
BiFeO3 thin films via aqueous solution deposition: a study of phase
formation and stabilization

Nikolina Pavlovic1 • Jan D’Haen2 • Hiwa Modarresi3 • Alexander Riskin1 •

Christopher De Dobbelaere1 • Margriet J. Van Bael4 • Kristiaan Temst3 •

An Hardy1 • Marlies K. Van Bael1

Received: 8 November 2014 / Accepted: 20 March 2015 / Published online: 11 April 2015

� Springer Science+Business Media New York 2015

Abstract This paper reports a thorough microstructural

investigation of bismuth ferrite (BFO) thin films subjected

to various processing conditions and discusses their influ-

ence on the stability of the BiFeO3 perovskite phase. The

formation of secondary phases in BFO thin films is studied

as a function of annealing temperature and time, film

thickness, Bi excess, and Ti substitution. While films an-

nealed at 600 �C consist of the desired BiFeO3 phase,

higher temperatures induce the decomposition leading to a

significant amount of secondary phases, particularly the

iron-rich Bi2Fe4O9 phase. A longer annealing time at

700 �C further enhances the decomposition of BiFeO3.

Qualitative microstructural analysis of the films is per-

formed by electron backscattered diffraction which pro-

vides phase analysis of individual grains. The morphology

of the single-crystalline Bi2Fe4O9 grains that are embedded

in the BiFeO3 matrix drastically changes as a function of

the film thickness. Nucleation of these Bi2Fe4O9 grains

probably occurs at the film/substrate interface, after which

grain growth continues toward the surface of the film

through the depletion of the BFO phase. Addition of Bi

excess or the substitution of Fe with Ti in the precursor

solutions significantly reduces the formation of an iron-rich

secondary phase. Influence of the secondary phases as well

as Ti substitution on magnetic properties of BFO films was

investigated.

Introduction

Bismuth ferrite (BFO), as a material with unique ferro-

electric and magnetic properties at room temperature, is a

candidate for a wide range of applications in electronic

devices, especially in the form of thin films [1]. BiFeO3 is

the only known multiferroic material with a coexistence of

ferroelectric (Curie temperature, Tc of 830 �C) [2, 3] and
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magnetic (Néel temperature, TN of 370 �C) [3, 4] func-

tionalities at room temperature. However, secondary

phases like mullite-type Bi2Fe4O9 and sillenite-type Bi25
FeO39 usually accompany BFO [5–8]. The presence of

such parasitic phases in the material can deteriorate elec-

trical and magnetic properties, diminishing application

possibilities and performances [9]. Although a lot of re-

search has been carried out on the BFO system and issues

with secondary phases are often reported, the various lit-

erature reports dealing with the thermal stability of BFO

and the reasons for the appearance of these parasitic phases

are still contradictory [5–8, 10–14].

Early works on the solid-state synthesis of BFO sug-

gest that its decomposition into the starting oxides Bi2O3

and Fe2O3 [10] or Bi2Fe4O9 [5] during thermal treatment

is the consequence of the evaporation of bismuth oxide [5,

10]. In more recent papers, difficulty to obtain a single-

phase material is attributed to the changing equilibrium

composition of BFO upon temperature increase by

Morozov et al. [8], while Palai et al. [12] emphasize that

the BiFeO3 phase is thermodynamically metastable in air.

