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Abstract Injection molding is the most widely used

processing technique for polymers. It offers several

advantages over other processing conditions such as good

surface finish, the ability to process complex parts without

the need of secondary operations, and low cost for mass

production. However, because of the complex deformation,

and thermal and pressure histories that the polymer melt

experiences during processing, residual stresses develop.

These stresses act internally at room temperature and have

the same effects on the material as externally applied

stresses do, resulting in shrinkage and warpage of the

product. In recent years, with the development and use of

engineering plastics in an increasing number of applica-

tions, and with the tougher quality control policies in

industries such as the automotive, the effects of residual

stresses in product quality and performance have raised

great interest. This review reports up-to-date advances in

the field of residual stresses developments in polymers,

with special attention given to injection molded products.

Flow- and thermal-induced residual stresses are reported.

Emphasis is given to the processing parameters that most

influence residual stresses during injection molding as well

as the effect of residual stresses not only on warpage but

also on other material properties.

Introduction

Injection molding is the most widely used processing

technology for plastics. It is an extremely versatile and

flexible process for producing a wide range of simple or

complex plastic components with high precision, good

surface finish, and low operational costs for mass produc-

tion. It consists of three stages: filling, packing, and cool-

ing. First, raw material is heated until a homogeneous melt

is obtained, which is then forced by pressure into a cavity.

When filling is nearly completed, a packing pressure is

applied to fill the remaining volume of the cavity and to

compensate for the shrinkage caused by cooling of the

material. When the gate of the cavity solidifies, no more

pressure is needed and the material is allowed to cool into

the desired shape. Once the part is rigid enough, the mold is

opened and the part is ejected, at which time the cycle is

repeated.

During these processes, the polymer melt experiences a

complex deformation, and temperature and pressure his-

tories that affect the final properties of the component.

Residual stresses are originated due to the high pressure,

temperature differences, and relaxation of polymer chains,

which result in shrinkage and warpage of the product.

Engineering plastics are a group of thermoplastic

materials that exhibit superior mechanical and thermal

properties as compared to the more widely used com-

modity plastics. They are used in applications generally

requiring exceptional properties such as stiffness, tough-

ness, and heat and chemical resistance. To meet the tech-

nical requirements in demanding applications such as the

automotive industry, different additives, fillers, and modi-

fiers are commonly used. However, these additives also

affect the behavior of the polymer melt. Opposite to

commodity plastics that are relatively easy to process,
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engineering plastics processing is more complex, requiring

higher temperatures and pressures, having a significant

effect on residual stresses.

Current demands on close dimensional tolerances and

high dimensional stability make it necessary to be able to

predict residual stresses and warpage of the molded part.

This requires a deep understanding of the mechanisms that

originate residual stresses and the factors that influence

them. Residual stresses have been a topic of interest in the

last decades. Several reviews on the build-up of flow-

induced stresses during injection molding are found in the

literature [1–6]. However, most of these reviews are from

three decades ago, and therefore, an update to more recent

work is required.

The aim of this review is to describe the up-to-date state

of knowledge regarding residual stresses in injection mol-

ded products, including not only the description of its

formation mechanisms and models but also a review of the

processing conditions that most affect them. The effect of

residual stresses in different material properties which

affect the product performance is also included, as well as a

summary of the different residual stress measurement

techniques. At the end, some comments on the current state

of the art are included.

Types of residual stresses in injection molding products

Residual stresses mainly originate from two effects [7, 8]:

the flow-induced stresses, which correspond with the ori-

entation of the molecules and are developed during the

filling and packing of the polymer into the cavity; and the

thermall-induced stresses developed during the cooling

stage. Generally, flow-induced stresses are an order of

magnitude smaller than the thermal-induced stresses and

are usually neglected [6, 7]. However, some authors [9]

suggest that it is impossible to neglect them as they induce

anisotropy of several properties [7, 10] because of the

different frozen-in orientations of polymer molecules,

which affect the long-term dimensional stability of the

component. In the following sections, these two types of

stresses, their main features, and build-up mechanisms and

models will be described.

