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Abstract The Avrami kinetics of the dynamic recrystal-

lization (DRX) of V-microalloyed medium carbon steel is

studied by measuring the flow curves and evolution of

grain size distribution (GSD) due to DRX and by modeling

the flow softening kinetics and flow curves under various

deformation conditions. The e1/2 method is proposed as a

new method of modeling the Avrami kinetics and is shown

to be, unlike the conventional t1/2 method, capable of

modeling the flow softening kinetics and flow curves with a

single variable Z (= _eexp(Qdef/RT)). The time exponent

‘‘n’’ of the Avrami kinetics decreases from 2.3 to 1.4 with

increasing Z, which results from a shift in the mode of

necklace recrystallization from boundary migration domi-

nant mode to nucleation dominant mode. The GSD method

is proposed as a new method for estimating the DRX

fraction in deformation conditions where it is difficult to

distinguish recrystallized grains from un-recrystallized

grains. The softening fractions estimated from the flow

curves tend to overestimate the DRX fractions at a later

stage of deformation, where DRX kinetics appear to be

retarded by dynamic precipitation.

Introduction

Models of the flow curves of hot-deformed austenite of

microalloyed medium carbon steels have been extensively

studied to understand the mechanisms of flow softening

that occur during hot deformation, as well as to predict the

loads required for hot rolling (or hot forging) [1–6]. Flow

stress rapidly increases during the initial period of defor-

mation due to the dominant effect of work hardening

(WH), and the rate of increase slows down until reaching a

saturation stress level, resulting from a balance between

work hardening and flow softening from dynamic recovery.

In most microalloyed medium carbon steels, additional

flow softening usually occurs due to dynamic recrystal-

lization (DRX). Thus, the modeling of the flow curves of

hot-deformed austenite comprised of two parts, the mod-

eling of WH (and dynamic recovery) and of flow softening

due to DRX.

Concerning the modeling of WH (and dynamic recov-

ery), Jonas et al. [4] have recently established a description

of the WH curve showing the saturation behavior. The

description is based on the evolution equation developed

by Kocks, Mecking and others, [7–10] and takes into

account the accumulation and annihilation of dislocations

by work hardening and dynamic recovery.

To model the kinetics of flow softening due to DRX, the

Avrami kinetics is conventionally applied to the softening

data measured from the experimental flow curves. The

softening fraction X is usually expressed in terms of t1/2 as

X = 1-exp [-0.692(t/t1/2)
n], where t1/2 is a time corre-

sponding to X = 1/2. Earlier work by Laasraoui and Jonas

[1] used the peak strain ep, instead of the critical strain ec, to
calculate t1/2. Cabrera et al. [3] have modeled the t1/2, in a

traditional form, as t1/2 = Kd0
m _en

0
exp(Q/RT), where the

authors have also used the peak strain ep to calculate t1/2,
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i.e., t = (e-ep)/ _e; the time exponent n was taken as a

constant independent of temperature and strain rate. Fer-

nandez et al. [11] experimentally measured the DRX

fractions in hot-torsion experiments and analyzed the data

via Avrami equation expressed in log(e-ec), rather than in

log(t), to determine the Avrami constants; the authors,

however, have not tried to model the Avrami constants

with deformation conditions. Some authors [12, 13] have

utilized a form of log [(e-ec)/ep] to evaluate the Avrami

constants; however, in this form, the temperature depen-

dency of the rate constant cannot be properly assessed

because of the temperature dependency of peak strain (ep).
Jonas et al. [4] have extensively analyzed the Avrami

kinetics of the softening fraction due to DRX in various

microalloying carbon steels, using a traditional t1/2 method,

this time in terms of the critical strain ec, i.e., t = (e-ec)/ _e;
the authors, however, have not tried to model the n and t1/2
as a function of strain rate and temperature. Recently,

Quelennec et al. [5] and Quelennec and Jonas [6] have

proposed a physical DRX model utilizing the ‘‘physical

softening parameter’’ instead of the conventional ‘‘empir-

ical softening parameter.’’ The results of their extensive

modeling efforts have shown that the t1/2 cannot be fitted to

a simple relationship but could only be fitted to compli-

cated functions of strain rate and temperature [6].