The latter authors [12] as well as Arnold et al. [2] report

decomposition around 820 �C into an iron-rich Bi2Fe4O9

and a liquid phase suggesting that the rate of decompo-

sition can be affected by several different parameters in-

cluding the ratio of surface to bulk volume, the annealing

time at constant temperature, heating rate, surface defects,

porosity and grain size, etc. During neutron diffraction

measurements, Palewicz et al. [4] noticed that part of the

BFO sample transformed to the new Bi2Fe4O9 phase at

700 �C. In their comprehensive study of BFO phase sta-

bility, Valant et al. [7] pointed out that the purity of the

starting materials is a crucial parameter for obtaining

single-phase BFO since the presence of small amounts of

impurities leads to the formation of a significant amount

of secondary phases. According to the latter, Al2O3 or

SiO2 impurities enhance the formation of secondary

phases during solid-state synthesis, since Al2O3 and SiO2

have a higher solubility in Bi2Fe4O9 and Bi25FeO39, re-

spectively, than in BiFeO3. Selbach et al. [6] report that

BiFeO3 decomposes into Bi25FeO39 and Bi2Fe4O9 in a

temperature interval from 450 to 770 �C under ambient

atmosphere while above this interval till 930 �C BiFeO3 is

thermodynamically stable and corroborate their findings

with thermodynamic explanations. Decomposition at

temperatures higher than 770 �C is therefore related to

chemical incompatibility between BiFeO3 and the sup-

porting materials it is in contact with during processing,

like Al2O3- or SiO2-based substrates [11]. In this case,

alumina or silicon substrate at the contact surface with

BFO sample can act like impurities [7] initiating an in-

terface reaction which results in a higher amount of Bi-

rich and Fe-rich secondary phases in BiFeO3 ceramics

[11] as evidenced during some experimental studies [15,

16].

The aforementioned studies have mainly focused on the

conventional solid-state synthesis, as a method for the

preparation of single crystals, powders, and ceramics.

However, the different processing conditions between bulk

ceramics and thin films could cause differences in phase

stability, decomposition behavior, and formation of sec-

ondary phases. Furthermore, synthesis parameters known

to influence the phase formation and stability of the ma-

terial differ between preparation methods and state of

matter. Therefore, here we study thin films.

Deposition of BFO thin films is achievable via numer-

ous methods including both physical vacuum-based tech-

niques such as pulsed laser deposition (PLD) [12, 17, 18],

molecular beam epitaxy (MBE) [19], or sputtering [20–22]

and chemical-based techniques such as chemical vapor

deposition (CVD) [23], sol–gel or chemical solution de-

position (CSD) [24–29], or electrophoretic deposition [30].

Previous reports on the phase stability of the BFO thin

films mainly refer to PLD processing conditions where

deposition pressure and temperature play an important role

in the phase formation process while issues with impurities

like Fe2O3 and Bi2O3, as well as Bi evaporation were re-

ported [9, 18, 31, 32]. On the other hand, research on the

thermal stability of BFO thin films obtained via CSD and

on the influence of processing parameters is rather limited

[27, 28]. Particularly in solution chemistry, the thermal

budget (pyrolysis and annealing times and temperatures,

heating rates) and possible film–substrate interactions are

important aspects of solution deposition [27, 28, 33, 34].

In this paper, we report on the thermal stability and the

decomposition of BFO thin films obtained via water-based

CSD. We identified processing parameters affecting the

decomposition of BiFeO3, which is followed by a thorough

microstructural analysis of the acquired thin films and the

determination of the phases present. We also propose ap-

proaches to inhibit the formation of secondary phases and

improve the stability of the BFO phase.

Experimental

Solution preparation

Bismuth ferrite thin films were deposited from an aqueous

solution–gel precursor on platinized silicon substrates with

TiOx as an adhesion layer between the Pt electrode and the

silicon substrate (Pt (80 nm)/TiOx (30 nm)/SiO2/Si). First,

we synthesized aqueous solutions of bismuth and iron

complexes with citric acid as the chelating agent. More

details on the synthesis of these precursor solutions can be

found elsewhere [35]. The exact concentration of the metal
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ion in the monometal precursors was determined by means

of ICP–AES (Optima 3300 DV, PerkinElmer). Then, by

mixing the Bi3? and Fe3? solutions in the stoichiometric

ratio as well as with a Bi excess of 10, 20, or 30 mol%, we

obtained multi-metal ion precursor solutions with a total

metal ion concentration of 0.6 M. Besides these BFO

precursors, we also prepared solutions where the Fe3? ion

was partially substituted by Ti4? and without Bi excess.

The source for Ti4? was an aqueous-citrato-peroxo-Ti(IV)

precursor of which the synthesis route was reported earlier

[36]. In this way, we obtained four different solutions as

precursors for BiFe1-xTixO3 (BFTO) with a total metal ion

concentration of 0.6 M, in which x = 0.05, 0.10, 0.15, or

0.20.

Thin film deposition

All solutions were filtered through a syringe filter of

0.2 lm (Acrodisc Premium, Pall Life Sciences) for their

deposition onto platinized silicon substrates (Pt/TiOx/SiO2/

Si) which were thoroughly cleaned beforehand in sulfuric

acid peroxide mixture/ammonia peroxide mixture (SPM/

APM) to improve their wettability [37]. Thin layers were

spin coated at a rotation speed of 3000 rpm for 30 s, with

an acceleration of 1000 rpm/s. Each deposition step was

followed by a hot plate treatment at 110 �C (1 min),

260 �C (2 min), and 480 �C (2 min) in order to decompose

the organic constituents. The thickness of the obtained

films is controlled by the number of deposited layers. Fi-

nally, the films were subjected to an annealing process by

inserting them into a preheated tube furnace at 600, 650, or

700 �C for different times in a dry air atmosphere using a

gas flow of 0.5 l/min.

