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Abstract In this paper, a facile one-pot method was de-

veloped to fabricate ion cross-linked calcium-alginate/

poly(acrylamide) (PAAm) double-network hydrogels with

excellent toughness and stiffness. In comparison to the

sodium alginate/PAAm hybrid gel, the as-fabricated cal-

cium-alginate/PAAm gel demonstrated superior me-

chanical properties. After soaking in calcium chloride

(CaCl2) solution, the size of the as-synthesized hybrid gel

can be well controlled without observable volumetric

swelling through manipulating the equilibrium between

shrinkable elastic energy from ionic (Ca2?) bonds and

swelling osmotic energy. This material design and pro-

cessing technology are promising to fabricate complicated-

shaped cartilage with high geometric fidelity. After soaking

in 8 wt% CaCl2 solution for 2 h, compressive strength of

calcium-alginate/PAAm gel was significantly improved by

92 % compared to PAAm single network hydrogel,

meanwhile the size and shape of calcium-alginate/PAAm

gel were nearly changed and deformed, respectively.

Introduction

The natural cartilages in the human body play a crucial role

in the normal joint functions involving reduction of fric-

tion, distribution of loads, and absorption of impact energy

[1–3]. Traditional techniques to repair cartilage lesions,

including micro-fracture technique, periosteal graft, and

meniscal graft, provide temporary replacement before

degradation and regrowth of cartilage. However, the re-

generated cartilage is structurally, chemically, and me-

chanically inferior to the intact natural cartilage and results

in repetitive damages [4–7]. Artificial cartilage has re-

ceived tremendous interests as a candidate material to re-

pair cartilage defects or even replace the damaged cartilage

due to its easy implantation, good mechanical properties,

and excellent biocompatibility without stimulating donor

site morbidity [4].

Hydrogels are three-dimensional networks composed of

high-molecular weight polymer, water, and cross-linker [8–

10]. Due to the existence of hydrophilic polymer network,

hydrogels can swell several times from dry volume under

different environmental stimuli such as temperature [11],

light [12], pH [13], and ionic concentration [14]. Therefore,

hydrogels are widely used as drug delivery carriers [15]

and superabsorbent materials [16]. However, the poor ge-

ometry fidelity and the limited mechanical properties of

single network (SN) hydrogels have limited their further
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biomedical applications as artificial cartilage [17, 18],

muscle, and vascular [19–21]. For instance, polyvinyl-al-

cohol (PVA) hydrogels-based artificial cartilage did not

pass clinical tests owing to their insufficiency in the

strength, toughness, and friction properties [22, 23].

Recently, tremendous efforts have been devoted to im-

proving mechanical performance of hydrogels. Composite

hydrogels, which are hydrogels with fillers, are widely

studied for their improved mechanical properties. However,

it is generally considered that the organic/inorganic fillers,

such as carbon nanotubes, clay, fibers, celluloses, and gra-

phene oxide, may limit the biocompatibility of hydrogels

[24–36]. Other chemical and physical methods to achieve

tough hydrogels include complicated synthesis of precursors

or cross-linkers. For instance, slide-ring hydrogels count on

the design and synthesis of specific cross-linking points [37,

38]. Tetra-arm hydrogels desire homogeneous distribution

of cross-linking points and chain lengths between cross-

linking points [39, 40]. Hydrophobic groups-modified hy-

drogels depend on special functionalized precursors [41,

42]. Macromolecular microsphere composite (MMC) hy-

drogels employ peroxidized macromolecular microspheres

as polyfunctional initiating and cross-linking centers [43–

45]. All the above-mentioned methods involve complicated

synthesis procedures and are usually time-consuming.

Compared to those methods, double-network hydrogels at-

tract dramatic attention since improved mechanical prop-

erties can be easily achieved by tuning inter/intramolecular

interactions and structures within and between two networks

using a wide variety of polymeric monomers, cross-linkers,

and cross-linking methods [46–51].

Zheng and coworker reported a facile one-pot method to

fabricate Agar/polyacrylamide (PAAm) double-network

gel with high mechanical properties [9]. However, the

harsh condition (soluble temperature 85–95 �C) to dissolve

agar limited the simple manufacturing process. Sodium

alginate (SA), an anionic polymer, has received increasing

attention recently due to its biocompatibility, hy-

drophilicity, and biodegradability under normal physio-

logical conditions, which has been widely used as an

instant gel for bone tissue engineering [52].

