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Abstract Grain boundaries strongly affect many materi-

als properties in polycrystalline materials. However, very

few structure–property models exist for grain boundaries,

due in large part to the complicated and poorly understood

way in which the properties of grain boundaries vary with

their crystallographic structure. In the present work, we

infer grain boundary structure–property correlations from

measurements of the effective properties of a polycrystal.

We refer to this approach as grain boundary properties

localization. We apply this technique to a simple model

system of grain boundary diffusivity in a two-dimensional

microstructure, and infer the properties of low- and high-

angle grain boundaries from the effective diffusivity of the

grain boundary network. The generalization and use of

these methods could greatly reduce the computational and

experimental effort required to establish structure–property

correlations for grain boundaries. More broadly, the tech-

nique of properties localization could be used to infer the

properties of many microstructural constituents in complex

microstructures.

Introduction

The effective properties of polycrystalline materials are

influenced, and in some cases dominated, by the character

and connectivity of grain boundaries. For example hydro-

gen embrittlement [1], corrosion [2], creep [3], weldabil-

ity [4], and superconductivity [5] all depend strongly on

the structure and spatial arrangement of grain boundaries in

the microstructure. Great effort has been invested by the

scientific community to correlate grain boundary structure

and properties, but simple constitutive relations have been

elusive.

One fundamental difficulty stems from the complex

structure of grain boundaries, whose description requires,

at a minimum, the specification of five crystallographic

parameters [6]. Three of these define the lattice misorien-

tation between adjacent grains and the other two specify

the interfacial plane. In addition, there are microscopic

degrees of freedom related to in-plane translations and

associated structural relaxations [7–9], though these will be

neglected in the present study.

Another obstacle to correlating grain boundary structure

with materials properties is the difficulty of controlled

grain boundary synthesis. Controlled production of grain

boundaries in metals has predominantly been performed

via seeded growth of bicrystals from the melt [10–12].

Single-crystal seeds are first synthesized, then cut and

oriented appropriately, after which bicrystals can be grown

from the melt by, e.g., the vertical Bridgman method [10,

11]. Other techniques include sintering of metalic thin

films [13, 14], and the direct bonding technique for thin

films of brittle materials [15–17]. In these techniques,

single crystals are first produced and aligned relative to one

another, and then bonded either by hot pressing, in the case

of metals, or through evaporation of an intermediate water
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layer (after a number of meticulous surface preparation

steps). Regardless of the method, controlled preparation of

even a single grain boundary involves numerous steps,

sophisticated equipment, and a significant time investment.

Though still requiring significant time, atomistic simu-

lations can be employed to ameliorate some of the exper-

imental difficulties and sources of error, as well as increase

throughput [18–20]. However, such simulations are not

without their own complications. Accurate interatomic

potentials are not available for all materials and the

development and validation of new models is a significant

undertaking. Moreover, the computational cost of atomistic

simulations restricts one to the investigation of small

material volumes. This places a fundamental limitation on

the number and types of grain boundaries that can be

considered.

The largest catalog of grain boundary property data to

date consists of calculated excess energies and mobilities

for 388 grain boundaries in four different metals [18–20].

While this constitutes a significant milestone, a sample of

O 102ð Þ points in a five-dimensional space is still relatively

sparse coverage. A brute force attempt to explore the space

adequately, whether by experimental or computational

means, remains impractical due to the resources that would

be required.

In contrast to the difficulties of synthesizing and

studying individual grain boundaries, it is relatively easy to

produce polycrystalline samples. Commercial solutions

now permit crystallographic characterization of sample

areas large enough to capture millions of grain boundaries.

Automated electron backscatter diffraction (EBSD) tech-

niques allow for the rapid characterization of four of the

five grain boundary parameters for every boundary that

terminates at the sample surface. For microstructures with

through-thickness grains, and where out of plane curvature

can be neglected, the final parameter can be obtained by

correlating EBSD scans on opposite faces of the sam-

ple [21], or by comparing intensities of overlapping

Kikuchi patterns with interaction volume models [22]. For

general microstructures, serial sectioning methods or high

energy diffraction techniques [23] may be used.

The relative ease of synthesizing and characterizing

polycrystals suggests an alternative route to obtain grain

boundary structure–property correlations, beyond the one-

by-one study of individual bicrystals. For a grain boundary-

sensitive property in a polycrystal, the global effective

response of the grain boundary network is the result of a

homogenization of the local properties of the constituent

grain boundaries. This is analogous to an electrical resistor

network where the effective resistance of the circuit

depends upon the component resistances and the topology

of the network. If one measures the effective resistance of

such an electrical network, then, under certain circum-

stances, it may be possible to deduce the resistance values

of the components. If one can, similarly, infer the local

properties of grain boundaries in a polycrystalline aggre-

gate from measurements of the macroscopic effective

response of the network, it would facilitate a more efficient

approach to searching the five-dimensional grain boundary

structure space for structure–property correlations.

The process of deconvoluting local quantities of a

heterogeneous system from homogenized global measure-

ments is broadly referred to as localization. While this

concept is not new, the use of localization techniques in

materials science has, until now, been limited to the cal-

culation of local field quantities, e.g., stress, in the presence

of an applied macroscopic field [24–31], or single-crystal

elastic constants [32–34]. In this paper, we address a new

kind of localization problem, in which the goal is to

determine the local materials properties of grain boundaries

from measured effective (macroscopic) properties of a

polycrystal. We also establish a general unifying frame-

work for materials properties localization in the context of

any materials property and any relevant microstructural

feature. For the case of grain boundary properties local-

ization, we consider a highly simplified two-dimensional

polycrystalline model system and attempt to infer the dif-

fusivity of low- and high-angle grain boundaries from the

effective diffusivity of the grain boundary network. While

this model problem does not represent a general

microstructure, its simplicity permits us to identify the

important qualitative features that we would expect to

observe in other microstructures.