Characterization

The crystal structure of the obtained films was analyzed

using a Siemens D-5000 diffractometer with Cu Ka1 ra-

diation operating in h–2h mode with 2h range from 10� to
60�. Film morphology and microstructure were examined

using an atomic force microscope (Veeco Dimension Mi-

croscope AFM with Digital Instrument Nanoscope III

controller), scanning electron microscope (SEM, FEI

Quanta 200 FEG) coupled with energy-dispersive X-ray

spectroscopy (EDX) analysis, and electron backscattered

diffraction (EBSD) analysis. For the phase analysis, the

SEM images were taken under EBSD conditions i.e.. the

sample was tilted *70� with respect to the horizontal axis,

which allows more electrons to be scattered and to escape

toward the detector. The thickness of the annealed films is

measured in cross-sectional view with a scanning electron

microscope (SEM) which revealed that film thickness

shows a linear dependence on the number of deposited

layers. Magnetic response of the samples was measured by

superconducting quantum interface device (SQUID) mag-

netometer of Quantum Design MPMSXL-5 with a recip-

rocating sample option (RSO) head at 300 K with the

magnetic field in plane with the thin films.

Results and discussion

Annealing temperature

X-ray diffraction (XRD) analysis reveals that BiFeO3 films

already crystallize around 470 �C after a short thermal

treatment of 2 min, as shown in Fig. 1a. This result is in

agreement with Tyholdt et al. who reported the crystal-

lization of 2-methoxyethanol-based BFO films between

460 and 480 �C [28]. The fact that crystallization from

solution-based precursors already starts at a lower tem-

perature, in comparison with solid-state methods

(*600 �C) [10] is intrinsically ascribed to the wet che-

mical method enhancing the mixing of metal ions at the

molecular level, thereby decreasing diffusion distances and

facilitating a low crystallization temperature [38].

In order to get insights into phase formation, growth,

and thermal stability of the stoichiometric BFO films,

three-layered films were further annealed at 600, 650, or

700 �C for 1 h in dry air. XRD results shown in Fig. 1b

confirm that the BFO phase is present in all three films

treated under these different thermal conditions. Films

annealed at 600 �C crystallized into the BFO phase without

any other secondary phase detectable within the instru-

mental sensitivity. An increase of temperature by 50 �C did

not introduce significant differences in the pattern.

Drastic changes in phase composition occurred after

heat treatment at 700 �C: a large portion of the iron-rich

Bi2Fe4O9 has formed as a secondary phase. Furthermore,

besides the phases detected above, additional peaks at

2h & 27.9� and &30� appearing as shoulders to the main

reflections of Bi2Fe4O9 (2h = 28.21� and 29.7�), as well as
a peak at 2h & 34.8� point to the presence of other sec-

ondary phases in the films. Of these, the first two reflec-

tions could be correlated to a bismuth-rich Bi2O3 or

Bi25FeO39 phase. However, the reflection around 30� could
also have its origin in some form of a Pt–Bi alloy, Pt–Bi–O

compound, or even in a Bi2Ti2O7 phase together with the

peak at 2h & 34.8� (marked with ?) [33, 39]. Figure 2

illustrates the effect of the annealing temperature on the

film morphology. The film annealed at 600 �C is poly-

crystalline with equiaxial grains, uniform, relatively

smooth, with a low porosity, and without cracks. However,

after thermal treatment at 650 �C, the SEM images reveal

dark areas having a different morphology compared to the

rest of the film which can probably be related to the onset
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of the BFO decomposition process. The morphological

change is the most drastic in the sample annealed at

700 �C, where large, elongated grains of around 5 lm are

embedded in the matrix of small, equiaxed grains. Ac-

cording to EDX analysis (not shown), these elongated

grains comprise a higher amount of Fe compared with the

amount that is found in the surrounding matrix.

