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Abstract Identifying the parameters of a crystal plastic-

ity model requires the use of grain scale experimental data.

The objective of our work is to develop a robust procedure

to identify the model using information at the scale of the

crystals. In this study, an in situ experimental measurement

has been developed for the parameter identification of

crystal plasticity models. During the experimental stage,

the total �tð Þ and elastic �eð Þ strain fields of an Al-alloy

specimen with around 12 grains were measured at the same

time. The total strain fields were determined by digital

image correlation. For this, a speckle-painting was applied

on the sample surface which was tracked to derive the total

deformation of the specimen surface under loading. The

elastic strains were calculated from X-ray diffraction

measurements. Yet certain experimental difficulties had to

be solved in order to achieve these simultaneous

measurements. Besides results and analysis, the corre-

sponding uncertainties during each measurement were

quantified as well.

Introduction

Crystal plasticity models allow one to describe the

changes of the microstructure of a crystalline material

and predict its local behaviour. As the physical mecha-

nisms—on which the constitutive equations are based—

are the main causes of material deformation, these

equations are able to predict the strain and stress

heterogeneities under thermomechanical loading [2, 14,

30, 31]. For example, the local disorientations due to

forming [9] or the localisation of the plastic deformation

which leads to crack initiation in fatigue [22, 33] can be

predicted.

However, the parameters of these models are difficult

to identify because the mechanisms they describe are at a

small scale and are thus difficult to measure directly (e.g.

evolution of dislocation density, strain hardening, pile-ups

at grain boundaries, changes in dislocation microstrutures,

etc.). Identification of the parameters of these models is

usually performed by an inverse method from macro-

scopic tests curves [12, 15]. There are two feasible

approaches.

The first approach uses a self-consistent method based

on [11, 20] wherein the mechanical behaviour is

described using a micromechanical model, in which

grains are considered as inclusions embedded in a

homogeneous equivalent medium [1, 13, 21, 26]. In this

approach, the texture and elongation ratio of grains can

be taken into account. Yet neither a specific shape of the

grains nor specific grain boundary misorientation are

dealt with.
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Another approach consists of modelling representative

3D polycrystalline aggregates which can be obtained

experimentally by FIB-SEM serial-sectioning [6], by

tomography [23] or by Voronoi tessellation (CVT) [3–5,

34, 35]. In order to account for the mean behaviour of the

material, it is necessary to include a sufficient number of

configurations (e.g. grain orientations and positions,

neighbouring grains and shapes). These configurations can

be included in a unique aggregate if it is sufficiently large

[the representative volume element (RVE)] or in several

smaller aggregates. The mean behaviour of these small

aggregates, if not too small, converges to the behaviour of

the RVE [18]. This method, although the calculations are

more time-consuming, allows one to take specific charac-

teristics of the microstructure (realistic shape of the grains,

specific neighbouring misorientation, percolation of one or

several phases, etc.) into consideration.

These two methods allow one to simulate the macro-

scopic stress–strain response and to perform the parameter

identification by comparison with experimental measure-

ments. However, minimising a cost function based on

macroscopic measurements may lead to local minima, and

not to a global one. The validity of such an identification is

thus generally limited to the experimental tests used during

the identification stage. In order to increase the robustness

of the identification, it is necessary to give a physical

meaning to the parameters. To accomplish this, local

experimental data at the grain scale were used. The rich-

ness of the data provided by the experimental fields mea-

sured on the surface of the specimen should allow one to

constrain the values of the parameters to be identified. The

objective of the present work is to access local information,

which will be used in a second step as input to allow the

identification of a crystal plasticity model. This informa-

tion is needed not only in a single point but in a wider field

as the more measurement points used, the more precise the

identification will be.

Several methods allow one to assess elastic strain

locally, and they are all based on diffraction of crystalline

planes. They can use either electron backscatter diffraction

patterns [17, 19] or Laue microdiffraction [29]. As we

wanted to carry out in situ mechanical tests and be able to

determine the strain field in the whole specimen, an X-ray

method was preferred and is detailed in the section of

experimental methods.

The present paper focuses on in situ experimental

measurements at the intragranular scale. Total �tð Þ and

elastic �eð Þ strain fields of a specimen with around 12

grains were measured simultaneously at each imposed

loading level (Fig. 1). The total strain fields were deter-

mined by Digital Image Correlation (DIC) using

Correli Q4 software [16]. For this, a speckle-painting was

applied on the sample surface. The elastic strains were

calculated from X-ray diffraction (XRD) measurements

[10]. At the same time, some experimental difficulties had

to be solved in order to achieve these simultaneous mea-

surements. Besides results and analysis, the corresponding

uncertainties during each measurement were quantified as

well.

