni thin films to decrease the quantity of carbon that

can diffuse into the Ni [216, 328]. Furthermore, mild oxi-

dants (CO2 and H2O) can be mixed with methane to grow

thin few-layer graphene with diminishing carbon diffusion

[324] because Ni sub-oxide not only increases catalytic

activity but also leads to the suppression of carbon diffu-

sion. Graphene growth over NiOx with CO2 enhancement

is shown in Fig. 2.

Alternatively, when using a binary alloy (Ni/Mo) [188,

190], one can produce strictly monolayer graphene. Figure 3

shows a monolayer graphene growth on an Ni–Mo alloy.

Similarly toNi/Mo alloy, one can control the graphene layers

from monolayer full film to a bilayer full membrane by

tuning the component ratio of Cu/Ni alloy [189].

Reaction mechanism over non-metals

Graphene growth can also be achieved over non-metal

substrates, for example Al2O3 [223], MgO [225], and SiO2

[210, 222] ). In comparison to Cu CVD, the growth over

oxides generally requires higher temperatures [1100 �C,
[210, 222]. In addition, surface oxygen [210], metal vapor

[209, 329], and plasma [229] are necessary to promote

graphene growth.

Graphene growth over sapphire (Al2O3) involves epi-

taxial growth by van de Waals interactions [223]. The unit

cell of the grown graphene has a 30� rotation compared

with that of sapphire substrate. High-resolution TEM (see

Fig. 4) proves the parallel stacking of graphene over MgO

crystals [225], which also confirms epitaxial growth. In

addition, graphene was successfully grown over non-metal

crystalline substrates such as graphite [330, 331], SiC

[187], BN [226, 228], and graphene on a Cu support [13].

The growth mechanisms over non-metals are not yet

clear. The graphene growth is argued to involve a surface

deposition mechanism with a very slow deposition rate

[210]. A vapor–solid–solid mechanism is also argued [210,

222]. SiO2 nanoparticles were suggested to nucleate gra-

phene growth [210] probably through an intermediate of

SiC formation [281]. Without any treatment of oxide

substrates, the grain size of graphene is small, around

300 nm [210]. However, with a pretreatment of air

Fig. 2 Graphene growth on NiOx substrate with CO2 enhancement.

a Schematic of CVD growth of graphene over NiOx surface. Middle

is the energy state versus the reaction pathway of methane dissoci-

ation. b Raman spectra of graphene grown at 700 and 500 �C with/

without CO2 incorporation. With CO2, the D mode decreases.

c,d STEM image and EDX mapping of C, Ni, and O in a cross

section of graphene/NiOx interface. e XPS of the surface of graphene

over NiOx. There is direct observation of oxygen at top surface of the

Ni substrates. Reprinted (adapted) with permission from Ref [324].

Copyright (2014) American Chemical Society
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annealing, the graphene size exceeds 10 microns [222].

The growth kinetics is probably limited with slow carbon

attachment at graphene edges [222]. Si3N4 is also a can-

didate substrate for graphene growth [224].

The growth mechanism of vertical graphene is shown in

Fig 5. The defects of initial graphene sheets supply the

nucleation sites. Then, the graphene continues to grow with

surface diffusion of active carbon species.

Transfer protocol

Graphene grown on metals requires a transfer step for

further characterization or device fabrication. Firstly, the

graphene side is (spin-) coated with a supporting film,

usually a polymer such as PMMA [216, 332, 333]. Sec-

ondly, the polymer/graphene/Cu stack is put afloat on an

etching agent, such as FeCl3 [333] and ammonium per-

sulfate (APS) [334, 335]. Thirdly, the polymer/graphene is

cleaned in distilled water after thorough etching of the

metal. Then, the polymer/graphene is fished onto a target

substrate. Next, acetone is used to dissolve the polymer

(e.g., PMMA) away. Finally, the transfer process is com-

pleted with high-vacuum annealing to minimize surface

contamination. When the annealing temperature exceeds

300 �C, the electric property improves with negligible

polymer residues [335]. In addition, the graphene on the

undesired side of a substrate or foil can be pre-etched away

with nitric acid [335] or APS [334] since graphene can

grow on both sides of a foil/substrate. We list the transfer

protocol and the chemicals for each step in Table 3.