In the present work, we propose a simple method which

can model the Avrami equation with a single variable, i.e.,

the temperature-compensated strain rate Z (Z = _eexp(Qdef/

RT)) and which can be used to calculate the flow curves at

various deformation conditions by utilizing the work-

hardening curve proposed by Jonas et al. [4]; the new

method relies on describing the Avrami kinetics in terms of

the e1/2 rather than the conventional t1/2. In addition, we

further propose a new method using grain size distribution

(GSD) to estimate the DRX fraction in partially recrystal-

lized grain structure, where it is typically difficult to dis-

tinguish DRX grains from initial grains.

Experiments

Ingots of V-microalloyed medium carbon steel (having

compositions of 0.45C–0.26Si–1.21Mn–0.16Cr–0.014Al–

0.13 V–0.006 N) of 350-mm thickness were cast in a

vacuum induction furnace through a customer service of

POSCO. After homogenizing (1 h at 1250 �C) and hot size

rolling to a 100-mm hot slab, the slab was further hot rolled

to finally produce a plate of 20-mm thickness. The final

plate was machined into rod-shaped specimens of 10-mm

diameter and 15 mm-length for Gleeble testing.

The specimens were heated (heating rate, 10�C s-1) to

1200 �C in a Gleeble 1500 (Dynamic systems Inc., NY)

chamber under Ar atmosphere, held for 3 min, and then

cooled (cooling rate, 5 �C s-1) to various deformation

temperatures for hot compression testing under strain rates

from 0.01 to 5 s-1; some of the selected specimens were

ice-brine quenched in Gleeble immediately after defor-

mation with various strains to observe the evolution of

recrystallized grain structure.

To minimize friction during Gleeble testing, carbon and

Ta foils were inserted between the specimen and com-

pression anvil. To correct for minor friction effects, a series

of hot compression tests at various strains were carried out

in Gleeble to calculate barreling factors [14]. The measured

flow curves were corrected for the friction effect using the

friction coefficients obtained from the barreling factors.

The friction-corrected flow curves have been used for all

the analyses of flow curves in the present work.

In order to observe the prior austenite grain structure,

the ice-brine quenched specimens were mechanically pol-

ished and chemically etched using picric acid. The prior

austenite grain size and GSD were measured using an

image analyzer via Inspector, in which one measures the

area of each grain on optical images and estimates an

equivalent size of circle. The number of grains measured

for each condition varied from about 150–600.

Results

Figure 1 shows the true stress–strain curves of V-mi-

croalloyed (S45CVMn) medium carbon steels at various

temperatures and strain rates. The flow curves at temper-

atures below 1000 �C and high strain rate (5 s-1) first

increase rapidly and the increasing rate gradually decreases

to approach a saturation stress at large strain, suggesting

that softening mostly occurs by dynamic recovery. How-

ever, at temperatures above 1000 �C and strain rates lower

than 5 s-1, the flow curves, after displaying pronounced

peaks, gradually decrease to approach steady-state stresses,

suggesting that in addition to dynamic recovery, the soft-

ening occurs through DRX. The peak stress and strain

increase either with a decreasing deformation temperature

or with an increasing strain rate in accordance with the

DRX behavior.

Since the softening occurs by dynamic recovery and

DRX, one first needs to construct the flow curve arising

from WH and dynamic recovery (DRV) in order to study

the kinetics of DRX. The WH-DRV curve (designated here

as WH curve) is known to show a saturation behavior at

large strain due to a competition between WH and DRV

[7–10]. Once the WH curve is constructed, one can esti-

mate the fraction of softening due to dynamic recrystal-

lization X (Fig. 2) by
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X ¼ rwh � r
rsat � rss

; ð1Þ

where rsat is the saturation stress in WH curve and rss is the
steady-state stress under DRX condition.

In order to construct the WH curve (rwh), we have

adopted the equation recently developed by Jonas et al. [4]

based on the concept of the competition between storage

and annihilation of dislocations during deformation [8]:

rwh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2sat � r2sat � r20
� �

expð�rðe� e0ÞÞ
q

ð2Þ

2r
dr
de

¼ rr2sat � rr2; ð3Þ

where r0 is the yield stress.

The plot 2r(dr/de) versus r2 allows one to determine

the recovery rate r from the slope and rsat from the inter-

cept. Here one has to use a linear portion of the data, i.e.,

stresses less than rc (which is the critical stress for the

initiation of DRX); the critical stress is determined by

applying the method proposed by Poliak and Jonas [15].