This paper is organised as follows. ‘‘Materials and

sample preparation’’ section describes the sample prepa-

ration and the material. Experimental methods and mea-

suring techniques are introduced in ‘‘Experimental

methods’’ section. ‘‘Results and discussion’’ section pre-

sents and discusses the results and the corresponding

uncertainties. Finally, ‘‘Conclusion’’ section closes the

paper with a short summary, conclusions and a perspective.

Materials and sample preparation

For the experiments, a specimen in aluminium alloy (5052)

was used. The chemical composition is given in Table 1.

The dimension of the tested specimen is given in Fig. 2.

To facilitate the measurements of strain gradients inside the

grains, a polycrystalline structure with the grain sizes

ranging from 5 to 20 mm were obtained by recrystallization

after critical work hardening. The sample contains around

Fig. 1 Principle of simultaneous kinematic full-field measurements
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12 grains per side and 2 grains in the thickness of 0.55 mm

(Fig. 3) [7].

Experimental methods

Simultaneous �t and �e measurements

Implementation

The experimental device was set up (Fig. 4) to conduct the

tests in situ in a diffractometer [7]. The micro-tensile

machine designed by Deben and a single-lens reflex cam-

era are installed inside. The reflex camera faces the spec-

imen vertically during DIC measurement. The XRD

measurements were performed on a Panalytical X’Pert Pro

MRD 7-axis goniometer. The description of the XRD

apparatus is given in [7]. A cable guide has been designed

around the micro-tensile machine to prevent it from

crossing the beam during diffraction measurements. The

experimental setup provided an observation area of 17� 8

mm2 for DIC measurement and 15� 8 mm2 for XRD

measurement (Fig. 5).

Initial microstructure

Initial shape of the grains

Knowing the initial microstructure of the sample is

essential for positioning the sample with respect to the

X-ray beam during characterisation process. As mentioned

in ‘‘Materials and sample preparation’’ section, there are

two layers of grains in the useful part of the sample, the

mechanical response of a grain is not only affected by its

own crystalline orientation [32] but also by the surrounding

grains with different crystal orientations [24].

Each grain position in the sample was measured using

an optical microscope (Fig. 6). To better distinguish the

grain boundaries, photos of the sample at the same position

were captured with different lighting directions. The

accurate grain cartography facilitated the XRD scanning

programming. Trading off with the grain size and mea-

suring time, there are approximately 20 points of XRD

measurement per grain and the spatial resolution is 1� 1

mm2. The spatial resolution for DIC is much finer and is

Fig. 2 Sketch of the sample used showing its large grains (in mm)

Fig. 3 Thickness view of the

sample. Grain boundaries (in

dashed lines) between the two

layers are at mid-thickness

Fig. 4 Experimental setup

Table 1 Chemical composition (in wt%) of the aluminium alloy used

(5052)

Si Fe Cu Mn Mg Cr Zn Al

0.45 0.45 0.10 0.10 2.2–2.8 0.15–0.35 0.10 Balance
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326.4lm (=32pixels). The choice of the spatial resolution

for DIC will be presented later.

In this paper, half of the useful part was measured with

XRD, in order to validate the methodology. DIC mea-

surements were carried out on the entire useful part

(Fig. 6).

The crystallographic orientation

The crystal orientations are represented by three Euler

angles (u1, U, u2) defined by the relative orientations of

the sample and the crystal coordinate systems. The crystal

orientations of every grain were firstly characterised by

XRD using inverse method (Fig. 7) [7].

The coordinate system of the sample was defined as in

Fig. 8. When measuring the Euler angles of the grains on

the back side (u0
1, U

0 , u0
2 )grain of the sample, the sample is

rotated 180� along y-axis (Fig. 9). Therefore, the actual

grain orientations (u1, U, u2)grain on this side need to take

the rotation of 180� along y-axis Ry into account. There are

two options for this transformation:

u1 ¼ p� u0
1; U ¼ pþ U0; u2 ¼ u0

2 ð1Þ

or

u1 ¼ �u0
1; U ¼ p� U0; u2 ¼ pþ u0

2 ð2Þ

In this article, the first option was used and the crystal

orientations of both sides of the sample are shown in

Appendix 6.

Unlike EBSD scanning which requires a high quality of

polishing on the sample surface, this is a non-destructive and

residual-stress-freemethod to determine thematerial’s texture.