Electron backscattered diffraction is used in conjunction

with SEM imaging to perform a qualitative microstructural

analysis of the films annealed at 700 �C, as shown in

Fig. 3a–c. According to the Kikuchi pattern (Fig. 3b) ob-

tained from the matrix (position 1), this part of the film is

identified as BiFeO3, while the patterns from the big,

elongated grains (position 2 and 3) correspond to iron-rich

10 20 30 40 50 60

#

#

#

L
o
g
 
I
n
t
e
n
s
i
t
y
 
(
a
r
b
.
u
n
i
t
s
)
 

2θ (°)

substrate

470°C

460°C

480°C
#

BiFeO
3

#  substrate

10 20 30 40 50 60

650°C

600°C

* **
?

#

#

#*

**
**

***

**

L
o
g
 
I
n
t
e
n
s
i
t
y
 
(
a
r
b
.
u
n
i
t
s
)

2θ (°)

*

#

?
^

700°C

BiFeO
3

 * Bi
2
Fe

4
O
9

^ Bi
2
O
3

# substrate

(a)

(b)

Fig. 1 XRD patterns of the three-layered films a after a hot plate

treatment at 460, 470, or 480 �C for 2 min and b annealed at 600,

650, or 700 �C for 1 h in dry air

Fig. 2 SEM images of the stoichiometric three-layered films an-

nealed at a 600 �C, b 650 �C, or c 700 �C for 1 h
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Bi2Fe4O9 (Fig. 3c). The phase map in Fig. 3d shows the

BFO grains in red and the Bi2Fe4O9 in blue. Inverse pole

figure (IPF) maps for each phase separately are in reference

to the normal direction where each individual orientation of

crystals is colored differently. Color coding for the orien-

tations is presented in a standard stereographic triangle

(SST) [40], in Fig. 3e–f. The small grains are randomly

oriented indicating the polycrystalline nature of the BFO

film while the large grains of Bi2Fe4O9 are single crystals

that mainly exhibit (001) orientation (red–orange color in

the SST). Despite this thorough microstructure analysis,

there is no evidence of Bi-rich phases although bismuth-

rich compounds are detected by XRD analysis as one of the

formed phases during the decomposition process (Fig. 1b).

Furthermore, the detection limit of the diffraction analysis

for Bi-rich phases should be lower since the concentration

of heavy Bi ions is much higher in Bi2O3 or Bi25FeO39 than

in compounds with the lighter Fe ion, such as Bi2Fe4O9. It

is possible that the Bi-rich phase is spread in the films as

very fine grains or is segregated as a separate layer below

the film, on the interface with the substrate [41].

According to several reports where Bi-based films were

deposited on substrates with a Pt bottom electrode, diffu-

sion of Bi from the film into the substrate and its interaction

with the platinum electrode result in the formation of an

interfacial layer at the electrode–film interface [29, 39]. It

is known that Bi reacts with Pt forming very stable

intermetallic compounds [42], thus an interdiffusion layer

between a Bi-based film and a Pt electrode can readily form

at elevated temperatures [29, 33, 39]. A similar phe-

nomenon was observed in case of Pb-based thin films ob-

tained by CSD where different Pt–Pb intermetallic phases

formed at elevated temperature [43, 44].

Based on the SEM and EBSD results in Figs. 2 and 3,

respectively, it can be assumed that the decomposition

process already starts at 650 �C, where the dark areas in the
SEM images (Fig. 2b) are sites where nucleation of the

iron-rich Bi2Fe4O9 phase starts and from where its large

grains develop at 700 �C. In order to get insight into and

possibly extend the stability window of the BFO films to-

ward 700 �C, several experiments are performed taking

into consideration the film thickness, annealing time, Bi

excess, and usage of an aliovalent substituent as parameters

that could influence the phase stability of the obtained

films.

Film thickness

Due to the specific geometry of thin films i.e., their high sur-

face-to-volume ratio and large exposed surface area, bismuth

oxide, being a volatile compound, can evaporate much easier

from a thin film than from bulk material during heat treatment.