Figure 2 shows an example of determining the recovery

rate r and saturation stress rsat by applying Eq. (3) to the

measured stress–strain data.

One can then calculate the WH curve (rwh) as a function
of strain according to Eq. (2); a typical example of such

calculation is shown in Fig. 2, together with the corre-

sponding experimental flow curve (r). The fraction of

softening can be then calculated as a function of strain,

using Eq. (1) and experimentally measured rss as seen in

Fig. 2; the steady-state stress is taken as 0.82 rp if the

steady state is not apparent in the experimental curve.

Figure 3 displays the results of the calculation of soft-

ening fraction X from the measured flow curves (Fig. 1) as

a function of strain, using Eqs. (1) and (2), at various

temperatures (under the strain rate 5 s-1). It should be

noted that strain scales with time at a constant strain rate.

The softening fraction increases slowly at an initial stage

and then rapidly rises at an intermediate stage, before

slowly approaching a saturation value at the last stage. This

variation in behavior of the softening fraction with strain

closely resembles a sigmoidal rate curve, which can be best

described by the Avrami kinetics [16].

Since the flow softening is believed to occur by DRX,

the microstructures of some selected specimens were

examined using optical microscopy, to study the evolution

of GSD under the DRX condition (Fig. 4). A well-devel-

oped necklace grain structure, which is a characteristic of

DRX grain structure, appears when the deformation tem-

perature is lower than 1000 �C (Fig. 4e, f). However, such

well-developed necklace grain structure becomes

Fig. 1 True stress–strain curves of V-microalloyed medium carbon steel at various temperatures: a 1150 �C; b 1050 �C; c 950 �C; d 850 �C.
The dotted curves represent the flow curves calculated by modeling the Avrami kinetics as a function of Z
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increasingly less evident as the deformation temperature

increases to above 1000 �C (Fig. 4a, c). As a result, the

measurement of the DRX fraction appears to be increas-

ingly difficult to carry out at high deformation temperatures

(above about 1000 �C), although the measurements can be

easily performed at low deformation temperatures.

Figure 5 shows the measurements of GSDs for some

selected deformation conditions. The GSD of the initial

condition (not shown here) showed a typical lognormal

distribution, with a peak near 100 lm, showing positively

skewed distribution (long right tail). As the deformation (at

the strain rate 5 s-1) proceeds, the GSD evolves with strain

in a distinctively different manner depending on tempera-

ture. To examine the details of the evolution behavior of

GSD, the measured GSDs were fitted to lognormal distri-

bution function (LDF) given as [17]:

Fig. 2 The calculated work-hardening curve and experimentally

measured flow curve at 1050 �C, e90.1: a calculated work-hardening

curve; b calculation of the recovery rate (r) and saturation stress (rsat).
The figure b also shows the critical stress rc and peak stress rp in the

plot

Fig. 3 The variation of softening fraction due to DRX as a function

of strain at various temperatures (strain rate 5 s-1): a 1150 �C;
b 1050 �C; c 950 �C; d 850 �C. Continuous line indicates the data

obtained from the flow curves; the open circle the experimentally

measured data; the open square the data evaluated from grain size

distribution (GSD) method
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F ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2pr2
p 1

D
exp � lnD� lð Þ2

2r2

" #

; ð4Þ

where D is the grain size, l is the average of ln D, and r is

the standard deviation. The LDF’s constructed at different

levels of strain were plotted together in the same scale

(frequency vs. grain size) to compare the variation of

GSD’s as a function of strain. The results (Fig. 6) clearly

show a distinctively different variation in GSD behavior

for high and low deformation temperatures. At high

deformation temperatures (above about 1000 �C), the peak
of lognormal function is progressively shifted towards

smaller grain size with increasing strain before undergoing

a complete recrystallization. In contrast, at temperatures

Fig. 4 Optical microstructures showing partially (or fully) recrystallized austenite grain structures during deformation at various temperatures

(strain rate 5 s-1) and strains: a 1150 �C, e0.6; b 1150 �C, e1.2; c 1050 �C, e0.6; d 1050 �C, e1.0; e 950 �C, e0.6; f 850 �C, e1.0

Fig. 5 Grain size distributions

of partially (or fully)

recrystallized grain structures at

high (1150 �C) and low

temperatures (950 �C) for small

and large strains (strain rate

5 s-1): a 1150 �C, e0.4;
b 1150 �C, e1.2; c 950 �C, e0.4;
d 950 �C, e1.2
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below about 1000 �C, the peak suddenly appears at small

grain size and, thereafter, the frequency of the peak (re-

maining at a similar size) tends to increase with the

increasing strain. This particular evolution behavior of

distribution function at low temperatures is related to a

sudden appearance of numerous fine DRX grains at low

deformation temperatures, as seen in Fig. 4e, f.