�t field measurement

DIC measuring method and quality of the speckle paint

Total strain �t field was derived using the digital image

correlation. A speckle pattern painting in black and white

(top left Fig. 10) was sprayed on the sample surface and

images of the same region of the sample were taken reg-

ularly during mechanical tests for comparison. The soft-

ware Correli Q4 [16] was used for image analysis and the

displacement field calculation. To ensure the quality of the

speckle paint, the painting thickness, grey histogram and

measurement errors were quantified using the same soft-

ware (Fig. 10). In addition, a glass sample coated with the

Fig. 5 Useful part of XRD measurement (in dashed line)

Fig. 6 The spots indicate the X-ray measuring positions

Fig. 7 Logic diagram for

finding Euler angles of a given

grain which match the results

measured by XRD
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same thickness of speckle was diffracted by X-ray to

ensure the absence of metallic components which may

disturb the XRD [7].

�e field measurement

Application of Bragg’s law

The interreticular plane distance dhkl can be used as a gauge

to measure the local elastic strain �e (Fig. 11) through the

application of Bragg’s law (Eq. 3):

dhkl ¼
k

2sinðhÞ ; ð3Þ

where h is the diffraction angle and k is the wavelength of

the X-ray source.

Differentiating Eq. 3 by using the product rule, we get

�hkl ¼
ddhkl

dhkl

¼ �coth � dh : ð4Þ

Therefore, if dhkl increases (which corresponds to a tension

state, �hkl [ 0), 2hhkl value of the peak decreases with respect

to its initial position (Fig. 12), and vice versa. The lattice

parameter a0 (= 0.4067nm) of our Al-alloywas characterised

by XRD in its initial state, with the powder method.

X-ray diffraction technique: first Ortner method [28]

The metric tensor G can be calculated during a tensile test

knowing the peak positions for each (/, w)fhklg, so that the

Fig. 8 Front view of the sample with its grains numbered

Fig. 9 Back view of the sample with its grains numbered

Fig. 10 Speckle verification conducted by Correli Q4. A polycrys-

talline sample covered by speckle-painting and a zone of

10.5 9 5.1mm2 was selected for speckle verification. The resolution

captured by camera is 10.2 lm/pixel (Top left). The speckle pattern is

made of two colours: black and white. The high resolution of the

image enables one to distinguish the black/white edges easily and

avoids averaging blurred black–white area to a grey one (Top right).

Hence, there is a superposition of two grey level distributions (a

Gaussian function for each colour) in the histogram (Bottom left). A

large grey level distribution improves the accuracy of displacement

field measurements. For the element size 362.4 lm (=32 pixels), the

average error is 3.1 nm (=2:75� 10�4 pixels) (Bottom right)
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strain tensor � can be deduced. The relationship between

the selected fhklg plane distance (vector D� in the recip-

rocal lattice) and reciprocal metric tensor G� can be

described with a matrix H, which is constructed using the

co-ordinates of the diffraction vectors of these fhklg planes

in the reciprocal lattice (Eq. 6).

In Eq. 6, G�
1 ¼ g11, G�

2 ¼ g22, G�
3 ¼ g33, G�

4 ¼ g23, G�
5 ¼

g31 and G�
6 ¼ g12. And this equation can be rewritten as

D�
n�1 ¼ Hn�6G�

6�1 : ð7Þ

At least 6 fhklg planes are required to determine G� in

Eq. 7. In order to enhance the measurement precision, more

than 6 planes are desired. The method of least squares has

been used to determine G� as follows:

G�
6�1 ¼ HT � H

� ��1
HT

h i

6�n
�D�

n�1 : ð8Þ

The advantage of this method is its independence with

respect to the 2h rotation. The strain tensor � is then

determined by

�ij ¼ �ij ¼ gij � g
ij
0

2
ffiffiffiffiffi
gii
0

p ffiffiffiffiffi
g

jj
0

q ; ð9Þ

where g
ij
0 et gij are the contra-variant co-ordinates of the

initial and the deformed metric tensor G*.

Choice of fhklg planes and criteria associated

Besides the requirement to determine the six components

of G�, measurement of additional fhklg planes will

improve the precision of the calculation. Moreover, errors

and existing limitations of the experimental apparatus

should be taken into consideration. Crystal planes with a

larger diffracting plane distance will have a smaller

diffraction Bragg angle and correspond to higher intensity.

However, fhklg planes with large values of 2h improve

measurement precision (Table 2). The choice of fhklg
planes results in a compromise between peak intensity and

precision of 2h variation. Thus, for a sample of Al-alloy

with FCC structure, only f220g, f311g and f222g planes

are considered. According to the limits of the goniometer,

18 fhklg planes fulfil the above requirements. Yet, the

Fig. 11 Illustration of X-ray diffraction method

Fig. 12 2h �2�22ð Þ of Grain3 (X ¼ �1; Y ¼ �1) in its initial state

(blue line with markers ‘�’) and at �t
xx = 7:4� 10�3 (red line with

markers ‘x’) (Color figure online)

D� ¼ d�2 ¼ 4sinðhÞ2

k2
ð5Þ

D�
1

D�
2

D�
3
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.
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.
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n

0

BBBBBBBBBB@

1
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h2
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grips of the micro-tensile machine restrict the accessible

angle for X-ray beam diffracting towards the sample. Even

so, a weak diffraction beam intensity is obtained once the

cradle inclines more than 75� along the w-axis. In the

remaining fhklg planes, planes forming a circle in the pole

figure are preferred since this combination minimises the

uncertainty [27]. As a result, after eliminating all the

inaccessible (/,w)hkl, 13 fhklg planes are left to be anal-

ysed at every XRD measuring point (Fig. 13).