Model

Our model microstructure was similar to that of Chen [35],

consisting of a two-dimensional honeycomb lattice (as

shown schematically in Fig. 1) containing 6889 hexagonal

grains and 20,212 grain boundaries. Crystal orientations

were sampled from two-dimensional orientation distribu-

tion functions (ODFs) of the following form (see also

Fig. 2):

f hð Þ ¼ 2hmaxð Þ�1
for h 2 �hmax; hmax½ �

0 otherwise

(
ð1Þ

and assigned in a spatially uncorrelated manner. In Eq. 1,

hmax 2 0; p=s½ � is a parameter that defines the sharpness of

the texture, and s represents the order of the appropriate

symmetry point group. In the present study, we consid-

ered triclinic crystals having a common h001i rotation

axis parallel to the sample normal direction, for

which s ¼ 1.
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Grain boundary diffusivities were assigned according to

the disorientation angle,x, between neighboring grains with

D xð Þ ¼
D1 for x�xt

D2 for x[xt

�
; ð2Þ

where x is the disorientation angle, xt is the threshold

angle between low- and high-angle grain boundaries, and

D1 �D2 are the low- and high-angle diffusivities, respec-

tively. While the physical properties of grain boundaries

are known to depend, in some cases strongly, on the grain

boundary plane inclination [36], our model constitutive

equation neglects this dependence. This simplifying

assumption, together with the binary classification of grain

boundaries into low- and high-angle classes, facilitate

tractability and clarity of exposition and can be improved

upon in future work.

The boundary conditions, assumptions, and procedure

for calculating the effective diffusivity of the grain

boundary network were the same as those used by

Chen [35]. For our simulations, we assumed that diffusion

occured only along the grain boundaries. This simplifica-

tion is a good approximation in situations for which the

microstructure, experimental conditions, and kinetic

regime are such that grain boundary diffusion is the dom-

inant pathway and all others (e.g., bulk, surface, disloca-

tion, etc.) can safely be ignored. Alternatively, as

mentioned by Chen, these results can be interpreted as

simply providing the contribution of grain boundary dif-

fusion to the overall diffusion [35]. The concentration of

the diffusing species was fixed at c ¼ c0 and c ¼ 0 at the

left and right sides of the network, respectively, and zero-

flux conditions were imposed at the top and bottom

(Fig. 1). Steady-state diffusion was considered, and con-

servation conditions were enforced at triple junctions (i.e.,

no material accumulation at triple junctions was permit-

ted). This resulted in a linear system of equations that was

solved to obtain the concentrations at each triple junction

and, thus, the concentration gradient and local flux along

each grain boundary. By averaging the microscopic grain

boundary fluxes over any vertical section of the network,

we obtained the effective macroscopic diffusion flux, Jeff ,

of the network [35]. Finally, the effective diffusivity, Deff ,

was calculated by dividing Jeff by the macroscopic con-

centration gradient of the network [35]. By varying the

sharpness of the textures (hmax), we obtained grain

boundary networks with different grain boundary character

distributions, described by the fraction of high-diffusivity

grain boundaries, p2, and, consequently, different values of

Deff . We performed simulations using 51 different textures

with hmax varying between 7:5� and 180� (see Fig. 2). The

reported values of Deff are the median of 1000 network

realizations for each texture. Figure 3 shows the effective

diffusivity, DSIM
eff that was obtained via simulation, as a

function of the fraction of high-diffusivity boundaries, p2,

with D1 ¼ 100 m2=s, D2 ¼ 107 m2=s, and xt ¼ 15�.
Based on the values we obtained for Deff , and a

knowledge of the crystallographic details of the

microstructure—including the crystal orientations, and the

resulting grain boundary misorientations—we would like

to infer the parameters of our constitutive equation (D1, D2,

and xt). This inverse problem of grain boundary properties

localization is tantamount to determining the local

Fig. 1 Schematic plot of the model microstructure showing the

boundary conditions used for the diffusion simulations

θmax = 180º

θmax = 60º

θmax = 15º

f(
θ)

θ deg.
–180 –90 0 90 180
0

0.5

1

1.5

2

Fig. 2 Two-dimensional ODFs with varying hmax according to Eq. 1
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diffusivity of each type of boundary from measured values

of the effective network diffusivity.

Strategy

Overview

The relationship between the properties of a material and

its microstructure can be expressed as a functional of the

following form:

�P ¼ H M;Pð Þ ; ð3Þ

where �P is the macroscopic effective property of interest, M

contains microstructural information,P is a representation of

the relevant local constitutive equation, and H is a homog-

enization relation. Equation 3 can be used in several ways:

Materials properties prediction

In materials properties prediction the microstructure (M) is

known, as is the constitutive equation (P), and one evalu-

ates Eq. 3 to obtain the unknown effective property (�P). A

common example of this is the prediction of the effective

elastic constants of a polycrystal.

Materials design

In materials design, a target effective property (�P) is speci-

fied, the constitutive equation (P) is assumed to be known,

and Eq. 3 is solved for the unknown microstructure (M) that

is commensurate with the target effective property.