Flow-induced stresses

During the injection molding process, orientation [11, 12]

and flow-induced stresses develop during the viscoelastic

flow of the polymer in both the filling and the post-filling

stage [9, 13, 14]. In the 1980s, attention was focused on the

filling stage [6, 15]; however, calculation of the flow-

induced stresses in the filling stage has been extended to

the post-filling stage [16–18] because birefringence

measurements [19–21] have shown that during packing,

large orientations are also developed [22]. They develop

when the polymer is in its fluid or melt state and are

accompanied with alignment of the chain molecules with

respect to the flow direction [23]. Because of the high

solidification rates in injection molding, the complete

relaxation of this flow-induced stresses is prevented and

they remain locked within the solidified material as

reported by Bushko and Stokes [24–27]. Analytical

investigations of flow-induced stresses require an accurate

calculation of the moving flow front during filling and the

chain relaxation in the post-filling stage. Since rheological

and geometrical nonlinearities are involved in polymer

melt flow [28–31], the task becomes difficult and extremely

complex, thus many times simple one-dimensional theories

are used, which allow to grasp the main features of the

flow.

Flow-induced stresses formation mechanism

Daly et al. [5] described the build-up or formation mech-

anism of flow-induced stresses during filling and packing

based on Vinogradov [32] earlier qualitative study. It is

suggested that during filling, polymer chains are stretched

and oriented in the flow direction (Fig. 1a). During cooling,

these deformations relax. The more oriented the chains, the

more the relaxation they will undergo. However, relaxation

of the most oriented chains (in the outer layers) is restricted

by the less oriented inner layers (Fig. 1b), and thus flow-

induced residual stress in the filling stage is tensile in the

outer layers and compressive in the inner ones.

For the packing stage, three cases are presented and they

are illustrated in Fig. 2. In the first case, Fig. 2a, it is

assumed that the polymer melt is not sufficiently com-

pressed and that during the cooling stage, the pressure in

the core layers fall to zero when the thickness of the

solidified outer layer is relatively small. Upon further

cooling, the inner layers reduce their volume and compress

the outer layers, yielding a compressive-skin–tensile-core

distribution, usually evident as a sink mark. This profile is

always observed in free quenched products [33]. Similar

results were found by Sandilands and White [34] and

Mlekusch [35]. For the case when the melt is over-com-

pressed, Fig. 2b, the pressure at the inner cores remains

very high even after complete cooling, and therefore, the

stress distribution will be tensile-skin–compressive core, as

found by Wang and Young [36]. In the third case, Fig. 2c,

it is assumed that the pressure in the core layers fall to zero

when the thickness of the solidified outer layer is much

greater than that of the inner ones, resulting in a more

complex distribution: tensile-skin—compressive-subskin—

tensile core, as reported by Young [8] and Zoetelief et al.

[7].
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Jansen et al. [37] found a similar behavior when mold-

ing plates at different packing pressures. They reported that

as the packing pressure was increased, the plate started

warping toward the opposite direction. This is, at low

packing pressures it warped toward the hot side, as the

pressure was increased, warpage was reduced, but as the

packing pressure continued to increase, warpage increased

toward the cold side. As residual stresses originate war-

page, this change in warpage behavior must be related to a

change in the residual stress distribution. Since the pressure

is not uniform along the flow path during injection molding

(it is higher at the gate and it decreases along the flow

path), all three cases can be present in a single component,

resulting in different residual stress distributions. There-

fore, it is important to be able to predict or monitor the

temperature and pressure history during the complete

injection molding cycle, which are known as temperature

and pressure profiles.

Flow-induced stresses models

The three-dimensional governing equations of the non-

isothermal flow of viscoelastic fluids are [6]

(1) Continuity equation:
_.
.þr~ � t~¼ 0, where . represents the density, and

r~ � t~ is the divergence of the velocity field.

(2) Momentum equation:

r~ � rþ .f~¼ . _t~, where r is the Cauchy stress tensor

and f~ is the body force per unit mass.

(3) Energy equation:

. _e ¼ r : D�r~ � h~þ .r, where e is the specific

internal energy, D is the rate of strain tensor, h~ the

heat flux, and r is an internal heat source.

To solve these governing equations, constitutive equa-

tions for ., r, e, h~, and r must be given.