XRD measuring method

As it will be necessary to determine small 2h variations of

the order of 0:4�–0:6� during the mechanical loading (see

Table 2), the initial (/,w)hkl should be measured with high

accuracy before determining the tensor �e. The diffraction

peak of an fhklg plane in a monocrystal is very fine (width

\1�). To measure �e with accuracy, each peak position

should be cautiously measured at each step. As such, the

position of the diffraction peak is searched for along /, w
and 2h successively around an initial position determined

by the initial texture. This optimisation procedure is repe-

ated until convergence [10].

The stability of the optimisation process has been tested

and validated in a crystal of an Al-alloy sample. Several sets

of parameters (/, w and 2h) in the vicinity of a given peak

were considered as initial positions (Fig. 14). The optimi-

sation process was carried out from these various initial

positions to determine the peak position along /, w and 2h.
After 3 iterations, all of the processes converged to nearly the

same 2h value with a variation of 0:005�(Fig. 15).
Once the tensile test has started, the sample deforms

elastically and plastically. The elastic deformation induces

peak translation, as shown in Fig. 12. After plastic defor-

mation, one or more crystal re-orientations can be found

inside a grain, which is called mosaicity. The mosaicity

development as well as dislocation accumulation during

plastic deformation cause XRD peak broadening and inten-

sity decrease (Fig. 16). The grain disorientation and peak

broadening are the evidence of heterogeneous deformation

Fig. 13 Location of the fhklg planes summarised for XRD

measurement in grain 7. Only accessible f220g, f311g and f222g
planes are considered

Fig. 14 Method used for testing the stability of the optimisation

process

Fig. 15 Changes in 2h after several iterations of measurement

starting from various initial positions. The final variance D2h is about

0.005�

Table 2 Theoretical variation of 2h corresponding to various fhklg planes of a crystal submitted to a strain of 4:29� 10�3 in the 100h i direction

fhklg f111g f200g f220g f311g f222g f400g f331g

d2h(�) �0.203 �0.241 �0.391 �0.527 �0.580 �0.912 �1.721
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inmaterials [8]. The objective of the experimental procedure

developed here is to measure peak translation without the

interference due to plastic deformation. In some conditions,

the plastic deformation may be so large that several distinct

peaks may appear (Fig. 16). We decided to consider only the

peak with the highest intensity. In order to limit this

mosaicity [25], the beam size has been refined to 0:1� 0:1

mm2. The intensity is sufficient for the peak measurement

and optimisation, as the signal to noise ratio remains higher

than 60. Furthermore, as the strain levels remain small during

the experiment presented, the displacement of the peaks was

small enough to consider the position associated with the

previous loading step as a starting point for searching for the

peak position after deformation.

The final 2h peak position determination is presented in

the following subsection.

Accuracy of 2h positioning

The X-ray Ka line is by far the strongest emitted X-ray

spectral line. It contains 2 lines: Ka1 and Ka2 with

wavelengths relatively close (kKa1ðCoÞ= 0.178897 nm and

kKa2ðCoÞ= 0.179285 nm). These components are not easily

resolved. During 2h measurement, both Ka1 and Ka2

interact with fhklg crystalline planes (Fig. 17b), and

therefore, a diffraction peak doublet is obtained.

Owing to the complicated form of the peak, the 2h
position is not able to be determined immediately. The

peak position is sought through an inverse method by

modelling the diffracted peak as the sum of two Gaussian

functions G (Eq. 10).