As deformation proceeds (Fig. 6a), the LDF starts to

deviate from that of the initial structure and the LDF pro-

gressively shifts, with the increasing strain, toward the LDF

of fully recrystallized grain structure at strain 1.2. If one

assumes that the recrystallized grains in a partially

recrystallized grain structure conform, for all levels of

strain e, to a GSD given by a fully recrystallized grain

structure, the LDF of a fully recrystallized grain structure

defines a maximum probability of each class of recrystal-

lized grain sizes in a partially recrystallized grain structure

(at a given strain e). The amount of DRX grains in a par-

tially recrystallized grain structure (at strain e) can then be

related to the area A(e) (Fig. 7a), which is defined by the

area belonging simultaneously to the two LDF curves of

partially recrystallized grain distribution (at strain e) and of

fully recrystallized grain distribution (at strain 1.2). The

fraction of DRX can then be estimated by normalizing the

area A(e) by the area A0, which is the area defined by the

LDF curve of fully recrystallized grain distribution

(Fig. 7b). A more detailed examination (Fig. 7b), however,

shows that a significant fraction of A0 is overlapped by the

LDF curve of initial grain distribution (e = 0). The over-

lapped area (designated as Ai(0)) should belong to un-re-

crystallized grains at the beginning of deformation and will

progressively turn into recrystallized grains with the

increasing amount of strain, before finally becoming fully

recrystallized grains at strain 1.2.

It is clear that the amount of recrystallized grains in the

distribution (overlapped) Ai(0) evolves from 0 at e = 0 to

Ai(0) at e = 1.2 (Fig. 7b). We now assume that the

recrystallization kinetics of the grains belonging to Ai(0)

follow the same Avrami kinetics as the grains belonging to

the other distribution. Namely, the recrystallized fraction at

strain e, y (= Ai(e)/Ai(0)) = 1-exp (-k(e-ec)
n), where

Ai(e) is a hypothetical area which, among the area Ai(0),

has undergone recrystallization at strain e. If we take n as 2

(from the present softening data), we get the following

expression, as for the area corresponding to un-recrystal-

lized grains in the distribution Ai(0) (at strain e):

Fig. 6 Variation of lognormal distribution functions (LDF’s) as a

function of strain at two different temperatures (strain rate 5 s-1):

a 1050 �C; b 950 �C

Fig. 7 Schematic diagrams of LDF’s of partially recrystallized (e),
fully recrystallized (e = 1.2), and un-recrystallized (e = 0) grain

structures, showing how one can estimate the recrystallized fraction

from the three areas A(e) (a), A0 and Ai(0) (b) defined by the three

LDF’s
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DAi eð Þ ¼ Ai 0ð Þ � Ai eð Þð Þ ¼ Ai 0ð Þ exp �k e� ecð Þ2
� �

ð5Þ

The constant k is determined by imposing the experi-

mentally observed limiting conditions; for example, we get

k = 2 at high temperatures as we apply the condition

y = 0.95 at e = 1.2. A true DRX fraction X can be now

evaluated by subtracting, from the area A(e) (Fig. 7a), the
un-recrystallized area DAi(e) in the distribution Ai(0) as

X ¼ A eð Þ � DAiðeÞ
A0

ð6Þ

The DRX fractions, estimated using Eq. (6), are shown

in Fig. 3 and compared with the experimentally measured

data. (It can be noted that the experimental measurements

at high temperatures are difficult but not impossible;

extensive measurements are required to ensure sufficient

accuracy.) The results show that the data obtained using the

GSD method, i.e., Eq. (6), are in good agreement with the

experimentally measured data (except at 850 �C), sug-

gesting that the currently proposed GSD method is useful

for evaluating the DRX fraction from a partially recrys-

tallized grain structure especially at high temperatures,

where recrystallized grains are difficult (although not

impossible) to distinguish from un-recrystallized grains.