During the last decades, different approaches to the

problem have been developed. Table 1 summarizes some

of the most important studies developed in this area. It is

observed that a great amount of this work has been based

on Leonov viscoelastic constitutive equation [38], where

irreversible thermodynamics are used for constructing the

rheological equations capable of describing the behavior of

polymer melts in a range of large elastic strains. It is also

observed that, depending on the processing conditions,

reported values of residual stresses are approximately up to
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8 MPa, both in tension and compression when the packing

stage is considered. However, when packing is neglected

(i.e., Kabanemi et al. [39]) reported values are much lower.

It has been noticed that most of the research work on

residual stresses and warpage has been focused on amor-

phous polymers. However, it is clear from several studies

[51–55] that the flow and thermal history experienced by

the melt during injection can enhance crystallization

kinetics, and thus lead to different types of crystalline

structures, which is known as flow-induced crystallization.

This is of great technological importance as polymer

properties are to a great extent affected by morphology

[56–61]. Differences in crystallinity and orientation

throughout an injected product will lead to anisotropy and

Table 1 Flow-induced stresses models and simulations

Authors Approach Results

Based on Leonov model [38]

Isayev and Hieber [40] One-dimensional, unsteady non-isothermal flow of

polymer between two parallel plates

Non-isothermal relaxation following cessation of flow

Stresses increase in magnitude moving inwards from

the wall. Maximum stress & 2.0 MPa

Mavridis et al. [41] FEM solution of the fountain flow problem, analyzing

its effect on the deformation in the fluid during filling

Frozen-in stresses were calculated and maximum

values of birefringence distributions agreed with

published experimental results

Baaijens [6] Viscoelastic material behavior (direct approach)

Generalized Newtonian material behavior (indirect

approach)

Calculated both flow and thermal-induced stresses

Mold elasticity has an important effect on the

pressure history

TCT distribution for PC & 8.0/-8.0/2.0 MPa

Flaman [42, 43] Numerical simulation of the build-up and relaxation of

molecular orientation

Volumetric responses were predicted using the Tait

equation and a second equation developed by Spencer

and Gilmore [44]

A WLF equation was used for the temperature and

pressure dependence

Prescription of a specified packing pressure profile

can reduce the frozen-in birefringence

Kabanemi et al. [39] Flow and thermoviscoelastic stresses during injection

molding based on Baaijens indirect approach:

kinematics were calculated from a generalized

Newtonian model and flow stresses were updated

using a Wagner model

Flow-induced stresses results virtually coincide

which those of Baaijens [6], although the effect of

compressibility and the influence of the packing

stage were neglected

Maximum stress in PS & 0.5 MPa

Other analytical and semi-analytical models

Greener et al. [45] Analytical model for the flow, heat transfer and

relaxation in centered-gated cavities

Evolution of stress was calculated with the nonlinear

viscoelastic model of Wagner [46] and the work by

Matsui and Bogue [47]

A good agreement between experimental data and

birefringence predictions was found

A good prediction of the effects of melt and mold

temperature, and injection speed on residual

stresses was found

Stresses increase in magnitude moving inwards from

the wall. Maximum stress in PC & 0.5 MPa, for

PS & 1 MPa

Cao et al. [23] Semi-analytical method to simulate the flow-induced

stresses developed during the filling and packing stage

Hele–Shaw flow [13] was assumed, and the Phan–

Thien–Tanner [48] model was employed to describe

the viscoelastic behavior of the melt

Pressure was determined with the conventional Galerkin

method [49]

Melt temperature strongly determine the flow-

induced stresses

Experimental results agreed well with numerical

results

Stresses increase in magnitude moving inwards from

the wall. Maximum stress in PS & 0.5 to 5 MPa

depending on processing conditions

Zhou et al. [50] Simulated the history and distribution of residual

stresses in simple plate specimens using the same

material model as that of Zoetelief et al. [7]

Packing and cooling stages were considered so that

pressure, temperature and relaxation effects were

taken into account

TCT distribution for ABS & 3.0/-6.0/3.0 MPa

TCT tensile-skin/compressive-subskin/tensile-core distribution (Fig. 2c), CT compressive-skin/tensile-core distribution (Fig. 2a)
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other changes in mechanical properties as reported by