Materials properties localization

Materials properties localization completes this set of

materials problems by asking the following question:

‘‘Having characterized a heterogeneous microstructure (M),

and measured its effective properties (�P), is it possible to

infer the unknown local properties of its constituents (P)?’’

These applications and the known and unknown vari-

ables in each case are summarized in Table 1.

In the context of the present model problem, �P ¼ Deff . For

real microstructures, it could be obtained experimentally

using, e.g., accumulation methods [37, 38]. From Eq. 2, the

parameters of the proposed constitutive relation are

P ¼ D1;D2;xt½ �T. As will be explained subsequently, the

relevant microstructural parameters for the grain boundary

diffusion problem are M ¼ J1; J2; J3½ �T, where

Ji j i 2 0; 3½ �f g are called triple junction fractions and denote

the population of triple junctions coordinated by i ‘‘special’’

grain boundaries [39–47], which, for our purposes,

correspond to low-angle grain boundaries with diffusivity

D1. The elements of M are easily measured experimentally

using various destructive [48–50] or non-destructive [23,

51–54] crystallographic characterization techniques.

Because
P

i Ji ¼ 1, only three of the four Ji appear in M.

Homogenization

The specific form of H M;Pð Þ is of critical importance for

accurate predictions of �P in the forward problem of

homogenization, and consequently is also crucial for solving

the inverse problem of localization. One common form of

H M;Pð Þ is the standard effective medium theory (EMT) [35,

55]. EMT works well in systems for which the variation in

the local material property values (property contrast) is

small [35, 56]. However, in situations where the local values

of a material property differ significantly from point to point,

the detailed structure of the medium dominates the effective

response [35, 56]. In such cases, the true effective property

values exhibit a sharp transition at the percolation threshold

that EMT models fail to capture.

Experimental measurements of grain boundary diffu-

sivity in bicrystals as a function of disorientation angle

have demonstrated that the difference between the mini-

mum and maximum diffusivities can span many orders of

magnitude [57]. Because of this strong constrast in the

spectrum of grain boundary diffusivities, standard EMT

predictions for Deff are inadequate [56]. Reference [35]

demonstrated that the phenomenological Generalized

Effective Medium (GEM) equation, proposed by [58, 59],

provides quantitatively accurate predictions of Deff across a

broad range of contrast ratios (from 5 to 108) when com-

pared to simulation results [35]. The GEM is an implicit

relation that combines aspects of effective medium theory

and percolation theory, and may be expressed as1

Table 1 Summary of the applications of Eq. 3

Application �P M P

Prediction ? U U

Design U ? U

Localization U U ?

In this table �P is the macroscopic effective property of interest, M is

the microstructure, and P represents the relevant local constitutive

equation (i.e., the local properties). The ‘?’ symbol indicates the

unknown quantity that is to be solved for in a given application, and

the ‘U’ symbol indicates a known or specified quantity

1 There are two distinct concepts of effective diffusivity (or

conductivity) in the literature. One is the diffusivity of the actual

heterogeneous network as a whole, and the other is the diffusivity of a

single boundary in a hypothetical homogeneous sample whose

network diffusivity matches that of the real sample. The two notions
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p1

D
1=s
1 � 2Deffð Þ1=s

D
1=s
1 þ p�1

c;2 � 1
� �

2Deffð Þ1=s

þ p2

D
1=t
2 � 2Deffð Þ1=t

D
1=t
2 þ p�1

c;2 � 1
� �

2Deffð Þ1=t
¼ 0

; ð4Þ

where pi is the fraction of grain boundaries exhibiting diffu-

sivity Di, and pc;i is the percolation threshold for the ith grain

boundary type. The values of the critical exponents s and t are

generally considered to be universal, depending only on the

dimensionality of the problem. For the present case, we use

s ¼ 1:09 and t ¼ 1:13. These values differ slightly from

those given in [35], however, we found that small deviations

in the numerical values of s and t did not affect the results of

the GEM significantly and the value of pc;2 proved to be of

much greater moment. Equation 4 can be solved numerically,

using, e.g., bisection methods [35] to obtain Deff as a function

of D1, D2, and the microstructural parameters pi and pc;2.

To validate the GEM for use as our homogenization

relation, we computed Deff using Eq. 4 for each of the sim-

ulated textures. We denote the effective diffusivity predicted

by Eq. 4 as DGEM
eff , to distinguish it from the values that were

obtained directly from our simulations, DSIM
eff . The agreement

between the predicted and simulated diffusivities is excellent

(see Figs. 3, 4). Strictly speaking, Eq. 4 holds only for infinite

systems, and a scaling factor should be used for finite

microstructures. However, the value of the scaling factor for

our simulations is very close to unity (see [35]), particularly

after considering 1000 replications of each microstructure,

and we therefore omit it.