Alternative approaches for graphene transfer also exist.

Bubbles can be used to intercalate into the interface

between the graphene and the substrate and thus separate

them. The bubbles are usually generated in an electro-

chemical reaction [338]. To recycle Cu foil, an electro-

chemical cell is used in a controlled fashion to dissolve a

very thin layer of Cu (cathode) underneath the graphene

[338, 339]. In this mild etching, hydrogen bubbles from the

electrolysis of water can assist in peeling off the

PMMA/graphene from Cu.

A bubble method was successfully developed that does

not require an electrochemical cell and so can be applied to

Fig. 3 Monolayer graphene growth from Ni–Mo binary alloy.

a Schematic of growth mechanism: surface decomposition of carbon

feedstock, carbon atoms’ dissolution into the bulk, Mo2C formation,

and controlled carbon precipitation into graphene. b Photograph of

full coverage graphene film transferred onto Si/SiOx substrates.

c Optical micrograph of the transferred full coverage graphene, inset

is typical Raman spectrum that confirms the monolayer graphene

feature. d,e Discontinuous graphene film and graphene flakes with

slow cooling rate after CVD. Adapted by permission from Macmillan

Publishers Ltd: [Nature Communications] [188] copyright (2011). f–
i TEM characterization of the graphene monolayer membrane. j–
o AFM height images of the transferred graphene on Si/SiOx. From

left to right are the evolution of monolayer full film, discontinuous

film, and isolated flakes, according to various cooling temperature

windows. Reprinted (adapted) with permission from Ref [190].

Copyright (2013) American Chemical Society
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non-conductive substrates [337]. The process relies on the

copious production of gaseous O2 which intercalates in

between the substrate–graphene interface and can thus

serve as a peeling agent. The schematic is shown in Fig. 6.

Mechanical transfer can be achieved by peeling off

sticky epoxy/graphene from a substrate [341]. In a similar

manner, thermal release tapes in a roll-to-roll dry transfer

route can separate graphene from a support [219].

Alternative polymers such as polycarbonate (PC) [336]

can be used to diminish polymer residue. PC polymer

dissolves more effectively in chloroform than the

PMMA/acetone combination. This can avoid the need for

high-vacuum annealing. The use of fluoropolymers

(CYTOP model) instead of PMMA can achieve fluorine

doping in graphene [342]. This single step largely

increases the electrical conductivity (with higher carrier

density) but preserves the high transparency of the gra-

phene. When fishing a polymer/graphene stack out of

water onto a substrate, isopropanol is a better medium

than water to guarantee better adhesion over the Si/SiO2

substrate [343]. However, without a polymer support,

graphene can be directly fished onto a net upon Cu

removal [340].

In terms of graphene over In or Ga, HCl solution can be

used as an etching agent [204, 318]. For graphene on Ni,

the etching agent can vary from mild hydrochloric acid

[216], acetic acid [18, 19], O2 bubbles [337], and nitric acid

[18]. In the case of oxide-based supports, HCl was

employed to remove MgO nanocrystals [16]. KOH can

etch SiO2 substrates (such as quartz or amorphous SiO2

film) [344, 345].

CVD growth of carbon nanotubes

The primary approaches to synthesize CNTs are arc-dis-

charge evaporation of graphite, laser ablation, and CVD. In

particular, CVD is well developed in industry and easier to

scale up than arc-discharge and laser evaporation methods.

Hence this section is focused on CVD growth of CNTs.

The CVD approaches discussed here are divided into two

sections, catalyst CVD and catalyst-free CVD [2, 346].

