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Abstract Laminar nanocomposite of a-ZrP/MnTMPyP,

[5, 10, 15, 20-tetrakis (N-methylpyridinium-4-yl) por-

phyrinato manganese (III)], was obtained through the self-

assembly of a-ZrP nanosheets and manganese porphyrin

molecules, namely the exfoliation/restacking route. The

final products were characterized by several analytic

techniques such as XRD, IR, UV–Vis, and SEM. Mean-

while, the surface charge change of layered zirconium

phosphate during the restacking process was monitored by

a Zetasizer Nano instrument. The zeta potential value of

a-ZrP colloidal dispersion is -40.1 mV, indicating that the

colloidal dispersion was stable and well dispersed. The

cyclic voltammetry measurements of a-ZrP/MnTMPyP

film-modified glass carbon electrode displayed a pair of

well-defined oxidation/reduction peaks with redox poten-

tials at -0.256 and -0.197 V with an increase in the peak

current compared to MnTMPyP aqueous solution. Fur-

thermore, a-ZrP/MnTMPyP hybrid thin film exhibited

excellent electrocatalytic activities toward oxidation of

nitrite. The oxidation peak current increased linearly with

the square root of scan rate, suggesting that the electro-

catalytic process was controlled by nitrite diffusion.

Finally, a detection limit of 5.3 9 10-5 M was estimated at

a signal-to-noise ratio of 3.0 with a concentration range of

1.5 9 10-4 to 4.76 9 10-3 M.

Introduction

In recent years, two-dimension layered materials have

drawn considerable interest in numerous fields including

photochemistry, electrochemistry, and catalysis mainly due

to their particular structure and characteristics [1–5]. As a

kind of artificial layered materials firstly discovered byElectronic supplementary material The online version of this
article (doi:10.1007/s10853-015-9205-8) contains supplementary
material, which is available to authorized users.
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Clearfield and Stynes in 1964 [6], a-Zr(HPO4)2�H2O (ab-

breviated as a-ZrP) owns several characteristics such as

larger surface charge density and higher aspect ratio and

ion-exchange capacity [7–10] except for commonalities of

layered nanomaterials. Hence, some related articles about

preparation of the intercalation compounds of a-ZrP/MB

(methylene blue) [11], a-ZrP/porphyrin [12], a-ZrP/he-
moglobin [13–15], and a-ZrP/insulin [16] were reported. In
addition, a-ZrP has been modified to obtain various hybrid

materials with diverse applications by replacing hydroxyl

groups located on the surface of a-ZrP with organic

functional groups [17, 18]. Concerning the structure of

a-ZrP, three oxygen atoms belonging to one phosphate

group are bonded to three different Zr atoms forming the

laminate, while OH connecting to P atoms points into the

interlayer region or on the surface [19] (Fig. 1).

As a well-known class of compounds extensively exis-

ted in biological systems, porphyrins and their derivatives

play an important role in several aspects of oxygen transfer

(Hemoglobin), storage (Myohemoglobin), activation (Cy-

tochrome), and photosynthesis (Chlorophyll). The multi-

functional composites constructed by the immobilization of

porphyrin derivatives in various inorganic layered materi-

als have become the research focus [20–24].

Many efforts have been devoted to the preparation of

nanocomposites through the ion-exchange process previ-

ously which usually takes a longer period [25–27]. Never-

theless, time-saving exfoliation/restacking route has

attracted considerable interests recently due to opening

access to explore the inner surface of laminate. At present,

much attention was paid to delamination of transition metal

dichalcogenides (MoS2) [28], layered double hydroxides

(LDHs) [29–32], and metal oxides (Ca2Nb3O10
-, TiNbO5

-)

[33–35]; meanwhile, the exfoliation of a-ZrP nanosheets has

also become the research focus [36–39]. Therefore, it is

promising to introduce metalloporphyrin into the interlayer

of a-ZrP through the exfoliation/restacking method (Fig. 2).

As a kind of common inorganic pollutant in environ-

ment and food industry, nitrite can be converted to N-ni-

trous compounds which are carcinogenic to humans. The

quantitative analysis of nitrite can be achieved by elec-

trochemical method [40]. Herein, we made an attempt to

fabricate a-ZrP/MnTMPyP lamellar nanocomposite via

electrostatic interaction between manganese porphyrin

aqueous solution and colloidal dispersion of a-ZrP
nanosheets, so that we could make further research on

electrochemical determination of nitrite.