Microstructural parameters

An important quantity that appears in the GEM is the

percolation threshold, pc;2. For a randomly assembled two-

dimensional honeycomb network, the percolation threshold

is known analytically to be pc ¼ 1 � sin p=18ð Þ �
0:6527 [60]. However, the spatial distribution of grain

boundary types in real polycrystals is markedly non-ran-

dom as a result of crystallographic constraints [61]. The

resulting local correlations lead to a shift in the percolation

threshold [61] and, consequently, must be accounted for in

order to obtain accurate predictions of Deff . These short-

range correlations can be quantified using the triple junc-

tion fractions, Ji. Frary and Schuh obtained an empirical

relation that predicts the percolation threshold for two-di-

mensional networks from the Ji [62]. As mentioned earlier,

we are interested in the percolation threshold for type-2

grain boundaries, pc;2, but the common convention defines

the Ji as the fraction of triple junctions coordinated by

i type-1 (low-angle) grain boundaries. In this case, the

percolation threshold can be approximated by a second

order polynomial of two variables2:

pc;2 ¼ d1 þ d2v þ d3v
2 þ d4r þ d5vr þ d6r

2 ð5aÞ

with the values of the coefficients, dj given in Table 2. The
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Fig. 3 Effective diffusivity of simulated grain boundary networks for

various fractions of type-2 (high-diffusivity) grain boundaries. The

error bars for many of the microstructures are smaller than the

markers, and, as expected, they are very large near the percolation

threshold. Marker color corresponds to the sharpness of the texture.

As hmax was varied, we obtained networks with DSIM
eff ranging from

�5 � 10�1 m2=s to �5 � 106 m2=s. The red solid line connects the

values predicted using DGEM
eff . This is shown as a solid line rather than

discrete markers only to improve visibility (Color figure online)
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Fig. 4 Comparison of the effective diffusivity predicted by the GEM,

DGEM
eff , to that obtained via simulation, DSIM

eff . The dashed red line

indicates a 1:1 relationship (i.e., perfect agreement). Error bars for

many of the data points are smaller than the respective markers.

Marker color indicates the sharpness of the texture, and is referenced

to the color scale of Fig. 3 (Color figure online)

Footnote 1 continued

are related and we take the former interpretation, which is the reason

that Eq. 4 differs from the form appearing in [35, 58, 59].

2 There is an error in this formula as printed in [62]. If the values of

the dj presented in Table II of [62] are to be used, then the signs of all

terms in Eq. 8 of [62] should be positive. This is corrected in Eq. 5a

of the present work.
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variables r and v are topological order parameters, the prior

measuring the tendency of grain boundaries of differing types

to segregate or form ordered arrangements, and the latter

indicating the tendency for grain boundaries of like type to be

found in elongated or compact clusters. These are defined in

terms of certain ratios of the Ji according to

r ¼
1 � jr for jr � 1

j�1
r � 1 for jr [ 1

�
ð5bÞ

v ¼
1 � jv for jv � 1

j�1
v � 1 for jv [ 1

(
ð5cÞ

jr ¼
J1 þ J2

J0 þ J3

� �
J0r þ J3r

J1r þ J2r

� �
ð5dÞ

jv ¼
J1

J2

J2r

J1r

; ð5eÞ

where Eq. 5e is the reciprocal of the expression given

in [62] because we are considering pc;2. In Eqs. 5d and 5e,

the Jir are the triple junction fractions for a randomly

assembled network (i.e., in the absence of crystallographic

constraints), and are given by a binomial distribution:

Jir ¼
3

i

� �
1 � p1ð Þ3�i

pi1 ð6Þ

Consideration of Eq. 5 reveals that if a grain boundary

network was to be totally uncorrelated then Ji ¼ Jir and

r ¼ v ¼ 0 resulting in pc;2 ¼ d1, which is the percolation

threshold for the random network. Correlations in the grain

boundary network result from the physical requirements of

crystallographic constraints as well as other influences such

as, e.g., crystallographic texture. Our simulations are

crystallographically consistent and, therefore, include both

of these effects. The strength and type of these correlations

are reflected in the non-random values of the Ji, which, in

turn, lead to non-zero values of the order parameters r and

v and a commensurate shift in the percolation threshold due

to the additional terms in Eq. 5a.

The other microstructural parameters in the GEM

(Eq. 4) are the pi. These may also be expressed in terms of

the Ji according to [47]

p1 � 1

3
J1 þ

2

3
J2 þ J3 ð7Þ

and

p1 þ p2 ¼ 1 ; ð8Þ

where the approximation becomes exact in the limit of

infinite systems (or for finite systems with periodic

boundary conditions). Thus, for the present model system,

the relevant details of the microstructure are fully specified

by the Ji and we have M ¼ J1; J2; J3½ �T.

It is important to note, however, that the Ji also have a

subtle dependence on the parameters of the constitutive

equation. As mentioned earlier, the Ji are defined as the

fraction of triple junctions coordinated by i low-angle grain

boundaries (type-1 in the present model); however, the dis-

tinction between type-1 and type-2 boundaries is governed by

the constitutive parameter xt. As a result, not only do the Ji
depend upon the value of xt, but so do the pi, and pc;2. This

interaction between the constitutive parameters, P, and the

microstructural parameters, M, complicates the solution of

this particular localization problem. For each trial value of xt

the microstructure must be re-analyzed: the Ji must be

determined anew, and the pi and pc;2 must be recomputed

before H M;Pð Þ can be evaluated. This does not preclude

solution of the localization problem, but care must be taken

not to exclude this feedback loop from the solution process.

Localization

The solution of the localization problem is accomplished by

solving Eq. 3 for the unknown constitutive parameters of P.

However, if one considers �P and M of only a single

microstructure then the system will be underdetermined if P

contains more than one parameter, as in the present case. Even

if the number of microstructures, N, is equal to the number of

parameters, np, errors arising from imperfect measurements or

inexact homogenization models (H) could still preclude the

solution of the resulting system of equations. A more flexible

approach is to minimize the total error, in some sense, between

the measured values of �P and the predicted values of H M;Pð Þ
for a large number,N, of microstructures, over the domain ofP.