According to the phase diagram of BiFeO3, a Bi deficiency in

the material could lead to the destabilization of the BiFeO3

Fig. 3 EBSD results of the three-layered BFO film annealed at

700 �C: a SEM image of the sample, b Kikuchi pattern obtained at

position 01: BiFeO3, c Kikuchi pattern obtained at position 02:

Bi2Fe4O9; d phase map (red: BiFeO3, blue: Bi2Fe4O9), e and f are

inverse pole figure (IPF) maps for the BiFeO3 and BiFe2O4 phase,

respectively, in reference to normal direction with the color codes for

individual orientations of crystals presented in standard stereographic

triangle (SST) (Color figure online)
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phase and the formation of iron-rich Bi2Fe4O9 [12]. By

changing the film thickness, the ratio of surface to volume is

varied in order to explore its influence on the phase stability of

BFO. For this study, one-, three-, six- and eight-layered films

were deposited, annealed at 700 �C for 1 h, and mutually

compared. XRD patterns presented in Fig. 4a show that re-

gardless of the film thickness, substantial amounts of secondary

phases form. However, the most drastic change in phase

composition occurs in the one-layered films, where Bi2Fe4O9

appears as the primary phase with a preferred orientation of

(001). At the same time, the decomposition is not complete

since a few peaks of BFO are still present. Reflections at

2h & 27.9� corresponding to a Bi-rich phase are only visible

for the thicker films, while reflections from a possible Pt–Bi

alloy are detected at a 2h & 30�, marked with (?) in Fig. 4b.

A thicker film slightly stabilizes the BFO phase but also

has a large impact on the morphology, as illustrated in

Fig. 5. The SEM micrograph of the one-layered film re-

veals a broken-up layer consisting of small, equiaxed

grains, and larger structures differing in shape and size

which could be associated with the decomposition process

and the formation of Bi2Fe4O9. Such a heterogeneous

morphology is in agreement with the XRD results (Fig. 4).

The secondary phase is also present in the microstructure

of the six-layered samples in the form of plate-like grains

roughly square in shape with an edge length up to 1 lm. In

the case of eight-layered films, smaller and thicker plates of

the iron-rich phase are embedded in the BFO matrix. In

general, well-defined Bi2Fe4O9 grains of different mor-

phologies are formed with a tendency toward a decreasing

grain size with an increase of film thickness. Besides, the

increasing thickness results in a gradual change of (001)

preferred orientation of Bi2Fe4O9 in one-layered films to

more randomly oriented grains after deposition of 8 layers.

In the cross-sectional SEM images of the six- and eight-

layered films in Fig. 5, one observes that single-crystalline

grains of the iron-rich phase grow through the whole film

and are not only present on the film surface. Nucleation of

these Bi2Fe4O9 grains probably occurs at the film/substrate

interface, after which grain growth continues toward the

film surface through the depletion of the BFO phase. Ac-

cording to literature, Bi2Fe4O9 crystals have a variable

morphology and can be either sheet, plate, cube, rod, or

fiber like depending on the processing parameters during

the synthesis [45–49]. The possible explanation for this

variety of crystal shapes can be found in the crystal

structure of Bi2Fe4O9 [45, 50]. Previous studies on

orthorhombic Bi2Fe4O9 showed that the dominating facets

of Bi2Fe4O9 crystal are (001), (110), and �110ð Þ. Crystal
growth occurs easily along the (001) plane, resulting in a

sheet-like morphology with a large (001) facet. If the

growth on (110) and �110ð Þ facets is suppressed and

enhanced on the (001) facet, the growth rate difference

between these facets decreases or disappears. As a result,

the morphology of the Bi2Fe4O9 crystal changes to a plate

like or to a cubic form.

In the same images, the interface between the Pt and the

TiOx adhesion layer beneath it can be studied. The thick-

nesses of the platinum and TiOx layers vary locally along

the sample. Furthermore, the interface between Pt and TiOx

is very rough in comparison with the bare Pt/TiOx/SiO2/Si

substrate itself (Fig. 5f), which could be the result of

possible interactions of these layers with the BFO film, the

formation of a Pt–Bi alloy, or even the accumulation of Bi

beneath the platinum layer. To draw more conclusions

from the interaction between Bi and the Pt substrate at

elevated temperatures, we deposited an aqueous Bi citrate
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Fig. 4 a XRD patterns of BFO films obtained from one, six, and

eight layers, annealed at 700 �C; b Detail from the diffractograms in

(a)
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precursor with a 0.7 M concentration on the same substrate

and repeated the same thermal treatment with the final

annealing at 700 �C for 1 h. An SEM micrograph of the

obtained film and a backscattered electron image of the

cross section are given in Fig. 6. A broken layer with is-

land-shaped structures of bismuth oxide and open, crater-

like features on the Pt electrode are clearly visible in the

plane-view SEM image, Fig. 6a. These features indicate

the strong interaction between the Pt electrode and the film

and probably appear due to severe diffusion of bismuth

through the electrode and its accumulation beneath the

platinum, as shown in the cross-sectional image in Fig. 6b.