Substrate pretreatment

Prior to the CVD growth of CNT, the substrates often

requires pretreatment. Air annealing at 400–750 �C is

Fig. 4 Graphene grown on MgO substrate. a,b TEM images of few-

layer graphene on MgO lattice. c,d Graphene nano-flake on MgO

surface with short exposure of carbon feedstock. e Magnified region

from panel c highlights the graphene structure. f Cross-sectional view
of graphene on MgO surface. g Raman spectrum of few-layer

graphene after purification. h TEM of the purified graphene. Inset is

the contrast profile of graphene interlayers. i Scheme of graphene

growth on MgO: nucleation at the step edge. j HRTEM of magnified

region of panel c. k Schematic of a nanographene flake illustrating the

large number of edge defects. l Fast Fourier transform images from

magnified region in panel h. Reprinted (adapted) with permission

from Ref [225]. Copyright (2010) American Chemical Society
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Fig. 5 Vertical graphene (VG) grown from PECVD. a Low-resolu-

tion TEM images of VG including graphene top, bottom, and

substrates, b high-resolution TEM image of VG bottom. The

mismatches are probably nucleation sites. c HRTEM of VG stems

on carbon onions. d HRTEM of the carbon onion. e Scheme of a

proposed mechanism: nucleation at defects, growth at surface and

edges. f HRTEM of a seamless edge of a graphene closure.

g Schematic of the vertical graphene growth at its closure. h TEM

and atomic model of a growing VG sheet with many curved steps and

terraces. Reprinted (adapted) with permission from Ref [23]. Copy-

right (2014) American Chemical Society

Table 3 Transfer protocol for graphene over Cu

Etching of bottom

graphene

Coating polymer

support

Etching Cu Fishing graphene onto

substrate

Removal of

polymer

Ref.

APS PMMA FeCl3/HCl Water Acetone [216, 332–

334]

HNO3 PMMA APS Isopropanol Acetone [335]

No PC FeCl3 Water Chloroform [336]

No PMMA H2O2 ? NH3�H2O ? H2O Water Acetone [337]

No PMMA Electrochemistry Water Acetone [338, 339]

No No APS No No [340]
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widely used. This process can oxidize the metal particles

(catalyst particles) which minimizes Oswald ripening at the

elevated temperatures used in the reaction. In addition,

organic contaminants can be removed [347].Moreover, long

air annealing times can reduce substrate roughness [348].

Indeed, substrates with a rough surface can halt CNT growth

or lead to twists the growth direction and is sometimes

implemented for horizontally aligned CNT growth.

Catalyst chemical vapor deposition

The more common catalysts used in the CVD growth of

CNT are Fe, Co, and Ni or related alloys [2, 346]. There are

two types in catalyst systems in CNT production by CVD.

They are the floating catalyst CVD and supported CVD. In

the floating catalyst system, the catalysts are not supported

and reside in the gas flow [349, 350]. In supported catal-

ysis, nanoparticles are pre-deposited on supporting sub-

strates and serve as the catalyst particle. According to the

CVD conditions implemented, one can obtain three types

of CNT orientations. They are vertically aligned CNT [351,

352], horizontally aligned CNT [353–357], and randomly

aligned CNT [358].

Catalyst-free chemical vapor deposition

Non-catalysts such as ceramic oxides have been shown to

grow CNT [346]. In addition, carbon allotropes, such as

fullerenes [271, 354], diamond surfaces [359], graphite

[271], and CNT [360, 361] are successful systems to syn-

thesize CNTs.

Growth mechanisms

Thermodynamics and activation energy

The thermodynamics (e.g., activation energy) to grow

CNTs has been carefully studied over various conditions

Fig. 6 A bubble approach to transfer graphene from arbitrary

substrates. a TEM micrographs of graphene transferred to a grid

from Cu, Ni–Mo, Al2O3, and SiC substrates. b Raman spectra of

transferred graphene. c Raman mapping of G/D mode of graphene

transferred from Cu foil. d Photographs of key steps of the transfer:

coating PMMA, immersion into bubble agents, and delaminating

PMMA/graphene with Cu foil. e Schematic of the complete transfer

route. Reprinted (adapted) with permission from Ref [337]. Copyright

(2014) Royal Society of Chemistry

652 J Mater Sci (2016) 51:640–667

123



[362–366]. Table 4 provides a comparative overview of the

parameters that affect activation energy. In this review,

thermal CVD and PECVD are compared. For thermal

CVD, the Ea of CNT growth can be as high as 1.21 eV

(Ni–C2H2) [364]. In contrast, PECVD significantly reduces

the Ea, e.g., 0.56 eV [363] and 0.76 eV (Ni–C2H2) [364].