The evaluation at 850 �C tends to significantly overes-

timate the DRX fraction as compared to the experimentally

measured values. The discrepancy is largely due to the fact

that the LDF of fully recrystallized grain distribution (A0)

is evaluated from the GSD, which is measured, not in fully

recrystallized grain distribution, but in partially recrystal-

lized grain distribution; as a result, the LDF is extremely

narrow and may not represent a true LDF for fully

recrystallized grain distribution. At such low temperature,

however, the recrystallized grains are easily recognizable

(Fig. 4e, f) and the DRX fraction can be experimentally

measured with confidence.

In order to study the DRX mechanisms and also to

calculate the flow curves, one has to analyze and model the

Avrami kinetics. The traditional method is to express the

Avrami equation in terms of time, t as [4]:

X ¼ 1� exp �ktnð Þ ¼ 1� exp �0:693
t

t1=2

� �n	 


; ð7Þ

where time t is given by t = (e-ec)/ _e and t1/2 = A _e-q exp(Q/

RT) (dropping the initial grain size effect). Although this

equation can properly describe the rate of DRX softening (by

1/t1/2), the expression makes it difficult to model the flow

curves in terms of deformation conditions, i.e., temperature-

compensated strain rate, Z (Z = _eexp(Qdef/RT)) [6].

To solve this difficulty, we introduce a new method of

expressing and analyzing the Avrami kinetics. The basic

idea of the new method relies on expressing the softening

fraction X (due to DRX) in terms of strain (which scales

with time at a constant strain rate) rather than in terms of

time, as

X ¼ 1� e�½kðe�ecÞ�n ð8Þ

The time exponent n can be obtained, as in the tradi-

tional method, by plotting log[ln(1/(1-X))] against

log(e-ec) and by finding the slope at each strain rate. The

results (Fig. 8) show that a good linear relationship is

generally obeyed at each temperature and strain rate. The

time exponent n is evaluated from the slope at various

conditions and the logarithm of n is plotted against the

logarithm of Z (= _eexp(Qdef/RT)); the value of Qdef

(= 350 kJ mol-1) was determined from the peak stress data

(Fig. 1) using a similar method as in the literature [1]. The

result (Fig. 9) clearly shows, despite what is frequently

assumed in the literature [3, 4], that the time exponent n is

not a constant, but surely decreases with increasing Z: the

value of n is about 2.3 at low Z and becomes about 1.4 at

high Z. From linearity, the time exponent n can be

described as a function of Z as

n ¼ 1:14� 10Z�0:056 ð9Þ

Fig. 8 Variation of the softening fraction (log[ln(1/(1-X))]) as a

function of strain (log(e-ec)) at various strain rates and temperatures:

a 1150 �C; b 950 �C. Note the slope (n) is decreasing with the

increasing strain rate
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The rate constant k1/2 can be calculated by determining

(e-ec)1/2 for X = 1/2 in Fig. 8 and using the following

expression from Eq. (8):

k1=2 ¼
ðln 2Þ1=n

ðe� ecÞ1=2
; ð10Þ

where (e-ec)1/2 scales with time (t1/2) required for X = 1/2.

To find an expression for the rate constant k1/2, an

expression for (e-ec)1/2 is sought as a function of tem-

perature and strain rate. Figure 9b shows that log(e-ec)1/2
linearly increases with (1/T) in accordance with Eq. (10),

since the rate constant k1/2,i.e., logk1/2 is expected to be

inversely proportional to (1/T). From the slope, one can

estimate the activation energy Q and the figure indicates

that the activation energies are similar at various strain

rates; the average value is estimated to be 56 kJ mol-1,

which is similar to that determined in the traditional t1/2
method [4]. However, unlike in the traditional t1/2 method,

log(e-ec)1/2 is found to also increase with the increase in

log _e at constant temperature (Fig. 9c), exhibiting a positive

slope rather than a negative slope, as reported in the tra-

ditional t1/2 method [4]. The slopes being more or less

similar at various temperatures, the positive strain rate

quotient is found to be ?0.17 from the average of the

slopes. Combining these results together, (e-ec)1/2 can be

expressed as

ðe� ecÞ1=2 ¼ 2:0� 10�3�e0:17 exp
56; 000

RT

� �

ð11Þ

Then, similarly to the conventional t1/2 method (Eq. 7),

the softening fraction X can be calculated in terms of

(e-ec)1/2 by

X ¼ 1� exp �0:693
e� ec

e� ecð Þ1=2

 !n" #

ð12Þ

The rate constant k1/2 can now be calculated using

Eqs. (9–11) as in the traditional t1/2 method. An alternative

method is to directly estimate the rate constant k1/2 using

the experimentally measured values of n, (e-ec)1/2 and

using Eq. (10). The directly estimated values of k1/2 are

plotted as log(k1/2) versus log(Z) in Fig. 10; the figure

shows a good linear relationship between log(k1/2) and

log(Z), which definitively differs from the traditional t1/2
method: log(t1/2) (and thus log(k)) was impossible to curve