Annealing time

To study the influence of the annealing time on the de-

composition process, we exposed the stoichiometric, three-

layered BiFeO3 films to 700 �C for different times (5, 10,

30, 60, 90, or 120 min) and afterward analyzed the phase

composition by X-ray diffraction. As Fig. 7a shows, only a

small amount of the Bi2Fe4O9 secondary phase is present in

the film after 10 min of heat treatment. With longer an-

nealing times, the intensities of the Bi2Fe4O9 (001) and

(002) reflections at 2h = 14.7� and 29.7�, respectively,

show the most prominent increase. In addition to Bi2Fe4O9,

as a product of the BFO decomposition process, other

secondary phases are also present in the samples as shown

by the peaks in the 2h range 20�–34� in Fig. 7b. A closer

examination of this pattern shows double peaks at

2h & 28�, as well as a shoulder at &30� which probably

arise from Bi-rich phases and the Pt–Bi alloy, respectively,

as discussed above. As the annealing time increases, the

integral intensities of the BFO reflections decrease while

the ones belonging to the iron-rich Bi2Fe4O9 phase in-

crease. According to these results, longer annealing times

at 700 �C enhance the decomposition process and thus the

formation of secondary phases in the BFO films, as

expected.

The SEM images in Fig. 8 show the evolution of the

film morphology with respect to the annealing time. Some

microstructural diversity appears already after exposure at

700 �C for 10 min in the form of longer grains. As time

increases, it is clearly visible how big elongated grains of

Bi2Fe4O9 gradually expand in between the small grains of

the BFO matrix.

Addition of Bi excess

Considering Bi evaporation from the film as a cause for the

secondary phase formation, a bismuth excess in the pre-

cursor is a possible step to prevent the decomposition of

BFO [28, 51, 52]. According to Tyholdt et al., a bismuth

excess of 10 at.% Bi improves not only the stability of the

BFO phase at elevated temperatures (700 �C) but also the

quality of the films in terms of density and porosity [28]. In

our study, a significant amount of Bi2Fe4O9 is present in

the three-layered films with a 10 mol% Bi excess, as in

Fig. 9. On the other hand, by applying 20 or 30 mol% Bi

Fig. 5 SEM surface images of BFO films annealed at 700 �C with a one, b six, or c eight layers; Backscattered electron images of cross section

of d six- or e eight-layered films and f the Pt/TiOx/SiO2/Si substrate treated at 700 �C
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excess in the precursor solutions, it is possible to suppress,

at 700 �C, the formation of the iron-rich phase of which

reflections are no longer detected in the XRD patterns after

heat treatment, as shown in Fig. 9. However, peaks of other

secondary phases, probably a Bi-rich phase and some form

of Pt–Bi alloy (marked with ?), are still detected. The film

with a 10 % Bi excess has a very heterogeneous mi-

crostructure due to the decomposition leading to the for-

mation of the iron-rich secondary phase, as shown in

Fig. 10a. Figure 10b and c shows a remarkable improve-

ment of the microstructural homogeneity which is in ac-

cordance with the XRD results. In case of the films with 20

and 30 mol% Bi excess, the SEM images reveal more

dense microstructures, although a few square-shaped

grains, rich in iron, are still visible in films with a 20 mol%

Bi excess.

Substitution of Fe with Ti

Chemical substitution into perovskite BFO has mainly

been used to improve electrical and magnetic properties of

the material [53–58]. The substitution of Fe3? by aliovalent

Ti4? results in a reduced leakage current. It is reported that

titanium with a higher valence Ti4? ion than Fe3? acts as a

donor decreasing the concentration of oxygen vacancies

[24, 25, 53, 59]. In our work, the effect of the addition of

different amounts of Ti on the phase stability of BFO films

(BiFe1-xTixO3, x = 0.05, 0.1, 0.15 or 0.20) is studied.