These values are obtained in the temperature range

(520–700 �C). Plasma CVD has benefits at low tempera-

tures. For example, one could grow device-quality CNTs at

200 �C [367] with the plasma-assisted CVD. This allows

CNT vertical arrays to be directly grown on a plastic

polyimide substrate.

Many factors account for the lower Ea in PECVD than a

thermal CVD [364]. Firstly, the catalytic particles could be

heated by ion bombardment and increase the carbon dif-

fusivity and solubility within them. Secondly, the activated

etching gases could more effectively remove excess carbon

species from the front nickel surface, and thus an enhanced

uptake of carbon occurs at the larger fresh area of the

metallic catalyst particle. Both factors could provide a

driving force to allow carbon diffusion through the catalyst

particles.

In terms of the role of the catalyst metal choice, the

highest Ea is 3.5 eV for Co–C2H2 couple [366]. With Ni

and Fe employed, the Ea drops significantly to 2.3 eV

[366] and 1.3 eV [365], respectively. Indeed, the same

trend occurs when using C2H4 as the feedstock gas. They

are Co (1.69 eV) [362] and Ni (1.4 eV) [366]. However, a

complex alloy of Co/Cr/Al [362] significantly suppresses

the Ea barrier to 0.84 eV.

We now turn to the influence of carbon feedstock. When

mixing a promoting gas such as NH3, the Ea (1.21 eV)

[364] for Ni–C2H2 (NH3) decreases to half of that found

with Ni–C2H2 (2.3 eV) [366] at ambient pressure. Differ-

ent feedstocks with Ni catalyst, such as CH4 (1.5 eV),

C2H4 (1.4 eV), and C2H5OH (1.3 eV), lead to varying

activation energies. Co catalyst particles show a similar

trend when switching from C2H2 (3.5 eV) [366] to C2H4

(1.69 eV) [362] and C2H5OH (1.1 eV) [366].

In thermal CVD growth, Ea tends to be larger

(1.1–3.5 eV) in low-temperature zones (\600–700 �C) and
much smaller (0.1–0.7 eV) in high-temperature

zones([600–700 �C) [366]. The decrease of Ea probably

depends on the liquefaction of the metal catalyst particles.

At elevated temperatures, the nano-sized metal catalysts

liquefy at lower temperatures than their bulk counterparts

[270, 368–371]. The activity of catalyst particles can be

enhanced upon increasing the temperature. Indeed, molten

Table 4 Activation energy of carbon nanotube growth over various substrates

(Catalyst) particle type Ea (eV) Carbon feedstock CVD type Temperature (oC) CNT type Ref.

Co 3.5 C2H2 Thermal CVD 450–700 SWNT [366]

Ni 2.3 C2H2 Thermal CVD 450–600 SWNT [366]

Co 1.69 C2H4 Thermal CVD 500–700 MWNT [362]

Ni 1.5 CH4 Thermal CVD 450–625 SWNT [366]

Ni 1.4 C2H4 Thermal CVD 450–625 SWNT [366]

Ni 1.3 C2H5OH Thermal CVD 450–680 SWNT [366]

Fe 1.3 C2H2 Thermal CVD 600–800 MWNT [365]

Ni 1.21 C2H2/NH3 Thermal CVD 550–850 MWNT [364]

Co 1.1 C2H5OH Thermal CVD 450–700 SWNT [366]

Co/Cr/Al 0.84 C2H4 Thermal CVD 500–650 MWNT [362]