fit to the log(Z) in the traditional t1/2 method [6]. The

reason that log(k1/2) can be linearly fitted to log(Z) is

because log(e-ec)1/2, unlike log(t1/2), can be linearly fitted

to log(Z), as shown in Fig. 10b. From a direct curve fitting

in the figure (Fig. 10a), the rate constant k1/2 is expressed in

terms of Z as

k1=2 ¼ 7:35� 102Z�0:18: ð13Þ

Using Eqs. (8), (9), and (13), one thus can calculate the

softening fraction X due to DRX as a function of strain e at
various strain rates and temperatures. The calculated curves

(not shown here) generally showed a good agreement with

the curves estimated from the flow curves at various

deformation conditions. Once the softening fraction X is

Fig. 9 Variations of the Avrami constant n as a function of Z (a) and
of the (e-ec)1/2 as a function of temperature at various strain rates

(b) and as a function of strain rate at various temperatures (c). Here
Z is a temperature-compensated strain rate, i.e., Z = e9exp(Qdef/RT)
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calculated, one then can calculate the variation of flow

stress as a function of strain e, using Eqs. (1) and (2), at

various strain rates and temperatures. The results of the

calculation were compared with the experimental results in

Fig. 1 and show a good agreement to one another at various

deformation conditions. The calculation further showed

that very much similar results can be obtained using the

(e-ec)1/2 method, i.e., using Eqs. (9), (11), and (12);

however, the direct k1/2 method is expected to be more

reliable because of the smaller number of fitting procedures

involved in the calculation.

Discussion

The present method of modeling the Avrami kinetics,

which may be called the e1/2 (i.e., (e-ec)1/2) method (as

opposed to the traditional t1/2 method), provides a simple

and useful tool to model the flow curves of V-microalloyed

medium carbon steel as shown in Fig. 1. The current

method allows the prediction of flow curves at various

deformation conditions using the Avrami kinetic equation

(Eq. 8) expressed by two simple exponential functions of a

single variable, Z (Eqs. 9, 13); or by employing Eq. (12)

and by fitting (e-ec)1/2 in a simple exponential function of

Z (see Fig. 10b). The reason for the successful modeling

using a single variable Z in the current e1/2 method is

because, unlike the traditional t1/2 method, the temperature

and strain rate dependencies of e1/2 (Eq. 11) exhibit the

same sense as those of Z, whereas the t1/2 shows an

opposite dependency on _e and T as compared to that of Z.

This can be clearly seen by noting the relationship between

t1/2 and e1/2, i.e., t1/2 = e1/2/ _e. Thus, t1/2 can be simply

obtained from Eq. (11), as

t1=2 ¼ 2:0� 10�3�e�0:83 exp
56; 000

RT

� �

ð14Þ

One can immediately notice that the only difference is in

the dependency on the strain rate _e and that the sense of its

dependency is reversed; as a result of the reversed sense

now, the dependency of t1/2 on _e and T becomes opposite to

that of Z. It should be noted here that the quotient (-0.83)

of the strain rate, as well as the activation energy, is

actually very close to that (-0.84) obtained by the con-

ventional t1/2 method in the literature [4]. The problem with

this opposite sense of temperature and strain rate depen-

dencies is clearly manifested in the plot of t1/2 (or ln(t1/2))

against Z(or ln(Z)) (Fig. 10c, d), where a unified relation-

ship is impossible to find between t1/2 and Z (and likewise

between k(t1/2) and Z), in agreement with a previous report

[6].

An examination of literature data [4–6] showed that a

linear relationship between lne1/2 and lnZ similarly holds in

various low-to-medium carbon microalloyed steels, indi-

cating that the e1/2 method is a general method which can

be used to model the Avrami kinetics of most microalloyed

carbon steels in terms of the single variable Z.