Although the calcium-alginate/PAAm (CA/PAAm) has

been developed in the recent years with remarkable tensile

strength and excellent biocompatibility [24, 44, 47, 53], its

applications are also limited by its shape fidelity owing to

swelling. Mooney’s group prepared CA/PAAm DN hy-

drogels with calcium sulfate (CaSO4) to form ionic cross-

linked Ca-alginate as the first network and then polymer-

ized PAAm as the second network. However, the synthe-

sized CA/PAAm exhibited low mechanical properties

because the low solubility of CaSO4 led to low Ca2?

concentration in DN hydrogels. Moreover, the poor dis-

persion of Ca2? in thick SA solution resulted in

heterogeneous cross-links. The quick response of Ca-algi-

nate made it difficult to control the fabrication process [8,

47]. Suo and Vlassak’s group improved the previous

method by employing an additional step of soaking hy-

drogels in Ca2? solution [53]. Zhou and Chen employed

different ionic alginates to improve the mechanical prop-

erties [44]. Although the mechanical properties of CA/

PAAm was dramatically increased, significant volumetric

swelling in ionic solution soaking still existed due to the

osmotic pressure, which extremely weakens the me-

chanical toughness and results in poor dimension and shape

fidelity [40].

In this paper, robust CA/PAAm hydrogel with high di-

mension and shape fidelity will be achieved through

swelling control with the aid of ion-sensitive segments. The

ion-sensitive segments confined the double-network poly-

mer due to ionic interactions. The schematic illustration for

the synthesis of CA/PAAm DN gel is shown in Scheme 1.

A one-pot method was designed to fabricate CA/PAAm

DN hydrogel. Firstly, PAAm network is formed under

gentle heat condition. Then the sodium alginate/PAAm

(SA/PAAm) hydrogel was soaked in the CaCl2 solution

with a controlled concentration. The guluronic acid (G

unit) blocks in different alginate chains are connected to

form ionic cross-links to build second network in hydrogels

through Ca2?. Due to the balance between shrinkage of SA

and swelling of PAAm in CaCl2 solution, no obvious

swelling was observed during the formation of the CA/

PAAm DN hydrogel. Further studies demonstrate that this

hydrogel processing strategy can be successfully used to

manufacture artificial meniscus with good dimension and

shape fidelity, as well as high toughness and stiffness.

Materials and methods

Materials

Acrylamide (AAm), N,N0-methylenebis (acrylamide)

(MBAA), calcium chloride (CaCl2), and ammonium per-

sulfate (APS) were purchased from Sigma Aldrich. SA was

kindly obtained from FMC Bio Polymer.

Synthesis of double-network hydrogel (DN)

The SA/PAAm double-network hydrogel was firstly syn-

thesized by a novel two-step method before the synthesis of

CA/PAAm. Briefly, 200 mg of SA was dissolved in 10 mL

of DI water under continuous gentle stirring overnight.

Then 1200 mg of AAm was dispersed into the thick SA

solution before bubbling with Nitrogen for 10 min. The

mixture was subsequently mixed with MBAA and APS

under gentle stirring. The weight of MBAA and APS was
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0.0025 and 0.03 times that of AAm, respectively. After

30-min stirring, the thick solution stood for 1 h to remove

the bubbles. Then the transparent solution was injected into

a closed Teflon mold covered with a glass slide. The mold

was transferred to a glove box filled with nitrogen gas and

the SA/PAAm hydrogel was prepared after 2 h of heating

at 65 �C in an oil bath. After that, the pre-prepared gel was

immersed in CaCl2 solution to achieve CA/PAAm DN gels

with higher toughness and stiffness. The SA/PAAm control

sample was prepared in the same procedure without the

post-processing of SA. The CA/PAAm DN gels with dif-

ferent concentrations of AAm and SA were manufactured

in the same process and compared.