Ni 0.76 C2H2/NH3 PECVD 550–850 MWNT [364]

Ni 0.7 CH4 Thermal CVD 625–900 SWNT [366]

Ni 0.56 C2H2/NH3 PECVD 520–700 MWNT [363]

Ni 0.4 C2H2 Thermal CVD 600–900 SWNT [366]

Co 0.4 C2H5OH Thermal CVD 700–900 SWNT [366]

Fe 0.35 C2H2/NH3 PECVD 260–520 MWNT [373]

Ni 0.32 C2H5OH Thermal CVD 680–900 SWNT [366]

Ni 0.3 C2H4 Thermal CVD 625–900 SWNT [366]

Co 0.3 C2H2/NH3 PECVD 200–520 MWNT [373]

Ni 0.23 C2H2/NH3 PECVD 120–520 MWNT [373]

Co 0.1 C2H2 Thermal CVD 700–900 SWNT [366]

J Mater Sci (2016) 51:640–667 653

123



particles continue adsorbing carbon atoms and elongating

(growing) nanotubes after nucleation. However, as the

liquefaction temperature increases beyond the synthesis

temperature, the carbon concentration increases in the

metal particles [372]. Solidification decreases the carbon

diffusion kinetics and finally ceases CNT growth

altogether.

Similarly, in PECVD the Ea varies between two tem-

perature regimes. The Ea is larger (0.76 eV) [364] at high

temperatures (520–700 �C) but smaller (0.23 eV) [373] at

low temperatures (120–520 �C). Indeed, the Arrhenius plot
has a strict linear fitting at the low temperature range [373].

A linear fit occurs only in the low portion in the high-

temperature zone [364].

One can engineer the kinetics of CVD with predictions

(rather than trial-and-error mode) [374]. For example, the

CNT synthesis can be conducted with a controlled diameter

[375–378] or even reasonably defined chirality [379–381].

Moreover, the kinetic process of CNT formation can be

monitored with enriched in situ characterization tech-

niques, such as digital camera [382], reflection optical

spectroscopy ([383, 384]), adsorption optical spectroscopy

[385], Raman spectroscopy [386–389], thermogravimetric

analysis [288], XRD [390], XPS [391], and environmental

TEM [82, 392–394].

The termination of CNT growth is controversial. Early

work deduced that the growth ceases upon the deactivation

of the catalyst particles. The deactivation includes the

poisoning of catalysts by amorphous carbon encapsulation

[395–397], or by Oswald ripening/sub-diffusion [398].

This theory is elegantly supported by the water-assisted

super growth of vertical CNT arrays [351, 399, 400].

Indeed, water incorporation at elevated temperature

removes the amorphous carbon layer and exposes the fresh

catalyst surface [398]. Thereafter, the catalysts re-activate

for the CNT growth. Similarly, oxidants such as O2 and

CO2 show an enhancement in SWNT growth [400].

Moreover, oxidized substrates may drive CNT growth by

preventing amorphous carbon condensation [80]. But, one

convincing argument rises up for the non-poisoning nature

of amorphous carbon layer [401]. Here, amorphous free

radical condensates over catalyst are proposed to serve as a

carbon source rather than a deactivation system. Indeed,

high-resolution TEM shows that the amorphous carbon

covering catalyst can continue CNT growth [402]. Beyond

these two arguments, vertical CNT arrays show a genuine

saturated growth behavior [403, 404].

Reaction mechanism over catalysts

The reaction mechanism over catalysts include carbon

dissolution and nanotube precipitation [2, 346].

Depending on the catalyst particle location, the growth

mechanisms are divided into tip growth mode (where

particle rises to the top) and base growth mode (where

catalytic particles anchor to the supporting substrate). Ni

over SiO2 often follows tip growth because of a weak

particle–substrate interaction [80, 363]. However, Co and

Fe over SiO2 substrates [405, 406] and over Al2O3 [78]

favor base growth where a strong interaction limits the

motion of the catalyst particles. Indeed, over Al2O3 sup-

port, the catalyst particles were found either embedded

inside the supporting film or anchored on its surface (see

Fig. 7).