Santis et al. [62] and Pantani et al. [63]. The crystalline

phase has a tighter packing than the amorphous phase and,

therefore, a higher density. This densification process is

accompanied by changes in mechanical properties such as

elastic modulus, yield strength, elongation at break, ulti-

mate strength, and thermal properties such as the thermal

expansion coefficient. This, in turn, will have an effect on

residual stress distributions. Various models [64–69] have

been developed to describe the crystallization process of

polymers. However, most of these studies are limited to

idealized situations, in which external conditions such as

temperature or cooling rate are considered as constant. In

real situations, however, the polymer is cooled down at

different rates and with high thermal gradients, which

makes the crystallization process dependent on instanta-

neous conditions [70]. Several modifications of the Avrami

theory [65, 71, 72] have been proposed over the years to

model non-isothermal crystallization. Most of these models

neglect spherulite impingement and variations in cooling

rates. Empirical or experimental approaches have also been

developed to calculate the main parameters of non-iso-

thermal crystallization [73] in which crystallization kinet-

ics are observed by differential scanning calorimetry.

For the particular case of injection molding, an

exhaustive literature review of the modeling of morphol-

ogy evolution during processing of semicrystalline poly-

mers was presented by Pantani et al. [74], including a

thorough analysis of the effect of different processing

parameters in the morphology of the product. However,

work investigating the effect of crystallinity distribution on

residual stresses in plastic parts is still required.

Thermally induced stresses

Thermoplastics processing usually involves the non-uni-

form cooling of molten polymer, which results in the

presence of thermal residual stresses in the final product.

The thermoviscoelastic theory of residual stresses was

initially developed for inorganic glasses [75–79], with

previous work by Adams and Williamson [80] on the

annealing of glass, and first applied to polymers by Struik

[81] under free or unconstrained quenching conditions.

According to his work, it can be assumed that during

injection molding, the outer layer of the polymer melt, in

contact with the cold mold, undergoes an instantaneous step

change in temperature, while the core remains hot. Heat

removal is almost entirely from the outer surfaces where a

solid external layer is formed. At this point, the surface

layers are almost stress free as they were allowed to contract

freely. The inner layers are still hot and behave as a liquid

free of stresses. While cooling continues, the solidifying

material further in is prevented from freely contracting by

the outer solid layer. A compressive-skin/tensile-core dis-

tribution as the one shown in Fig. 2a is obtained.

These results were reported by Siegmann et al. [2], who

investigated the distribution of residual stresses in quen-

ched PPO. Compressive stresses were measured at the

surface layers, while tensile stresses were measured in the

inner layers. The level of residual surface stresses was

found to depend on both the total temperature difference

during cooling and the initial specimen temperature. Sim-

ilarly, Rigdahl [82] used the finite element method to cal-

culate the distribution of residual internal stresses in an

injection molded PS specimen. By determining the tem-

perature distributions in the plate and its variation with

cooling time, the corresponding stress distribution was

found. It was found that the surface layer of the plate is

subject to compressive stresses, while the interior accom-

modates stresses of tensile type. Anisotropy and visco-

elastic relaxation have been neglected as well as the effect

of packing pressure.

However, during injection molding, the polymer melt

conditions differ from those of free quenching. The mate-

rial is constrained by the mold geometry, the holding

pressure, and the adhesion between the mold and part,

which change the thermal-induced residual stresses build-

up. Therefore, shrinkage of the solidified layer is pre-

vented, and a residual stress distribution as the one shown

in Fig. 2c is obtained.

Thermally induced stresses formation mechanism

Zoetelief et al. [7] illustrated the development of residual

thermal stresses using the schematic representation similar

as the one shown in Fig. 3. This representation is analogous

to the work presented by Struik [81] in which the theory of

the quenching of flat glass plates is described and shown to

be applicable to polymers. Similar numerical formulations

were used by Jansen and Titomanlio [83]. As shown in

Fig. 3, cooling is idealized in five steps and pressure varies

as a function of time. Tfreeze is the glass transition tem-

perature and it is assumed that the material behaves as an

ideal fluid when T [ Tfreeze, and as a linear elastic material

when T \ Tfreeze. Temperature drops and residual stresses

develop as follows:

t = t0: Homogeneous temperature throughout the spec-

imen; pressure = 0; material free of stresses.

t = t1: No-slip condition hinders contraction of outer

layers; small tensile stress develops (Fig. 3a).

t = t2: Holding pressure r = -ph acts on the melt; the

rigid shell is also compressed; stress levels decrease by

Dr ¼ mph= 1� mð Þ; where m is the Poisson’s ratio (Fig. 3b).