Experimental

Preparation of exfoliated a-ZrP nanosheets

a-ZrP was prepared by a slightly modified HF approach

reported in previous literature [41]. 3.0 g ZrOCl2�8H2O

powder dispersed in 30 ml distilled water beforehand was

mixed with 9 ml phosphoric acid and 3 ml hydrofluoric

acid at 80 �C in a plastic flask, and the resulting white

precipitate was collected by centrifugation, washed with

distilled water several times, and dried at 50 �C. Typically,
0.05 g a-ZrP material was then dispersed into thirty mil-

liliters distilled water with stoichiometric amounts ofFig. 1 Schematic structure of a-Zr(HPO4)2�H2O

Fig. 2 Schematic illustration of the reassembly process between a-
ZrP nanosheets and metalloporphyrin
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10 (wt%) TBAOH aqueous solution and agitated uniformly

for 3 days in a single-necked flask; the resulting translucent

colloidal suspension was centrifuged at 6000 rpm to

remove the unexfoliated particles to avoid affecting the

later experiments.

Fabrication of a-ZrP/MnTMPyP intercalation

hybrids

Regarding the fabrication of a-ZrP/MnTMPyP intercala-

tion hybrids, 1 mM MnTMPyP aqueous solution was

added into the colloidal dispersion of a-ZrP mentioned

above. The precipitate was centrifuged under 8000 rpm,

washed with distilled water several times, and dried at

50 �C for further characterization.

Characterization

X-ray diffraction patterns were collected with a RINT 2000

diffractometer (Rigaku) using Cu Ka radiation

(k = 0.154 nm) with 2h from 2� to 40�. Zeta potential of

a-ZrP colloidal suspension was monitored using a Malvern

Zetasizer Nano instrument, and water at 25 �C was selected

as the dispersion solvent. Infrared spectra were measured

on a Shimadzu FTIR-8400S spectrometer with the use of

KBr pellets. UV–Vis absorption spectra were recorded on a

UV–vis spectrometer (UV-2550). The morphology of the

samples was investigated by a scanning electron micro-

scopic apparatus (JEOL, JSM-6390), and the specimens

should be treated by spray-gold firstly.

Electrochemical characterization and property

The electrochemical experiments were carried out in a

conventional three-electrode cell at room temperature, with

a platinum wire electrode as the counter electrode, a sat-

urated calomel electrode (SCE) as the reference electrode,

and the a-ZrP/MnTMPyP hybrid thin film-modified glass

carbon electrode (GCE) as the working electrode. The

acting electrolyte was 0.2 mol L-1 phosphate buffer solu-

tion (PBS) which should be purged with N2 for 20 min

before examination to avoid the influence of oxygen.

Cyclic voltammetry (CV) and differential pulse voltam-

metry (DPV) scans were all carried out on a CHI660c

electrochemical workstation.

Results and discussion

XRD analysis

Figure 3 shows the XRD patterns of a-ZrP host material

and a-ZrP/MnTMPyP intercalation compound. It can be

clearly seen that a-ZrP sample with high crystallinity

exhibited intense diffraction peaks, and the interlayer dis-

tance was calculated as 0.75 nm according to 2h angle

(11.75�) of the 002 characteristic peak, while the interlayer

distance of the restacking product increases to 1.64 nm

with the lower 2h angle of 5.4�. With respect to the fab-

rication of a-ZrP colloidal dispersion and MnTMPyP

aqueous solution, it should be attributed to the electrostatic

interaction between the negatively charged a-ZrP nanosh-

eets and metalloporphyrin cations with ESD mechanism

[42]. In order to investigate the angle of MnTMPyP located

in the galley of the hybrid, the rough calculation was made

as follows. Considering the host layer thickness of 0.63 nm

[38], a conclusion can be drawn that MnTMPyP molecules

were placed into the interlayer by a monolayer inclined

angle of 34� according to the known size of MnTMPyP

ring (18.0 9 18.0 9 7.5 Å, estimated by MM2 method).