Gaussian function G for each spectral line is defined

as

G
�
Ap; hp; 2hp

�
¼ 2Ap

hp

ffiffiffiffiffiffiffi
ln2

p

r

e
�4ln2

h2p

�
2hp�2h

�2
ð10Þ

with the properties:

(1) hp is the full width at half maximum (FWHM)

(2) Amplitude Ap of Ka1 is always twice as large as that

of Ka2

Fig. 16 Evolution of a peak of ð�222ÞGrain7 from its inital state (left) to �t
xx = 7:4� 10�3 (middle) and �t

xx = 0.0356 (right). Intensity drops as

strain level increases due to the crystal orientation dispersion during plastic deformation

Fig. 17 a Scheme of X-ray diffraction. b 2h measured by XRD (solid line) contains peak doublets. Simulation of the peak (dashed line)
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Ap Ka1 ¼ 2Ap Ka2 ð11Þ

(3) 2hp is the simulated final peak position. The

Gaussian function G is defined in the range

½2hp � 2h; 2hp þ 2h�. As dhkl is the same for Ka1

and Ka2, Bragg’s law (Eq. 3) can be applied to

describe the relationship of the peak position

between Ka1 (hKa1) and Ka2 (hKa2).

kKa1

sinðhp Ka1Þ
¼ kKa2

sinðhp Ka2Þ
: ð12Þ

Several peak forms were tested, Gaussian functions were

the most appropriate to predict experimental diffraction

peaks. After minimising the difference between experi-

mental and simulated data, the optimised 2hp Ka1 was used

to calculate elastic strain tensor.

Results and discussion

In-plane strain fields were measured on the upper surface

of the oligo-crystal specimen at two successive loadings. �t

and �e fields are plotted in the initial configuration with

grain boundaries superimposed.

Tensile tests

During the in situ experiment, the sample was subjected

to a symmetric loading in the x-direction. The micro-

tensile machine was stopped twice for XRD measure-

ments at increasing levels of strain—once was just after

the yield stress at 81.1 MPa, � �t
xx = 0.0074 and the

second was at 118.6 MPa, ` �t
xx = 0.0356. Photos were

taken throughout the entire tensile test and the total

strain fields were calculated using Correli Q4. The ten-

sile stress measured during the test is plotted in Fig. 18

versus the mean strain averaged over the useful part of

the specimen.

Total strain field measurement �t

Map of �t

The in-plane components �t
xx and �t

yy are plotted in

Figs. 19, 20, 21 and 22. As shown in Figs. 19 and 21,

relatively homogeneous fields are observed per grain but

are heterogeneous when compared to each another. This

heterogeneity increases with the imposed loading. The

magnitude of the axial strain is much higher on the left-

hand side of the sample than on the right-hand side. This

difference can be explained by the initial crystallographic

orientation of grains on both the front and the back sides

of the sample, since grains with favourable orientation to

the loading direction and thus the highest Schmid Factor

(SF) deform first. For example, grains 2, 3 and 7 on the

left have a SF of about 0.5 (7) while grains 4, 12 and 13

on the right have a SF of about 0.4. Although the SF of

grains 5 and 9 on the right-hand side are high, the grains

right behind then (grain 1bi, 1bii and 14b) have low SFs,

which explains why the strain is globally much lower on

this side.

Uncertainties of DIC

In order to quantify DIC uncertainties, 38 photos of the

sample surface covered with speckled painting were taken

in the same conditions of loading and lighting (initial

state). Digital correlation was performed between images

taken in pairs (Fig. 23). The total error amplitude of the

strain field calculated was �4� 10�4.

Elastic strain field measurement �e

Map of �e

Fields of components �e
xx and �

e
yy obtained at levels � and `

are shown in Figs. 24, 25, 26 and 27. Similar to the �t

results, heterogeneous elastic deformation was observed on

the sample surface. Due to local grain disorientation during

plastic deformation (mentioned in ‘‘XRD measuring

method’’ section), the intensity of some fhklg peaks for

some measuring points was too low to allow their mea-

surement and thus elastic strain tensor calculation. This

explains the absence of some strain field measurements in

Figs. 26 and 27.

Fig. 18 Stress–strain curve. The micro-tensile machine was stopped

once at � �t
xx = 0.0074 and then at ` �t

xx = 0.0356
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Uncertainty estimation of the elastic strain tensor r�e

Two steps are necessary to determine the uncertainty of the

elastic strain tensor r�e . It is first necessary to evaluate the

uncertainty of peak position measurement rh, and then, by

knowing this value, r�e can be calculated. It is assumed that

the error of the peak position rh has two main sources: one

is related to the peak repositioning by the diffractometer

D2h, and another is linked to the discretization of the

intensity curve in d2h. So, a priori, both of these sources of

error have to be quantified. Moreover, although the method

chosen to estimate r�e is discretization-related (Eq. 22), if

the repositioning error shows a more significant value, it

should be taken into account instead of the discretization

error.

(1) Uncertainty of peak position rh
To evaluate rh, two approaches were used. The first

approach consisted in determining the position of a

given peak from various initial positions, and

comparing the final peak positions obtained. As

mentioned in ‘‘XRD measuring method’’ section, the

error obtained is D2h ¼ �0:0025�.