Fig. 10 Variation of the rate constant k((e-ec)1/2) (a) and (e-ec)1/2
(b) as a function of Z. Compare with the variation behaviors of t1/2
(c) and k(t1/2) (d) as a function of Z
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It should be mentioned here that the current e1/2 method

(Eq. 11) has a limitation, in that it cannot properly repre-

sent the recrystallization rate with the variation of strain

rate, whereas the traditional t1/2 method (Eq. 14) (actually

the reciprocal of t1/2) properly exhibits the recrystallization

rate as a function of strain rate. However, the current e1/2
method correctly represents the recrystallization rate in

terms of the variation of temperature, in exactly the same

way as the t1/2 method (compare Eqs. 11 and 14). The

activation energy obtained in the current analysis

(56 kJ mol-1) is distinctively low as compared to that

generally known in the static recrystallization kinetics [18];

small activation energy is actually similar to the activation

energy for the rate of boundary migration [19]. It may be

possible that the kinetics of boundary migration is rate

controlling in the necklace recrystallization, unlike the

static recrystallization, because the driving force for growth

is small in the DRX [10].

The current result (Fig. 9a; Eq. 9) shows that the time

exponent ‘‘n’’ is not a constant, as is usually assumed in the

literature [2, 3] but definitively varies depending on Z,

although its dependency is weak. It is worth noting that a

similar tendency was also evident in a previous study of

plain carbon steels [20]. A seemingly small change in the

value of ‘‘n’’ (from 2.3 to 1.4) (which can be easily over-

looked in the flow curve modeling) actually can imply an

important shift in the mode of necklace recrystallization

according to a simulation result of Thomas et al. [21].

Recently, Thomas et al. [21] studied the kinetics of

microstructure evolution by modeling a geometrical aspect

of necklace recrystallization. The modeling results showed

that the time exponent ‘‘n’’ in the Avrami kinetics strongly

depends on the strain rate (at const. temperature); n = 1 at

a high strain rate; n = 3 at a low strain rate. This was

because nucleation is responsible for the most of the

necklace recrystallization at high strain rates, whereas most

of the necklace recrystallization is due to boundary

migration at low strain rates.

The evidence of such a shift between the nucleation

dominant mode and boundary migration dominant mode can

be clearly observed in Figs. 4 (and 6), by recalling that a

similar transition is expected to also occur depending on the

value of Z. Extremely fine recrystallized (through necklace

recrystallization) grains are formed at high Z (at low tem-

perature) due to the difficulty of boundary migration

(Fig. 4f), whereas a necklace grain structure is difficult to

distinguish from un-recrystallized grain structure at low Z’s

(Fig. 4a, c), most probably due to a significant boundary

migration rather than a repeated nucleation. Furthermore, the

n value corresponding to each microstructure is in good

agreement with the prediction of Thomas et al.’s model, i.e.,

n = 1.4 at high Z and n = 2.3 at low Z (Fig. 9a). The current

result (Fig. 9a), however, shows that the value of n is

continuously varyingwith the variation of Z. This is believed

to suggest that a mixed mode is operating in most deforma-

tion conditions but that necklace recrystallization proceeds

increasingly in a nucleation dominant mode as the defor-

mation carries out at increasingly high Z (or vice versa).

In high Z conditions, where the necklace grain structure

is apparent, the LDF peak appears from the early stage of

deformation at the peak position of the fully recrystallized

grain structure (Fig. 6b), and the frequency of the recrys-

tallized peak progressively increases with the progress of

deformation. This is because necklace recrystallization

occurs in a nucleation dominant mode (i.e., by repeated

nucleation) and the GSD is little affected by the level of

strain at which nuclei form because of a severely limited

boundary migration (growth).

In contrast, in low Z conditions (where necklace grain

structure is not apparent, Fig. 6a), the peak of LDF is

progressively shifted with increasing strain (e) from its

initial position to a fully recrystallized position. This would

suggest the occurrence of continuous recrystallization in

addition to discontinuous recrystallization. However, since

a necklace grain structure is clearly observed with high

Z conditions and the time exponent ‘‘n’’ is in good agree-

ment with the boundary migration dominant mode, we

believe that the peak shifts because of a significant

boundary migration (i.e., growth) that occurs during

necklace recrystallization at low Z’s, in accordance with

the model of Thomas et al. [21]. The peak can shift when

significant boundary migration is possible because the

recrystallized grain sizes, in such conditions, are likely to

be determined by the balance between the growth rate

(G) and nucleation rate (N). Derby and Ashby [22], in their

model of dynamically recrystallized grain sizes, showed

that the steady-state grain sizes can be expressed as pro-

portional to (G/N)1/3. If one assumes that a similar relation

holds all along the deformation strain, the recrystallized

grain sizes are expected to depend on the strain and to

decrease with an increase in the deformation strain; this is

because the nucleation rate N is expected to increase

exponentially with strain, whereas the growth rate G in-

creases mildly with the increasing strain.