Zeta potential analysis

To further confirm the restacking process, the detection of

the surface potential was achieved by a Zetasizer Nano

instrument. The zeta potential of a-ZrP colloidal dispersion

is -40.1 mV, which indicated that the dispersion was

stable and well dispersed. In order to acquire zero potential

point of reaction, a few volume ratios of a-ZrP colloidal

dispersion and MnTMPyP aqueous solution were tested as

shown in Fig. S1; the zeta potential increases with the

addition of MnTMPyP aqueous solution, and it turned out

that the zeta potential of the 1:0.58 ratio approaches nearly

zero. Flocculation phenomenon about coassembly of a-ZrP
nanosheets and MnTMPyP aqueous solution at this ratio

was displayed in Fig. 4b, and the reaction is extremely fast

and can be finished within 20 min which is superior to the

traditional ion-exchange method. As observed in Fig. 4a,

clear Tyndall light scattering was found in the colloidal

Fig. 3 XRD patterns of a a-ZrP host material and b a-ZrP/
MnTMPyP hybrid
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solution of a-ZrP nanosheets, suggesting the occurrence of

exfoliation [29].

IR spectra analysis

The characteristic peaks of MnTMPyP at 1642, 1560,

1506, and 1458 cm-1 correspond to stretching vibration of

C=N or C=C in the pyridine substituent and porphyrin

rings (Fig. 5). Besides, the absorption bands at 1106 cm-1

should be assigned to the single bond of C–N. The infrared

spectrum of a-ZrP/MnTMPyP hybrid exhibited similar

absorption in the range of 1700–1000 cm-1 with a slight

shift merely, possibly attributing to interaction of interca-

lated guest molecules and the host layer [43]. As noted by

line (a), these bands ascribed to the phosphate groups [36]

in the host layer were also present in IR spectrum of a-ZrP/
MnTMPyP intercalation compound.

UV–Visible absorption spectra analysis

Figure 6 gives UV–Vis spectra of MnTMPyP aqueous

solution and a-ZrP/MnTMPyP nanocomposite. Compared

with MnTMPyP aqueous solution, the hybrid exhibits a

9-nm red shift in the Soret band caused by restricted

manganese porphyrin molecules located in the galley

consistent with several analogous reports [44, 45]. The

existence of a broadening phenomenon in the hybrid was

due to some degree of aggregation and stacking of the

metalloporphyrin molecules [46].

SEM analysis

As observed in Fig. 7, the origin material of a-ZrP with

high crystallinity reveals a large average size of about

1–3 lm. While, the introduction of MnTMPyP led to the

formation of intercalation hybrid with irregular shape and

rough surface. However, two-dimensional layered structure

of the final composite was reconstructed by the reassembly

of a-ZrP nanosheets and MnTMPyP molecules.

Electrochemical characterization

The CV curves of MnTMPyP aqueous solution and a-ZrP/
MnTMPyP hybrid film in pH 7.0 PBS at 50 mV s-1 scan

rate are shown in Fig. 8. A couple of well-defined oxida-

tion/reduction peaks with redox potentials were at -0.257

and -0.183 V for MnTMPyP aqueous solution, with the

midpoint potential Em = (Epa ? Epc)/2 = -0.22 V and

the peak separation DEp = 74 mV. A couple of similar

electrochemical characteristic oxidation/reduction peaks

appear in a-ZrP/MnTMPyP hybrid film-modified GCE at

-0.256 and -0.197 V, respectively, and the peak separa-

tion DEp was reduced to 59 mV.

As shown in Fig. 9, the CV experiments of the modified

electrode in 0.2 M PBS at different scan rates from 50 to

Fig. 4 a Tyndall phenomenon of colloidal dispersion of exfoliated a-
ZrP nanosheets, b photographs of colloidal suspensions of a-ZrP
nanosheets in TBAOH aqueous solution (left), MnTMPyP aqueous

solution (middle), and the corresponding mixture of a-ZrP and

MnTMPyP (right)

Fig. 5 FT-IR spectra of a a-ZrP, b MnTMPyP, and c a-ZrP/
MnTMPyP

Fig. 6 UV–visible absorption spectra of a MnTMPyP aqueous

solution and b a-ZrP/MnTMPyP hybrid film
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400 mV s-1 were conducted. It is observed that the anodic

peak shifted positively and the cathodic peak shifted neg-

atively with the increase of the scan rate. Meanwhile, the

peak separation DEp went from 59 mV to 123 mV as well

owing to the steric hindrance effect of the host layer [47].