For the present problem this can be stated as

minimize
P

E Pð Þ

subject to 0�D1;D2

0�xt � p=s

; ð9Þ

where E Pð Þ is a function that provides some measure of the

total error. One choice of objective function is the sum of

squared errors over all N measurements; however, given

that the values of Deff vary over many orders of magnitude,

such a procedure would give too much weight to errors at

the high end of the Deff spectrum. For instance, a difference

of 10�3 m2=s is small when Deff ¼ O 100ð Þm2=s, and a

difference of 103 m2=s is small when Deff ¼ O 106
� �

m2=s,

but the magnitude of the error in the latter case would

completely dominate so that measurements for small Deff

Table 2 Numerical values of the coefficients appearing in Eq. 5a

j 1 2 3 4 5 6

dj 0.6527 0.0651 0.0117 �0:0961 0.0233 �0:0715

6912 J Mater Sci (2015) 50:6907–6919
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would have negligible influence on the solution. To correct

for this effect, we defined the following objective function:

E Pð Þ ¼ 1

N

XN
i¼1

log ið ÞDSIM
eff

� �
� log ið ÞDGEM

eff Pð Þ
� �h i2

¼ 1

N

XN
i¼1

log
ið ÞDSIM

eff

ið ÞDGEM
eff Pð Þ

� �	 
2
;

ð10Þ

where ið ÞDSIM
eff and ið ÞDGEM

eff are the effective diffusivities of

the ith microstructure (i.e., one of the 51 possible textures)

as calculated via simulation and as predicted from the

GEM homogenization relation, respectively. Equation 10

represents a least-squares type measure of the error

between the logarithms of the effective diffusivities

obtained via simulation and those predicted by the GEM

for a fixed set of parameter values, P, when considering N

different microstructures. Using Eq. 10 as the objective

function, we solved Eq. 9 in order to infer P from the

observed values of ið ÞDSIM
eff . Physically, this corresponds to

a situation in which we have characterized the Ji of N

different microstructures, and measured the effective dif-

fusivity of their respective grain boundary networks

( ið ÞDSIM
eff for i 2 1;N½ �). We then want to know what values

of P ¼ D1;D2;xt½ �T are commensurate with our observa-

tions. In this way, we can infer the local grain boundary

properties (D1 and D2) from measurements of the macro-

scopic effective properties ( ið ÞDSIM
eff ).

In an effort to visualize the solution space, and to avoid

uncertainty resulting from questions of convergence, we

employed a brute force method by evaluating Eq. 10 over a

grid of points, K ¼ D1 �D2 � Xt, with D1 ¼
10�8; 10�7:5; . . .; 108

� �
m2=s, D2 ¼ 10�8; 10�7:5; . . .;

�
1012g m2=s, and Xt ¼ 0�; 1:5�; . . .; 45�f g. The resolution

of this grid defines the precision of our solutions. For each

N 2 3; 5; 10; 20; 50f g, we selected N textures uniformly at

random from those that were simulated and evaluated

Eq. 10 over K. This procedure was performed 100 times

for each N. Figure 5 depicts isosurfaces through the solu-

tion space for constant values of E Pð Þ, with N ¼ 3, and

illustrates that E Pð Þ decreases monotonically to its global

minimum near the true values of D1 ¼ 100 m2=s,

D2 ¼ 107 m2=s, and xt ¼ 15�.

Discussion

In the context of a general localization problem in which

the true parameter values of a proposed constitutive rela-

tion are not known a priori, one seeks to infer them while

simultaneously minimizing experimental/computational

expense and effort. In order to accomplish this, one would

naturally ask (1) ‘‘What is the minimum number of poly-

crystalline microstructures that I need to consider?’’ and (2)

‘‘What characteristics should those microstructures possess

to facilitate the solution of the localization problem?.’’

General answers to these questions are not yet known for

arbitrary microstructures and properties and they are sub-

jects worthy of future inquiry. However, some insight into

these issues can be gained by considering the simplified

and specific case at hand.

With respect to the number of microstructures required,

the theoretical minimum, Nmin, is equal to np, the number

of parameters in P, if the form of the constitutive equation

is known. However, multiple copies of an identical

microstructure would be redundant and would not permit

the solution of the localization problem. Distinct

microstructures whose structures are statistically equivalent

would also exhibit this redundancy. Consequently, there

must be at least as many non-redundant microstructures—

i.e., microstructures that are, in some sense, different

enough—as there are parameters in P. We did not explic-

itly investigate the influence of the size of the

microstructures used for localization. However, we note

that in addition to having a sufficient number of non-re-

dundant microstructures, each one should be large enough

to satisfy any assumptions (e.g., statistical homogeneity)

implicit in the chosen homogenization relation. As illus-

trated in Fig. 5, it was, indeed, possible to recover the true

parameter values to within the resolution of K using Nmin ¼
np ¼ 3 microstructures. However, not all sets of 3

microstructures resulted in the correct solution.

E
(X

)

(d
eg

.)