The reaction to form MWNTs over Ni includes (1)

decomposition of carbon feedstock on the front face of a

catalyst particle; (2) carbon dissolution and supersaturation

in the bulk metal particle; (3) carbon precipitation to the

back face; and (4) carbon incorporation at the root of a

growing CNT. During the CNT growth, the Ni particle is

raised upward spontaneously. The driving force to continue

growth dynamics originates from the gradient in chemical

potentials [407–409], particle temperature gradients (front

face[ back face), and carbon concentration gradients

(front face[ back face). Namely, carbon (monomers or

dimers) diffuses from high to low temperature and from

high to low concentration in Ni particles. In terms of

SWNTs, a carbon dissolution and nanotube precipitation

mechanism applies. But, the driving force relies solely on

the gradient in carbon concentration since the temperature

difference is negligible in a sub-10 nm particle [410, 411].

To obtain SWNTs, one needs to optimize a number of

parameters [2, 289, 412, 413], such as catalyst choice,

temperature, and feedstock.

Diameter control of SWNTs can be achieved by various

strategies, for example, using sulfur-promoted aerosol-as-

sisted CVD [375], or to confine the catalyst particle size

with secondary non-catalytic metals (such as Mo, Pt, Ru,

Rh, and W). Thus, binary alloys such as Co/Mo [412,

414],Fe/Mo [413, 415, 416], and Co/Pt [417] are often used

confine SWNT growth to the base growth mode. Further-

more, water incorporation (or other mild oxidants) help

prevent Oswald ripening of Co over Mo, therefore nar-

rowing down the diameters of the resultant SWNT [414].

Surprisingly, some degree of chiral control of SWNTs via

CVD is emerging such as (12,6) tubes from Co/W clusters

[418], (9.8) tube from CoSO4/SiO2 [419] and from Co/

TUD-1 [420], cloning of (7,6) and (7,5) tubes [360], and

(6,5) tube over CoxMgO substrates [421] and from Co/Pt

catalysts [417].

In an atomic view, a theory of screw dislocation has

been postulated for chiral SWNT growth [422]. In this

work, the SWNT grows with C monomer attachment along

the exposed tube edge in a screw-like fashion. Surprisingly,
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the screw theory has been confirmed with experimental

observations under a field emission microscopy [379].

Reaction mechanism over non-metals

Table 5 summarizes different aspects of CNT growth from

non-catalyst, mainly non-metals. CNT growth from carbon

allotropes usually arises from defects such as nano-pores,

open edges, and defects. Indeed, the exposed open edges of

CNT walls (such as bulky onions and stack mismatches

[23], Fig. 5) between graphitic sheets can facilitate the

attachment of carbon adatoms [379]. On the one hand, the

open-end tube structure has a high-energy state, which can

crack carbon, the feedstock. These carbon atoms could

initialize the formation of MWNTs or SWNTs depending

on the size of the nuclei site. On the other hand, the defect

sites or particle encapsulates (similar to Ni particle at tip)

[396] may continue supplying sites to template the elon-

Fig. 7 Carbon nanotube (CNT)

growth on various supports.

a TEM images of CNT with

root on the surface of Al2O3 thin

film while catalyst buried inside

the Al2O3 film. b TEM images

of CNT with root on a-alumina

nano-platelet. A Co particle

elongates inside the CNT. The

outer walls of CNTs align

themselves with the (110) lattice

fringes of the corundum

support. c TEM micrographs of

bamboo-like CNT grown on a

graphite support. The right

panel highlights the graphitic

cap terminating the outside of

catalyst particle. Correlation of

CVD grown CNT diameter with

catalyst particle size (d) and
number of CNT walls with

respect to catalyst particle size

(e). Reprinted (adapted) with

permission from Ref [78].

Copyright (2010) American

Chemical Society
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gation. When expanding to other non-carbon particles, the

initial nucleation occurs by forming carbon nano-caps.