Noteworthy changes in the XRD patterns are visible as the

amount of Ti increases, as shown in Fig. 11. Reflections

Fig. 6 Film obtained from a Bi citrate precursor (0.7 M) deposited

on Pt/TiOx/SiO2/Si using the same thermal treatment at 700 �C/1 h as

for the BFO films: a Plane-view SEM micrograph, b Cross-sectional

backscattered image where the very bright layer is Pt electrode and

dark area underneath is Bi-rich phase
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Fig. 7 a XRD patterns of three-layered BFO films annealed at

700 �C for different times (10, 20, 30, 60, 90, or 120 min); b Detail

from the diffractogram in (a)
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belonging to an iron-rich phase become less pronounced

which implies that the presence of the Ti4? ion in the

system partially stabilizes the BFO phase. The most

prominent change is the complete disappearance of

Bi2Fe4O9 as a result of substitution with 20 mol% Ti. At

the same time, with an increase of the Ti content toward

x = 0.20, the peak at 2h * 32� associated with BFO be-

comes more broadened. This peak broadening is connected

with a decreasing average grain size below 100 nm, as

shown in Fig. 12e. SEM images reveal a slightly higher

porosity in the Ti-substituted films. Furthermore, the

growth rate of the large iron-rich grains of the secondary

phase at 700 �C is significantly lower as the amount of Ti

increases. Elongated grains of *5 lm, appearing in the

unsubstituted films, decrease to below 1 lm and finally

disappear in those samples with the highest Ti

concentration.

Similar effects of Ti substitution on the growth of

BiFeO3 grains in bulk ceramics and thin films were found

by several authors [60–64]. Bernardo et al. observed a

positive effect of Ti substitution on the phase stabilization

of BFO ceramics for classical solid-state synthesis [60, 61].

The partial stabilization of BFO and the inhibition of grain

growth are probably results of two phenomena: entering of

Ti4? ions inside the perovskite structure and segregation of

Ti due to limited incorporation. As mentioned before, Ti4?

ions in the structure behave as a donor and thus can sup-

press the formation of oxygen vacancies which in turn

Fig. 8 SEM images presenting the evolution of the film morphology with annealing time at 700 �C: a 10, b 30, c 90, or d 120 min
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limits the diffusion of matter resulting in a lower rate of

grain growth [60, 63, 65]. Moreover, in a recent paper,

Bernardo and coauthors reported thorough microstructural

analyses of Ti-doped ceramics [61]. Interestingly, they

found clusters of nanometer-sized grains separated by Ti-

rich layers. Due to the segregation of Ti from the structure,

the Ti-rich areas are formed at the inner grain boundaries

where they hinder the grain boundary mobility inhibiting

the growth of grains. In ceramic processing, this type of

grain growth control is known as the solute drag-based

mechanism [61].

Discussion on thermal stability of BFO films

The observed decomposition onset of BFO films in this work

at 650 �C is consistent with the BFO temperature metastable

range around 450–770 �C reported by Selbach et al. for BFO

bulk ceramics [6]. The partial decomposition of the BFO

phase into Bi-rich and Fe-rich phases in this temperature

range can be explained by the more thermodynamically

stable secondary phases in comparison to the BFO phase [6].

Further evidence of the instability of the BFO phase is the

fact that decomposition is enhanced by increasing the an-

nealing temperature to 700 �C as well as lengthening the

annealing time. The observed influence of these parameters

on phase stability is in agreement with the reports where the

rate of BFO decomposition is determined by processing

temperature [2, 12] or extended annealing time [8, 12].

Furthermore, detection of large Bi2Fe4O9 grains by SEM

and EBSD in this study suggests a Bi deficiency occurring in

the films during processing. In case of BFO ceramic, large

Bi2Fe4O9 grains observed at temperatures as high as 880 �C
Fig. 10 SEM micrographs of three-layered films with a 10 %,

b 20 %, or c 30 % Bi excess annealed at 700 �C/1 h
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are related to Bi2O3 loss due to evaporation during sintering

[16] and are different from the Bi2Fe4O9 grains that appear

together with Bi-rich grains due to diffusion limitations

during solid-state synthesis [14, 66]. However, for the films

studied here, the Bi2O3 deficiency is probably conditioned

by the specific thin film geometry where both Bi2O3 diffu-

sivity into the substrate and evaporation can occur during the

thermal treatment in a gas flow [11]. We believe once the

decomposition of BFO films is triggered within the tem-

perature instability range of the BiFeO3 phase, it becomes

further enhanced by diffusion of Bi3? ions toward the sub-

strate. Since higher diffusion rates of bismuth at elevated

temperatures or prolonged annealing time increase Bi defi-

ciency in the film, large amounts of secondary phases form

whereby Bi-rich phase segregates inside the substrate and

Fe-rich phase remains in the films. Therefore, incorporation

of Bi excess up to 30 % in the precursor solution to com-

pensate for the Bi2O3 loss resulted in a significantly lower

amount of secondary phases and improved BFO stability

which is in accordance with previous studies on Bi excess in

chemical solution-deposited BFO films [27, 28]. Finally, our

results suggest that substitution of Fe by aliovalent Ti can be

another approach for stabilizing the BFO phase. Bernardo

et al. reported on similar effect when Ti4? is added into BFO

ceramic [60, 61], although in studies of Valant et al. the Ti4?