D2  m2/ s
D1

10 –5

100

105

1

3

10

25

50

100

10–5

100

105

1010

0

10

20

30

40

 m2/ s

Fig. 5 Isosurfaces through the solution space of E Pð Þ, with N ¼ 3 and

P 2 K, where K ¼ D1 �D2 � Xt is a grid of points defined by

D1 ¼ 10�8; 10�7:5; . . .; 108
� �

m2=s, D2 ¼ 10�8; 10�7:5; . . .; 1012
� �

m2=s, and Xt ¼ 0�; 1:5�; . . .; 45�f g. The true values of the parameters

are represented by the location of the blue star (Color figure online)
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To investigate what microstructural characteristics were

required to solve the localization problem, we evaluated

Eq. 9 for all 51
3

� �
¼ 20; 825 possible sets of N ¼ 3 distinct

microstructures out of the 51 that we simulated. Because of

the special class of microstructures considered here (hon-

eycomb network with ODFs specified by Eq. 1, and spa-

tially uncorrelated grain orientations), the structure of the

grain boundary network can be fully specified by the

fraction of high-angle grain boundaries, p2. Thus, an N ¼ 3

microstructure set can be described by the ordered triplet

p
1ð Þ

2 ; p
2ð Þ

2 ; p
3ð Þ

2

� �
, where p

1ð Þ
2 � p

2ð Þ
2 � p

3ð Þ
2 are the fractions of

high-angle grain boundaries in the first, second, and third

microstructures in the set, respectively. Figure 6 reveals

that microstructure sets that returned the true solution (to

within the precision of K) and those that did not were

separated into, more or less, well-defined regions. The

planar boundaries separating satisfactory microstructure

sets (green polyhedral region) from unsatisfactory ones

(red points) define the microstructural characteristics that

permit solution of the localization problem:

p
1ð Þ

2 \pc;2 ðC:1Þ

p
3ð Þ

2 [ pc;2 ðC:2Þ

These two conditions simply mean that both sides of the

percolation threshold must be sampled. While necessary,

conditions C.1 and C.2 are apparently insufficient to

guarantee the correct solution as there are a small number

of microstructure sets falling in this region that still do not

produce the correct results. These, however, invariably fall

near other facets of this region and can be eliminated by

additionally enforcing the following conditions:

p
2ð Þ

2 � p
1ð Þ

2 	 0:0756 ðC:3Þ

p
1ð Þ

2 	 0:0092 ðC:4Þ

p
2ð Þ

2 � pc;2 or p
2ð Þ

2 	 pc;2 þ 0:0202 ðC:5Þ

p
3ð Þ

2 � pc;2 	 0:0202 ðC:6Þ

The necessity of C.3 confirms that solution of the local-

ization problem is complicated when the first and second

microstructures in the set are too similar and quantifies how

different is ‘‘different enough’’ to avoid microstructural

redundancy. Condition C.4 is required only to eliminate

the single anomalous point at 0; 0:3487; 0:9168ð Þ, and

could equally have been expressed as an upper bound on

p
3ð Þ

2 . In either case, the surprising implication is that p
1ð Þ

2

and/or p
3ð Þ

2 should not be too far from pc;2. C.5 and C.6

indicate that the second and third microstructures in the set,

respectively, should posses high-angle boundary fractions

that are sufficiently far from the percolation threshold.

Extrapolating these specific results to the general local-

ization problem, we postulate that satisfactory

microstructure sets should (1) be sufficiently diverse so as

to avoid microstructural redundancy; (2) sample all

regimes of the effective property of interest; and (3) avoid

critical points (e.g., percolation thresholds).

Having performed many simulations spanning the

domain of p2, we had the luxury of knowing the location of

the percolation threshold, pc;2. Consequently, it would be

possible for us to deliberately choose a set of N ¼ 3

microstructures satisfying the conditions C.1 to C.6. In

general, one may not know the salient features of a can-

didate structure–property model. In such cases, one might

attempt to uniformly sample the structure space. For sets of

randomly selected microstructures, the accuracy and pre-

cision of the solution to the localization problem increases

with N. Using N ¼ 3 randomly chosen microstructures

(repeated 100 times), we succeeded in recovering the true

parameter values to within the precision of K in 67 % of

the trials. For N ¼ 5; 10; 20; 50; the success rates were 87,

98, 100, and 100 %, respectively. Figure 7 shows 95%

confidence intervals for each of the parameters, as a

function of N. The convergence of the confidence interval

for log D2ð Þ was slower than for the other two parameters,

and, expressed in terms of %error, it scaled according to

p(3
)

2

p(2)
2

p(1)
2

0
0.2

0.4
0.6

0.8

0
0.2

0.4
0.6

0.8

0.2

0.4

0.6

0.8

Fig. 6 All 51
3

� �
¼ 20; 825 possible sets of N ¼ 3 distinct microstruc-

tures as represented by their respective fractions of high-angle grain

boundaries. The coordinates of a point, p
1ð Þ

2 ; p
2ð Þ

2 ; p
3ð Þ

2

� �
, indicate the

fraction of high-angle boundaries in each of the three microstructures

in the set, where p
1ð Þ

2 � p
2ð Þ

2 � p
3ð Þ

2 . The red points represent

microstructure sets that did not result in successful recovery of the

true constitutive parameters. For the sake of visual clarity, the points

representing microstructure sets that did result in successful recovery

of the true constitutive parameters are not shown, instead they are

indicated by the green semi-transparent region (Color figure online)
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%ERRlog D2ð Þ ¼ 0:13 exp �0:2449Nð Þ ð11Þ

with a coefficient of determination of 0.9983. This scaling

relationship serves as an upper bound3 on the error in the

solution of the localization problem and is useful as a

means of estimating the marginal value of performing an

additional experiment. For example, assume one has

characterized the microstructures of N ¼ 7 randomly cho-

sen samples and measured their effective diffusivity. How

much more accurate would the estimates of D1, D2, and xt

be if N ¼ 8 microstructures were used instead? Using the

scaling relationship we conclude that, with 95 % confi-

dence, all of the parameter estimates will be correct to

within 2.34 %. By adding an additional microstructure, the

maximum error in the inferred parameter values would be

reduced to 1.83 %. Alternatively, if one simply wants to

know the minimum number of microstructures needed to

ensure that the error is less than, e.g., 5 %, use of the

scaling relationship would reveal that N ¼ 4 microstruc-

tures are required.