In our GSD model, it is assumed that recrystallized

grains at various levels of strain (namely in partially

recrystallized structures) conform to the LDF of fully

recrystallized grain structure. Namely, each class of

recrystallized grains formed at each level of strain is

assumed to exhibit the same probability (maximum) of

distribution as that of the same class in fully recrystallized

grain structure. The reasoning for this assumption relies on

the same argument advanced above, based on the model of

Derby and Ashby [22], that the grain size at each level of

strain is likely to be determined by (G/N)1/3 at each level of

deformation strain.
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The recrystallization fractions estimated from the cur-

rent GSD method were compared with those experimen-

tally measured in Fig. 3 to verify the validity of the current

GSD method. The result shows good agreement as long as

a reference GSD (i.e., A0 in Fig. 7) is accurately measur-

able, and this is believed to support the feasibility of the

current GSD method. It is noted here again that the

experimental measurements at low Z’s (i.e., high temper-

atures) are not impossible, although the measurements

appear to be difficult because of the similarity with

recrystallized grain structures (as seen in Fig. 4a, c).

Careful comparison with the initial (prior to deformation)

grain structure makes it possible to recognize the recrys-

tallized grains in partially recrystallized grain structures.

The softening fractions (estimated from the flow curves)

are generally in good agreement with the DRX fractions up

to an intermediate stage of deformation, i.e., to a strain of

about 0.6 (Fig. 3). At a later stage of deformation, how-

ever, the softening fraction tends to overestimate the DRX

fraction at high temperatures and the overestimation

appears to arise from an apparent retardation (or delay) of

DRX kinetics at a later stage of deformation (Fig. 3a, b).

Although the cause of the overestimation is not clearly

understood at present, the overestimation could arise if a

dynamic recovery is significantly delayed (simultaneously

with a delay of DRX) for some reason; in such a situation,

the WH and recovery equation employed in the present

calculation (Eq. 2) would particularly underestimate rsat in
Eq. 1, since Eq. 2 is derived for a situation where dynamic

recovery occurs purely through dislocation dynamics in the

absence of any obstacles [4, 8].

One of the possible causes for a delay of recovery and

DRX would be a dynamic precipitation of carbonitride

particles in the present V-microalloyed steel. The calcula-

tion using the solubility products in the literature [23]

shows that the solution temperatures of AlN and VC(N) are

about 1050 and 960 �C, respectively, in the present

microalloyed steel. Thus, AlN particles would be a possible

reason for the delay of the propagation of DRX at 1050 �C.
As for VC(N) particles, although it is thermodynamically

possible for VC(N) particles to form abundantly at 850 �C,
it is highly unlikely that they can actually precipitate at a

strain rate as fast as 5 s-1 [24].

Conclusions

Anewmethod ofmodeling theAvrami kinetics, based on the

e1/2 method, is proposed to express the kinetics of flow

softening due to DRX, which is, unlike the conventional t1/2
method, capable ofmodeling the softening fractions andflow

curves with a single variable, i.e., Z (= _eexp(Qdef/RT)). The

time exponent of the Avrami kinetics decreases from

n = 2.3 to 1.4 with increasing Z, which results from a shift in

the mode of necklace recrystallization, from boundary

migration dominant mode to nucleation dominant mode.

A GSDmethod of modeling the evolution of GSDwith LDF

is also proposed as a new method for estimating the DRX

fraction in deformation conditions where the recrystallized

grains are difficult to distinguish from un-recrystallized

grains. The softening fraction evaluated from the flow curves

tends to overestimate the DRX fraction at a later stage of

deformation, when the recrystallization and recovery appear

to be retarded by dynamic precipitation.
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kinetics of dynamic recrystallization. Acta Mater 57:2748–2756

5. Quelennec X, Bozzolo N, Jonas JJ, Logé RE (2011) A new
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