The linear relationship of peak current (I) and square root

of the scan rate (v1/2) was expressed in the attached

drawing. The calibration equations are Ipa (lA) = 9.19 -

43.32 v1/2 (V1/2 s-1/2) (r = 0.9985) and Ipc (lA) =
-7.87 ? 37.57 v1/2 (V1/2 s-1/2) (r = 0.9991).

Electrocatalytic activities of a-ZrP/MnTMPyP

hybrid film toward oxidation of nitrite

As can be seen from Fig. 10, a-ZrP/MnTMPyP hybrid

film-modified GCE shows good electrocatalytic activities

toward oxidation of nitrite in pH 7.0 PBS. The oxidation

peak potential at 0.997 V should be assigned to bare GCE,

which is corresponding to the conversion of NO2
- to NO3

-

through a two-electron oxidation process, while the oxi-

dation peak potential of the modified electrode shifts

negatively toward 0.897 V with an increase in peak current

at a certain degree indicating that a-ZrP/MnTMPyP

nanocomposite can efficiently promote the oxidation of

NO2
- [42].

Fig. 7 SEM images of a a-ZrP and b a-ZrP/MnTMPyP

Fig. 8 CV curves of a MnTMPyP aqueous solution (dash line) and b

a-ZrP/MnTMPyP-modified GCE (solid line) in N2-saturated pH 7.0

PBS solution at 50 mV s-1
Fig. 9 CV curves of a-ZrP/MnTMPyP-modified GCE in N2-satu-

rated pH 7.0 PBS solution at 50, 100, 150, 200, 300, and 400 mV s-1;

the inset is the relationship curve between I and v1/2

Fig. 10 CV curves of a a-ZrP/MnTMPyP-modified GCE (solid line)

and b bare GCE (dash line) in N2-saturated pH 7.0 PBS solution

containing 4 mM NaNO2 at 100 mV s-1
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According to related literatures [48], the mechanism of

electrocatalytic oxidation on nitrite of the modified elec-

trode can be illustrated using the following equations:

MnIIITMPyP5þ þ NO�
2 � MnIITMPyP NO2ð Þ

� �4þ ð1Þ

MnIITMPyP NO2ð Þ
� �4þ

� MnIIITMPyP5þ þ NO2 þ e�

ð2Þ

2NO2 þ H2O � 2Hþ þ NO�
3 þ NO�

2 ð3Þ

NO�
2 þ H2O ! 2Hþ þ NO�

3 þ 2e� ð4Þ

With the purpose of investigating the influence of the

scan rate toward peak current, the CV curves of the mod-

ified electrode at different scan rates from 30 to

200 mV s-1 were made. It can be seen that the anodic peak

potential shifts positively with the increase of scan rate

observed in Fig. 11. The inset shows linear relationship

between peak current (Ipa) and square root of the scan rate

(v1/2), in the light of the calibration equation: I (lA) =
5.30 ? 229.46 v1/2 (V1/2 s-1/2) (r = 0.9988), electro-

chemical oxidation of nitrite on the surface of the modified

electrode should be defined as an irreversible diffusion-

controlled process [49].

In order to realize the quantitative analysis of the

modified electrode toward nitrite oxidation, differential

pulse voltammetry experiments were conducted with the

NO2
- concentration ranging from 0.15 to 4.76 mM shown

in Fig. 12. The linear relationship between the peak current

(Ipa) and the concentration of nitrite was observed in the

inset whose calibration equation can be expressed as

I (lA) = -0.45 ? 6.16c (mmol L-1) (r = 0.9995).

According to a signal-to-noise ratio of 3.0, the detection

limit of 5.3 9 10-5 M was estimated.

Conclusions

A convenient method called the exfoliation/restacking

route was adopted to prepare a-ZrP/MnTMPyP laminar

nanocomposite. The a-ZrP colloidal suspension obtained in

the delamination process was traced by a Zetasizer Nano

instrument. In addition, the arrangement of MnTMPyP

molecule in the galley of the hybrid has been proposed.

The CV measurements of a-ZrP/MnTMPyP film-modified

GCE indicated that the as-obtained nanocomposite has

exhibited excellent electrocatalytic activities on the oxi-

dation of nitrite in pH 7.0 PBS. A detection limit of

5.3 9 10-5 M was estimated at a signal-to-noise ratio of

3.0 indicated by DPV results.
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