Fig. 20 Map of �t
yy at level �

�
�t

yy= �4:8� 10�3
�

Fig. 21 Map of �t
xx at level `

�
�t

xx ¼ 0:0356
�

Fig. 22 Map of �t
yy at level `

�
�t

yy ¼ �0:0221
�

Fig. 23 Error maps of 2 photos taken (1 photo/s) in the initial state

under the same experimental environment. It shows that the

background noise gives DIC a random total strain error of �4�
10�4 at each measuring point

Fig. 19 Map of �t
xx at level �

�
�t

xx = 7:4� 10�3
�
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Dh	 0:00125� : ð13Þ

However, this approach took into account only one part of

the measurement chain. It was also necessary to evaluate

the accuracy of the method used to determine the peak

position from the distribution of intensities around a peak.

Inspired by the method for calculating displacement and

total strain field uncertainties [16], an evaluation of the

precision of peak position measurement with small shifts in

h was conducted as follows:

(a) For existing XRD data measured with a scanning

step of 0:05� (blue line with markers �), a shift of dh
(	 0:05�) was imposed, i.e., 2h0 = 2h ? dh (black

markers þ) (Fig. 28).

(b) The discrete experimental points were projected on

the shifted line by linear interpolation (green points

with markers �).
(c) The peak simulation process presented in ‘‘Accuracy

of 2h positioning’’ section was carried out to

determine the peak positions for both the initial

measurement 2hXRD and shifted-projected measure-

ment 2hshifted .

(d) The change between the imposed dh and the

calculated dh (dh = 2hXRD and 2hshifted) was

calculated.

A measuring point in Grain7 was taken as an example in

results of Table 3. Errors in dh�202, dh�131 and dh�222 were

observed for small peak displacements along h (Table 3). The
fractional changes between imposed and obtained dh were

calculated. This error was insignificant starting from dhimposed

= 0:025�—half of the scanning step size—until 0:0001� as the
criterion of 5% of error was firstly reached using dh�222

(Fig. 29). As a result, the smallest measurable shift is 0:0001�

(Eq. 14).

The error in the measurement of h is thus

dh	 0:0001� : ð14Þ

Since the error from peak repositioning Dh (	0:00125�)
is much larger than the one caused by the limitation of our

peak simulation equation dh (	0:0001�), Dh is considered

as the major contribution to the uncertainty of elastic strain

tensor r�e . Assuming that Dh follows normal distribution

law and 99.7 % of the values are within 3 standard devi-

ations of the mean; therefore, its standard deviation rh is

one-third of Dh
rh ¼ 0:00042� : ð15Þ

Fig. 26 Map of �e
xx at level `

�
�e

xx ¼ 1:6� 10�3
�

Fig. 27 Map of �e
yy at level `

�
�e

yy ¼ �0:2� 10�3
�

Fig. 24 Map of �e
xx at level �

�
�e

xx = 1:1� 10�3
�

Fig. 25 Map of �e
yy at level �

�
�e

yy= �0:2� 10�3
�
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(2) Uncertainty of the elastic strain tensor r�e

Given the uncertainty of the diffracting angles

evaluated in Eq. 15, the uncertainty for elastic strain

tensor r�e were quantified.

(a) The range of uncertainty for elastic strain tensor r�e

Eq. (8) can be rewritten as

G�
6�1 ¼ B6�nD�

n�1 ; ð16Þ

where B ¼ ðHT HÞ�1
HT is known as the pseudoin-

verse of H.

G�
1

G�
2

..

.

G�
6

0

BBBB@

1

CCCCA
¼

B11 B12 B13 � � � B1n

B21 B22 B23 � � � B2n

..

. ..
. ..

. . .
. ..

.

B61 B62 B63 � � � B6n

0

BBBB@

1

CCCCA

D�
1

D�
2

..

.

D�
n

0

BBBB@

1

CCCCA
:

ð17Þ

G�
m is a linear function of D�

n :

G�
m ¼ Bm1D�

1 þ Bm2D�
2 þ � � � þ BmnD�

n;

m ¼ 1; 2; . . .; 6
ð18Þ

Fig. 28 Method to evaluate the

ability of detecting small peak

displacements along h

Table 3 Errors in dh�202,

dh�131 and dh�222 were

observed for small peak

displacement along h

dh imposed (�) dh�202 (�) Error (%) dh�131 (�) Error (%) dh�222 (�) Error (%)