ion is considered as an impurity leading to the appearance of

a larger fraction of the iron-rich Bi2Fe4O9 phase [7]. The

plausible explanation for the improved phase stability of Ti-

substituted films could be related to the limitation of bismuth

diffusion due to reported segregation of titanium at the grain

boundaries [61].

Magnetic properties

In order to study the influence of secondary phases and

substitution of Fe by aliovalent Ti on the magnetic prop-

erties, three-layered BFO films annealed at 600 �C/1 h and

700 �C/1 h as well as BiFe1-xTixO3 (where x = 0.05;

0.20) films were subjected to SQUID measurements at

300 K with the magnetic field parallel to the film surface.

The obtained magnetic hysteresis loops are presented in

Fig. 13. Both BFO films annealed at 600 and 700 �C show

a weak ferromagnetic response. Bulk BiFeO3 is an anti-

ferromagnetic material with G-type magnetization and

Néel temperature of 370 �C [3, 4, 17]. However, in thin

films, a weak ferromagnetic response is often reported in

BiFeO3 and is associated with canting of Fe atoms in the

antiferromagnetic lattice [67, 68]. In comparison with the

film treated at 600 �C, the hysteresis loop of the BFO film

annealed at 700 �C exhibits lower magnetization values.

The observed behavior could be explained by the combi-

nation of two effects: a lower amount of BiFeO3 phase due

to decomposition at 700 �C as well as the presence of

Bi2Fe4O9 phase in the form of large grains (as evidenced

by XRD and SEM) which exhibits paramagnetic behavior

[69]. In the case of BiFe1-xTixO3 films (where x = 0.05;

0.20), the saturation magnetization decreases further in

comparison to BFO films annealed at 700 �C. Wang et al.

Fig. 12 SEM micrographs of BiFe1-xTixO3 films annealed at 700 �C/1 h with a x = 0.05, b 0.10, c 0.15, d 0.20, and e AFM image of

BiFe0.85Ti0.15O3 film
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[62] also observed weakened ferromagnetism in Ti-sub-

stituted films while Murari et al. [70] reported on

paramagnetic behavior in BFO films substituted with 5 %

Ti, relating these results to the non-magnetic nature of Ti4?

ions. In contrast with their films, the BiFe0.95Ti0.05O3 films

in the study presented here comprise Bi2Fe4O9 as sec-

ondary phase which should also be taken into account

when comparing the magnetic behavior. Also, the amount

of this secondary phase in the BiFe0.80Ti0.20O3 films, ac-

cording to XRD results, is almost negligible. As it is seen

in Fig. 13, compared with the BFO films annealed at

700 �C, the saturation magnetization of the Ti-substituted

films appears at lower fields which can be an evidence of

altering magnetic properties by substitution of Fe with

aliovalent Ti.

Conclusions

Our study on the thermal stability of BiFeO3 films obtained

by CSD showed that a significant amount of the iron-rich

Bi2Fe4O9 phase formed at 700 �C as a result of BiFeO3

film decomposition. The obtained results suggest a loss of

Bi from films at higher temperatures, possibly not only due

to volatilization but also due to high diffusion toward the

substrate and possible interaction with the Pt electrode. In

order to suppress the decomposition of BiFeO3 and the

formation of iron-rich phase, a shorter annealing time or

the addition of Bi up to 30 mol% should be taken into

account. Another approach for improving the stability of

the BFO phase is substitution of Fe by aliovalent Ti where

limitation of Bi diffusion probably occurs due to the inhi-

bition of oxygen vacancy formation. These findings could

be applicable not only to the other thin films with Bi-based

compounds but also to films that contain other highly dif-

fusible compounds when control over phase formation is

crucial. Magnetic measurements revealed that presence of

the Bi2Fe4O9 secondary phase as well as substitution of Fe

with Ti in BFO films leads to a decrease in saturation

magnetization.
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