Material characterizations

The uniaxial compressive resistance properties of the hy-

drogels were tested on a SHIMADZU precision universal

tester (AGS-X). Cylindrical gel samples were used for com-

pression tests. The compressive strain was estimated as h/h0,

where h is the deformed height and h0 is the original height.

The compressive stress was measured as F/A0, where F is the

force applied on the gel and A0 is the original cross section

area of gel sample. The compressive rate was 1 mm min-1.

Results and discussions

PAAm SN gels exhibited poor shapeability and weak

mechanical properties [9]. As shown in Fig. 1, the PAAm

SN hydrogels were loosely cross-linked and could not

retain its shape after removal from the mold. After com-

pression, the meniscus shape of PAAm SN gel collapsed.

After soaking of SA/PAAm DN gel in 10 wt% CaCl2 so-

lution for 2 h, the meniscus shape of CA/PAAm DN hy-

drogel is well maintained without observable swelling, as

shown in Fig. 2a. The Fig. 2b and c presented that CA/

PAAm DN gel cartilage processed good geometric con-

sistency with the tibia joint simulator. In addition, the CA/

PAAm DN gel artificial meniscus demonstrated good re-

siliency and high shape retention without any obvious

damage even after compression, stretching, and bending

(as shown in Fig. 3). The easy processability, excellent

compressive resistance, and good geometry fidelity make

the CA/PAAm DN gel a good candidate to be applied as

artificial cartilage.

The size change of the as-prepared gels in CaCl2 solu-

tion at 25 �C was further studied as a function of Ca2?

concentration and time. Hydrogels in cylinder shape were

achieved simply by mixing aqueous solutions of the

polymer units, and the resultant hydrogels contain a high

amount of water (73–83 %) in the CA/PAAm DN hydro-

gel. As shown in Fig. 4, the diameter of as-prepared hy-

drogel is 15.83 mm, the diameter increased after soaking

2 h in low concentration of CaCl2 solution, which is due to

the collapse of polymer network when the equilibrium

between osmotic and elastic energies is inevitably lost [40].

However, with the increasing of Ca2? concentration, the

diameter of CA/PAAm DN hydrogel reduced. When the

Ca2? concentration is 10 wt%, the diameter of CA/PAAm

DN hydrogel hardly changed, which was illustrated in the

subset photo in Fig. 4.

Scheme 1 Scheme of CA/PAAm double-network hydrogel
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Two types of cross-linked polymer networks were pre-

sent in CA/PAAm DN hydrogels: ion (Ca2?) cross-linked

alginate as the second network and covalently cross-linked

PAAm as the first network. These two types of cross-linked

polymers are intertwined to form interpenetrated polymer

network (IPN) with toughness and stiffness similar with

those of natural cartilage. The hydrogel did not

demonstrate regular volumetric swelling due to the ion-

responsive shrinking behavior, which was achieved

through balancing swelling osmotic energy and shrinkable

elastic energy from CA gel. Furthermore, the size change

versus time in CaCl2 with different concentrations was

observed, as shown in Fig. 5. At first, in the high concen-

tration (10 wt%) of Ca2? solution, the diameter decreased

Fig. 1 Weak mechanical and free-shapeable properties of PAAm SN hydrogels a meniscus; b suspension of meniscus; c compression of

meniscus

Fig. 2 a Comparison of the SA/PAAm gel- (upper) and CA/PAAm

DN gel- (middle) based artificial cartilage and the thermoplastic

acrylonitrile butadiene styrene (ABS)- based cartilage geometric

model (bottom, dyed in red); b, c, and d are the photographs of the gel

cartilage with good geometric consistency with the tibia joint

simulator (Color figure online)
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in a small range, which resulted from the high ionically

cross-linked bond. With time increasing, the diameter in-

creased gradually due to osmotic swelling. After that, the

equilibrium was crushed owing to the shrinkable elastic

energy and was weakened since ionic cross-linked network

was completely built. In this period, the diameter increased

dramatically. Finally, the size of DN hydrogel in different

Ca2? concentrations was kept in a same range, which

demonstrated that a new balance between the osmotic en-

ergy and elastic energy was obtained when the network

was stretched after swelling.