0.05 0.05 0 0.05 0 0.05 0

0.025 0.025 0 0.0249 0.4 0.0251 0.4

0.0125 0.0124 0.8 0.0124 0.8 0.0124 0.8

0.00625 0.0062 0.8 0.0062 0.8 0.0061 2.4

– – – – – – –

7:8� 10�4 7:7� 10�4 2.1 7:7� 10�4 1.9 7:6� 10�4 3.2

3:9� 10�4 3:8� 10�4 2.1 3:8� 10�4 1.9 3:8� 10�4 3.6

1:9� 10�4 1:9� 10�4 2.1 1:9� 10�4 1.7 1:9� 10�4 4.2

9:8� 10�5 9:6� 10�5 2.1 9:6� 10�5 1.3 9:3� 10�5 5.3

The changes between the imposed and obtained dh were calculated as percentages. The lowest limit for the

measurable shifting error was found to be 10�4� corresponding to 5 %-change
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G�
m ¼

Xn

i¼1

BmiD
�
i : ð19Þ

By expressing D�
i as a function of h using Eq. 5, one

obtains

G�
m ¼ 4

k2
Xn

i¼1

Bmisin
2hi ; ð20Þ

where hi is a diffraction angle measured during the

experiment. Let hi¼1;...;n and hi¼nþ1;...;2n be n

diffraction angles measured (actual value) in the

deformed and initial states, respectively, so that h1
corresponds to the evolution of hnþ1, h2 corresponds
to the evolution of hnþ2, etc. Now, �

e in Eq. 9 can be

also expressed in terms of hi by

�e
m¼1;...;6 ¼

Pn

i¼1

B1i

�
sin2hi � sin2hnþi

�

2
Pn

i¼1

B1isin
2hnþi

Pn

i¼1

B2i

�
sin2hi � sin2hnþi

�

2
Pn

i¼1

B2isin
2hnþi

Pn

i¼1

B3i

�
sin2hi � sin2hnþi

�

2
Pn

i¼1

B3isin
2hnþi

Pn

i¼1

B4i

�
sin2hi � sin2hnþi

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
Pn

i¼1

B2isin
2hnþi

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
Pn

i¼1

B3isin
2hnþi

s

Pn

i¼1

B5i

�
sin2hi � sin2hnþi

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
Pn

i¼1

B1isin
2hnþi

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
Pn

i¼1

B3isin
2hnþi

s

Pn

i¼1

B6i

�
sin2hi � sin2hnþi

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
Pn

i¼1

B1isin
2hnþi

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
Pn

i¼1

B2isin2hnþi

s

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

ð21Þ

where �e
1 ¼ �11 , �

e
2 ¼ �22, �

e
3 ¼ �33, �

e
4 ¼ �23, �

e
5 ¼ �31

and �e
6 ¼ �12. When �e is represented by its first-order

Taylor series expansion around the true values

l1; l2; . . .; l2n, it becomes

�e
m¼1;...;6 
 �mðl1; l2; . . .; l2nÞ

þ
X2n

i¼1

o�m

ohi

ðl1; l2; . . .l2nÞ
� �

hi � li½ �
: ð22Þ

Equation (22) is of the form

�e
m 
 am0 þ

P2n

i¼1

ami hi � lið Þ with

am0 ¼ �mðl1; l2; . . .; l2nÞ ð23Þ

and

ami ¼
o

ohi

Bm�mðl1; l2; . . .; l2nÞ : ð24Þ

The mean �e
m and the standard derivation r2�e

m
can be

calculated as follows:

l�e
m
¼ E �e

m

� �

¼ E am0 þ
X2n

i¼1

ami hi � lið Þ
" #

¼ E am0½ � þ
X2n

i¼1

E amihi½ � � E amili½ �ð Þ

¼ a0 þ
X2n

i¼1

amiE hi½ � � amiE li½ �ð Þ

¼ am0 þ
X2n

i¼1

amili � amilið Þ

¼ am0

ð25Þ

r2�e
m
¼ E �e

m � �e
m

� �2h i

¼ E
X2n

i¼1

ami hi � lið Þ
 !2
2

4

3

5

¼ E
X2n

i¼1

ami hi � lið Þ
X2n

j¼1

aj hj � lj

� �
" #

¼ E
X2n

i¼1

a2
mi hi � lið Þ2

"

þ
XX

i6¼j
amiamj hi � lið Þ hj � lj

� �i

¼
X2n

i¼1

a2
miE hi � lið Þ2
h i

þ
XX

i6¼j
amiamjE hi � lið Þ hj � lj

� �� �

¼
X2n

i¼1

a2
mir

2
h mi þ

XX
i 6¼j

amiamjrij ð26Þ
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Although hi sð Þ are dependent, the source of mea-

suring error are independent (r2h mi ¼ r2h), the

covariance rij then disappears and the resulting

approximated variance is

r2�e
m
¼
Xn

i¼1

o

ohi

�e
m

	 
2

r2h : ð27Þ

For example, elastic strain tensor �e calculated with

13 diffraction planes in Grain 7 at the same mea-

suring point is in sample co-ordinate system:

�e ¼
0:0011 0:0003 0:0003

0:0003 � 0:0002 0:0002

0:0003 0:0002 0:0001

0

B@

1

CA : ð28Þ

The uncertainty r�e associated is

r�e 	
8:7 6:8 5:8

6:8 10:7 7:2

5:8 7:2 6:4

0

B@

1

CA� 10�6 : ð29Þ

(b) Influence of the number of measuring planes on �e

uncertainty

However, not every measuring point presents 13

diffraction planes since mosaicity increases during

plastic deformation, as shown in Fig. 16. In some

regions of the specimens, the number of diffraction

planes of a given point decreases during the test as

plasticity and mosaicity increases. For example, the

�e calculated with minimum 6 diffraction planes for

the same measuring point in sample co-ordinate

system isFig. 30 Map of r�e
xx
uncertainties at level �

Fig. 29 Error between dhimposed and dhhkl in Grain 7 at a measuring

point

Fig. 31 Map of r�e
yy
uncertainties at level �

Fig. 32 Map of r�e
xx
uncertainties at level `

Fig. 33 Map of r�e
yy
uncertainties at level `
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�e ¼
0:0017 � 0:0007 � 0:0003

�0:0007 0:0000 0:0003

�0:0003 0:0003 0:0001

0

B@

1

CA

ð30Þ

and its r�e range is

r�e 	
3:9 5:7 6:1

5:7 5:1 4:2

6:1 4:0 1:8

0

B@

1

CA� 10�5 : ð31Þ

The uncertainty of �e calculated with 6 fhklg planes is

much larger than those with 13 fhklg planes. Therefore, the
number of fhklg planes used gives an influence towards �e

accuracy. The more planes used for �e calculation, the more

accurate the answer.

As the number of measuring planes depends on the point

considered, the r�e range of each XRD measuring point

was calculated according to the number of diffractable

fhklg planes left over. The maps of r�e at each strain level

are shown in Figs. 30, 31, 32 and 33. It can be seen that the

�e uncertainties r�e are always smaller than 10�5. Consid-

ering a Gaussian distribution, it implies a total error range

in �e smaller than �3� 10�5.

Conclusion

An in situ method has been developed to measure �t and �e

strain fields at the grain scale. The specifically developed

device was introduced, the measurement concept was

presented and the testing procedure was described. The

analysis method as well as the precautions taken to min-

imise experimental errors were stated. After the first

comparison between �t and �e, heterogeneity was quanti-

fied. This heterogeneity increased with the imposed loading

from 81.1 to 118.6 MPa. The level of heterogeneity of �t
xx

increased from 0.022 to 0.088. Meanwhile, for �e
xx, there

was a rise from 1:2� 10�3 to 1:9� 10�3. Moreover, the

location of heterogeneity of the sample for �t and �e were

not necessary identical. The area less deformed during the

elastic deformation could be greatly deformed in the plastic

stage. Apart from the results and analysis, the corre-

sponding uncertainty for each measurement were analysed.

The uncertainty in �t and in �e were �4� 10�4 and �3�
10�5; respectively.

These experimental results and methodology provide a

basis for determining for future development of a crystal

plasticity model that better accounts microstructural

effects.

Appendix A: Crystal orientations of both sides
of the sample

See Table 4.

Appendix B: Schmid factor of each grain
of both sides of the sample

See Table 5.

Table 4 Crystal orientations of the front (left) and back (right) sides

of the sample

Grain /1 U /2

1 251.437 37.195 212.35

2 199.632 38.595 245.29

3 139.78 33.345 316.35

4 107.724 28.357 8.77

5 296.219 23.714 159.41

6 274.132 17.063 181.94

7 101.472 25.131 334.59

8,11 234.217 46.11 251.8

9 354.715 28.324 121.95

10 127.852 45.793 342.44

12 74.252 46.288 38.14

13 224.411 33.055 265

1bi 240.91 227.92 119.18

1bii 141.44 273.92 53.43

1biii 244.67 173.89 37.92

2b 213.67 170.52 67.31

3b 129.53 225.45 63.00

4b 279.13 205.51 89.74

6b 206.62 172.11 60.25

7b 184.33 193.77 7.47

8b 97.10 148.83 �13.43

9b 197.28 175.98 �27.09

10b 76.16 212.28 15.96

11b 127.26 143.58 �67.44

12b 225.98 208.69 72.82

13b 191.52 230.56 34.70

14b 196.86 197.18 17.64

15b 169.84 222.24 17.36

16b 240.12 173.72 33.62

17b 169.84 222.24 17.36

18b 223.05 212.64 77.64
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