Other elements such as Si, Ge, and SiC can also serve as

catalyst particles for the growth of CNT. The Ge particle is

proposed to be a liquid during growth. In contrast, Si and

SiC are argued to be solid during growth.

SiO2 nanoparticles have also been used to grow CNTs

(Fig. 8). When SWNT grows out from nano-SiO2 particles,

SiO2 is assumed to be either a liquid [428] or an amorphous

solid [357, 429] during the reaction. However, these

hypotheses were deduced with micro-meter-scale resolu-

tion methods, like XPS.

Many metal oxides [357, 427–433] such as Al2O3, TiO2,

ZrO2, ZnO, and MgO have also been used for CNT growth.

Low catalytically active metals such as Au, Cu, Pt, Ag,

Pd, Mn, Mo, Cr, Sn, Re, Mg, and Al [344, 436–439] have

also been used for CNT fabrication. Last but not least,

alkali salts [442] such as NaCl and Na2CO3 have also been

demonstrated for the growth of CNT.

Conclusions

In this work, an overview of the CVD aspects involved in the

synthesis of graphene and CNTs have been presented for both

thermal and plasma-enhanced CVD. The shear breadth of

possibilities is highlighted by the number of variations avail-

able in terms of the presence of catalyst, synthesis parameters,

feedstock options, etc., all of which affect the thermody-

namics and kinetics of the reaction and hence the final out-

come of the as-produced material. The review highlights the

enormous power ofCVDas a synthesis route for graphene and

CNTs as well as its versatility. Despite some remaining

technical issues such as grain boundary control in large-area

graphene or total chiral control of carbon nanotubes, the sheer

volume of knowledge now available and recent advances

suggest the use of CVD as a means to fabricate graphene and

CNTs are not only set to stay, but will likely soon overcome

many of the remaining technical challenges and thus allow

graphene and CNTs to truly deliver their full promise.

Table 5 Growth conditions and results of CVD-grown CNTs, support type, curvature radius, and diameter of CNTs, nucleation site, CNT type,

and particle location

Support type Particle radius

(nm)

CNT diameter

(nm)

Nucleation sites CNT type Particle

location

Ref.

Fullerene clusters 1–4.5 0.7–1.4 Open cap SWNT,

DWNT

Base [354, 423,

424]

SWCNT 1 2 Open end SWNT None [361]

MWCNT 12 25 Pore site MWNT None [272]

Graphene quantum dots 20 20 Mismatch between

graphene sheets

MWNT None [425]

Graphite 20–40 20–90 Nanobump MWNT None [271]

Diamond nanoparticle 2–2.5 1–2 Graphitic cap SWNT Base [359]

Porous carbon black 10–40 20–80 Fullerene-like cap MWNT Base [272]

Si, Ge nanoparticle 0.7–0.9 3–4 Nanoparticle SWNT,

DWNT

Base [426]

SiC nanoparticle 0.6 3–4 Nanoparticle SWNT,

DWNT

Base [426]

Nanoparticles SiO2, Al2O3, TiO2,

ZrO2

\1 0.8–1.4 Nanoparticle SWNT Base [357, 427–

432]

SiO2 powder 4-10 15–18 SiC nanoparticle MWNT Both [281]

MgO powder 25 50–300 Defected Graphene shell MWNT Tip [433]

ZnO nanoparticles 0.8 0.6–1.8 Nano particle SWNT Tip [434]

Au (bulk) 5-50 25–60 Hemi-spherical nanobug MWNT Base [435]

Ag, Pt, Pd, Mn, Mo, Cr, Sn, Mg,

Al, Cu, Au,

n.a. 0.6–2.0 Nanoparticle SWNT n.a. [344, 436–

439]

Pt 0.5-1.5 0.8–1.2 Sub-surface SWNT n.a. [440]

Re 2-4 5–8 Nanoparticle MWNT Tip [441]

NaCl, Na2CO3, Na2SO4 10 8–23 Encapsulated particle MWNT Tip [442]
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