For the sake of comparison, a scaling law for bicrystal

experiments can be derived. Consider a set of N bicrystals

with respective misorientations, x1;x2; . . .;xNf g, which

are sampled from U 0; 180�ð Þ. One could perform diffusion

experiments on each of the N bicrystals in an attempt to

infer the parameters, P ¼ D1;D2;xt½ �T, of the constitutive

equation (Eq. 2). In the case of these bicrystal experiments,

the 95 % confidence interval for xt will converge more

slowly than for the other two parameters and thus the

%error on xt will be the upper bound for the bicrystal

experiments. As demonstrated in the Appendix, the %error

in the parameter estimates resulting from these bicrystal

measurements scales according to

%ERRxt
� 0:0227N�1 ð12Þ

Let us set a target value for a tolerable %error in our

recovered parameter values, e.g., %ERR� 5%. Solving

Eqs. 11 and 12 for N, we find that the number of samples,

NB, required to achieve a given level of error with bicrystal

experiments scales according to

NB / 1

%ERR
ð13Þ

In comparison, the required number of experiments using

localization, NL, scales as

NL / ln
1

%ERR

� �
ð14Þ

Figure 8 shows a graphical comparison of NB and NL as a

function of %ERR, which confirms that localization dra-

matically reduces the experimental effort required to infer

P. For our chosen level of accuracy, %ERR� 5%, we

would need to perform at least 882 bicrystal experiments,

on average, to infer the values of the constitutive param-

eters. In constrast, localization would necessitate an aver-

age of only four experiments for the same level of

accuracy.

As just mentioned, one of the great advantages of the

localization approach to deducing the properties of

microstructural constituents and structure–property corre-

lations is efficiency. We expect this experimental economy

to be a general feature of the localization method, extending

beyond the model system considered here. To obtain good

coverage of a d-dimensional space (d ¼ 5 for grain bound-

aries) and make meaningful inferences about structure–

property correlations would require O 10d
� �

experiments

(starting from a point of complete ignorance). In contrast,

given a pre-specified constitutive relation with np undeter-

mined parameters, the localization methods described here

allow inference of structure–property relations with as few as

O np

� �
experiments and there is evidence that even for more

complex constitutive relations than what we have considered

lo
g

D
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m
2
/s
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D
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m
2
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3 5 10 20 50

– 0.4
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15

15.5

Fig. 7 Ninety-five percent confidence intervals for each of the

parameters as obtained by solving the localization problem with

N microstructures chosen uniformly at random from among those

considered here. The process was repeated 100 times for each N

3 The percent error for log D2ð Þ is strictly greater than or equal to that

of xt. However, since log D1ð Þ ¼ 0 the concept of percent error is not

well defined for this parameter. Alternatively, considering the percent

error in D1 instead of its logarithm would be inconsistent with the rest

of our analysis. While the absolute error of log D1ð Þ is very large for

N ¼ 3, it is zero (or at least smaller than the resolution of K) for all

other values of N that were tested, and consequently its %error can be

reasonably considered to be zero as well. Therefore, using the percent

error of log D2ð Þ as a bound is strictly only valid for N	 5.
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here, np may be extremely small. For example, [63] recently

developed a function for grain boundary energy in FCC

metals that requires only two material-specific parame-

ters [63]. Thus, the key to experimental determination of

grain boundary structure–property relations may be the

development of physics-based constitutive models with

clearly stated parameters. The present results suggest that

systematic experimental calibration of such models may be

possible and would require far less experimental effort than

an exhaustive bicrystal approach. Furthermore, the use of the

localization approach presented here, in conjunction with

model selection techniques, could allow not only for the

calibration of model parameters, but also the deduction of the

form of an appropriate model and the rigorous quantification

of the uncertainty in both model form and parameter values.

In this paper, the localization approach has been

demonstrated in the specific context of a grain boundary

structure–property model. However, the localization

approach is not limited to a particular material, property, or

microstructural feature. Rather, the localization methodol-

ogy is completely general and may be applied to any

material, for the inference of any property, as long as a

suitable homogenization relation (H) and an appropriate

ansatz for the relevant constitutive equation (P) exist.

Conclusions

In this paper, we defined the problem of grain boundary

properties localization, which permits one to infer the

parameters of a grain boundary structure–property model

from macroscopic measurements of effective materials

properties. Stated another way, the localization approach

allows one to infer local physics information from mea-

surements of global structure and the effective response of

the material. We applied this technique to a simple model

system of grain boundary diffusivity in a two-dimensional

microstructure and inferred the properties of low- and high-

angle grain boundaries from the effective diffusivity of the

entire grain boundary network. Below we summarize the

main conclusions of this investigation:

1. Under appropriate conditions, the localization problem

has a unique solution and the objective function

converges monotonically toward it. In our model

problem, we found that this unique solution coincided

with the known true solution.

2. Solution of the localization problem requires at least

N ¼ np non-redundant microstructures.