In addition, the diameter change with different ratios of

alginate and PAAm was showed in Fig. S1. With the

Fig. 3 Extraordinary mechanical and free-shapeable of Ca-alginate/PAAm DN hydrogels a meniscus; b suspension of meniscus; c compression

of meniscus; d stretching of meniscus; e and f bending of meniscus

Fig. 4 Size change of hydrogel in CaCl2 solution with different

concentrations. Insert is photograph of hydrogel before and after

soaking 10 wt% CaCl2 solution for 2 h. The concentration of alginate

was 20 mg mL-1 and AAm was 120 mg mL-1

Fig. 5 Size change of hydrogel versus time in CaCl2 solution with

different concentrations. The concentration of alginate was

20 mg mL-1 and AAm was 120 mg mL-1
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increment of alginate ratio, the diameter of DN hydrogel

decreased since the shrinkable energy from Ca2? ionic

bonds overcame the osmotic swelling. However, the size of

DN gel became smaller with the reduction in PAAm ratio,

because the equilibrium of osmotic and elastic energy was

broken.

Furthermore, the superior mechanical properties of

CA/PAAm DN hydrogel were showed in the Fig. 6 with

excellent resiliency, slicing resistance, and elasticity.

Fig. 6 Mechanical tests of CA/PAAm DN gels with high PAAm concentration indicated a good resiliency; b excellent slicing resistance; and

c good elasticity

Fig. 7 Comparison of the uniaxial compression properties of CA/

PAAm DN gel after soaked in different concentrations of Ca2?, the

concentration of Na-alginate was specified to be 20 mg mL-1 and

AAm was 120 mg mL-1. a Compressive stress–strain curves of CA/

PAAm DN gel; b comparison of maximum compressive stress with

different concentrations of Ca2?

Fig. 8 a Comparison of the compressive properties of CA/PAAm

DN gel with different alginate concentrations. The concentration of

AAm (120 mg mL-1) was specified; b comparison of the compres-

sion properties of CA/PAAm DN gel with different AAm concen-

trations. The concentration of alginate (20 mg mL-1) was specified.

The concentration of CaCl2 solution is 10 wt% for the preparation of

all those gels
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Most importantly, the DN gel in cylinder and film both

processed the ability to restore rapidly to their original

shape upon removal of the external compression or

tension.

The uniaxial compressive strength of the CA/PAAm

DN was comprehensively studied. The compressive

property of DN gel samples as a function of different

Ca2? concentrations was compared in Fig. 7. The as-

prepared SA/PAAm hydrogels were immersed into solu-

tions with different concentrations of CaCl2. With the

increment of Ca2? concentration from 2 to 10 wt%, the

compressive strength was enhanced by increased Ca2?

concentration, which demonstrated that the guluronic acid

(G unit) in different alginate chains form ionic cross-links

though calcium divalent cations, resulting in a CA net-

work [8]. When the Ca2? concentration was higher than

8 wt%, the compressive strength indicated no obvious

variation, which demonstrated that the equilibrium of

Ca2? ion cross-linked alginate was achieved. The com-

pressive modulus of DN gels was also enhanced with the

increment of Ca2? concentration (As shown in inset of

Fig. 7a).

As shown in Fig. 8, different ratios between alginate and

acrylamide were studied to reveal the effects of composi-

tion on the mechanical properties of the as-fabricated DN

gels. As shown in Fig. 8a, when the content of AAm is

specified in DN hydrogels, with the increasing content of

alginate, the compressive strength and modulus increased

simultaneously. Figure 8b indicated that the increment of

AAm content also led to the improvement of compressive

strength and modulus with set content of alginate. These

indicated that the improvement of compressive strength

and modulus was derived from the combination of PAAm

and CA network [8].

Conclusions

In conclusion, a facile one-pot synthesis is developed to

fabricate ion-linked Ca-alginate/PAAm double-network

hydrogels. In this paper, AAm is first to be polymerized

before the ion cross-linking of alginate. The swelling be-

havior of this ion-responsive double-network gel can be

precisely controlled when the ion concentration is 8 wt%.

This double-network hydrogel is promising to be fabricated

into complex-shaped artificial cartilage with superior

geometric fidelity, excellent compressive resistance, good

resiliency, and elasticity that is comparable to the native

cartilage. This research may open a pathway of biomedical

applications for composite hydrogels.
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