3. General microstructural characteristics required to

recover the correct solution to the model localization

problem considered here were that the microstructures

should be sufficiently different, should sample all

unique effective properties regimes (i.e., both sides of

the percolation threshold), and should avoid regions

where abrupt transitions occur in the effective proper-

ties (pc;2). For a general localization problem, the

details will be problem specific.

4. If appropriate selection criteria are unknown and

selection of microstructures is performed uniformly

at random, the accuracy and precision of the resulting

inferences increase with N, the number of microstruc-

tures considered. At the 95 % confidence level, an

upper bound to the %error in the inferred parameter

values was shown to decay exponentially with N. This

scaling relationship can assist in determining the

marginal value of performing additional experiments

or to identify the minimum number of experiments one

should perform to obtain a specified accuracy in the

solution.

5. Materials properties localization provides an efficient

means to infer structure–property models for grain

boundaries. In the present case, we found that, using

brute force bicrystal experiments, the number of

experiments required to infer constitutive model

parameters scales inversely with the desired accuracy

(NB / 1
%ERR

). In contrast, the number of experiments

that localization requires is much smaller and scales

logarithmically with the inverse of the desired accu-

racy (NL / ln 1
%ERR

� �
). For more general structure–

property models, we expect that, for a specified

accuracy (%ERR), the effort required for localization

will scale with np, the number of parameters in the

model, which should generally be small. In contrast,

Bicrystal
Localization

N

%Error
30 1 2 4 5 6 7 8

100

101

102

103

104

105

Fig. 8 The number of experiments, N, required for one to recover the

values of all of the constitutive parameters in Eq. 2 to within a given

level of uncertainty (%error). The performance of the localization

methods introduced in this paper is compared with that of an

exhaustive bicrystal approach
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the experimental effort required for a brute force

bicrystal approach should scale exponentially with d,

the number of degrees of freedom required to describe

the microstructural feature of interest (for grain

boundaries d ¼ 5).
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Appendix: Error scaling for bicrystal experiments

In attempting to infer the parameters of the constitutive

equation (Eq. 2) via bicrystal experiements, the parameter

D1 will be recovered exactly if at least one bicrystal that we

test has a misorientation x�xt, assuming that there is no

uncertainty in the value of D1 that we measure. Likewise,

D2 will be recovered exactly with at least one bicrystal

having x[xt. To recover the final parameter, xt, to

within some specified accuracy (%ERR), there must be at

least one bicrystal with misorientation falling in the range

xt � d;xt½ � and another bicrystal with misorientation fall-

ing in the range xt;xt þ d½ �, where %ERR ¼ d=xt. For

small d, the error in xt will be larger than that of both D1

and D2. Specifically, this will be the case for d\xt. We

wish to identify the number of bicrystal experiments, N,

required to recover xt to within d of its true value at a 95 %

confidence level.

Consider a set of N bicrystals with respective misori-

entations, x1;x2; . . .;xNf g, which are sampled from

X�U 0;xmaxð Þ, where xmax ¼ 180� for the crystal system

considered in this study . Let4 A be the event that at least

one of these bicrystals falls in the interval xt � d;xt½ �, and

let B be the event that at least one of these bicrystals falls in

the interval xt;xt þ d½ �. We are interested in finding N

such that

P A \ Bð Þ ¼ 0:95 : ð15Þ

Thus, we seek an expression for the joint probability

P A \ Bð Þ. This may be accomplished by considering the

complement:

P A \ Bð Þ ¼ 1 � P AC [ BC
� �

¼ 1 � P AC
� �

þ P BC
� �

� P AC \ BC
� � � : ð16Þ

The probability that none of the N samples fall within

xt � d;xt½ � is given by

P AC
� �

¼ 1 � d
xmax

� �N

: ð17Þ

Likewise, for the interval xt;xt þ d½ � we have

P BC
� �

¼ 1 � d
xmax

� �N

: ð18Þ

The probability that none of the samples fall in the interval

xt � d;xt þ d½ � is given by

P AC \ BC
� �

¼ 1 � 2d
xmax

� �N

: ð19Þ

Substituting these results into Eq. 16 we find

P A \ Bð Þ ¼ 1 � 2 1 � d
xmax

� �N

þ 1 � 2d
xmax

� �N

: ð20Þ

Substituting d ¼ xt %ERRð Þ, setting Eq. 20 equal to 0.95,

and solving for N numerically for 100 values of %ERR 2
0:001; 0:002; . . .; 0:100f g; we observe the N %ERRð Þ

dependence shown in Fig. 9.

These results suggest a power-law dependence, and a fit

to the data results in the following:

N ¼ 44:0337 %ERRð Þ�1:0003 ð21Þ

with a coefficient of determination equal to R2 ¼ 1:0000

and an RMS error of 1.0407. The 95 % confidence inter-

vals for the parameters in Eq. 21 are 44:0216; 44:0459½ �

ln
(N

)

ln(%Error)

–6.5 –5.5 –4.5 –3.5 –2.5

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Fig. 9 Solutions of Eq. 15 for various values of

%ERR 2 0:001; 0:002; . . .; 0:100f g

4 The authors wish to acknowledge David K [64], of the Math Stack

Exchange community, for suggesting the derivation provided in

Eqs. 15–20, which we subsequently validated both numerically and

analytically.
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and �1:0002;�1:0003½ �, respectively. For comparison

with the error scaling of the localization method (See

Eq. 11), we can rearrange Eq. 21 to get the error scaling

law for a bicrystal approach:

%ERR ¼ 0:0227N�0:9997 ð22Þ
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