t = t3: Packing stage: pressure remains constant; a small

layer solidifies, and its contraction is hindered, decreasing

compressive stresses in it (Fig. 3c).
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t = t4: Packing stage finishes, pressure is set to zero;

stress in the melt disappears, and the stress levels increase

by Dr (Fig. 3d).

t = t5: Mold is opened, product is released from the

mold; further cooling sets tensile stresses in the core, which

are in equilibrium with the rest of the specimen. At the end

of this interval, a tensile-skin, compressive-subskin, and

tensile-core distribution are obtained, which have been

reported by several authors [33, 35, 84–86] (Fig. 3e).

Thermally induced stresses models

Initially, most of the models developed to predict residual

stresses or warpage of plastic parts assumed a linear ther-

moelastic behavior in which the conservations of momen-

tum and energy equations are similar to those presented in

‘‘Flow-induced stresses models’’ Section with the Cauchy

stress tensor, commonly decomposed into a hydrostatic

part p, and a deviatoric part rd is determined by [5]

r ¼ pI þ rd;

where I is the identity tensor,

p ¼
Z t

0

a
j

T � i

j
trD

� �
ds;

rd ¼ 2

Z t

0

G n tð Þ; nðsÞð ÞD sð Þds; and

n tð Þ ¼
Z t

0

1

aT

ds;

where a is the coefficient of thermal expansion, j the

coefficient of compressibility, G(t,s) is the shear relaxation

modulus, n is the reduced time, and aT is the shift factor of

the time–temperature superposition principle.

For the free or unconstrained quenching, r � n ¼ 0:
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Fig. 3 Thermally induced

residual stress development in

injection molded products: a t1,

b t2, c t3, d t4, and e t5. Drawn

based on [7]
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For constrained quenching, u = 0, where n is the unit

vector normal to the surface and u is the displacement on

the surface.

St-Jacques [87] was the first author to present work on

warpage in injection molding flat parts due to unbalanced

cooling conditions. He used a one-dimensional, transient

heat conduction model (with constant material properties)

to predict the temperature profiles in a solidifying slab and

used them to estimate the thermal warpage. His simulation,

using finite differences, allowed to analyze asymmetrical

cooling, and results showed good agreement with experi-

mental data. Nowadays, several approaches have been

developed to study the shrinkage, warpage, or residual

stresses in injection molded components due to cooling,

some of which are summarized in Table 2.

An interesting method for predicting thermal-induced

residual stresses in polymeric materials was proposed by

Tropsa et al. [99], based on previous work by Williams

[100]. They introduced the ‘‘residual temperature field’’

concept to describe the relationship between the thermal

history that the material goes through during processing

and the frozen-in strains. When this temperature field is

applied as an actual temperature distribution, it produces

thermal stresses and distortions equal to those caused by

residual stresses. The derivation of thermally induced

residual stresses starts with the equilibrium equations and

the constitutive law for a linear thermoelastic solid. How-

ever, the analysis is extended afterward to include anelastic

effects to give residual stresses. By knowing the residual

temperature field (Tres), the residual stress distribution

rres(z) can be calculated as

rres zð Þ ¼ E1
1� m

a �T
res
� Tres zð Þ½ �;

where E? is the long-term modulus, m is the Poisson ratio,

a is the thermal expansion coefficient, and �Tres is the

average value of Tres through the specimen thickness.

Effective factors of residual stress build-up

during injection molding

Several studies have focused on analyzing the effects of

different processing parameters, such as mold and melt

temperature, packing pressure and time, and injection and

cooling rate, on the residual stress distribution on injection

molded parts. In most of these studies, warpage has been

used as an indicator of residual stresses.

There are two basic approaches on these studies. In one

hand, experimental investigations have been carried out, in

which processing conditions are varied on each injection

cycle, and their effect on residual stresses measured and

recorded. Packing pressure, mold and melt temperature,

and the design of the cooling system have been pointed out

as the most significant processing conditions, with packing

pressure as the most important parameter on which

shrinkage, warpage, and residual stresses depend, as it can

be observed in Table 3 in which results of several authors

are summarized. Other processing and design factors such

as mold deflection, gate dimensions, and wall thickness

have also been studied [101, 102]. However, it has been

found that their effect in residual stresses is less significant.

On the other hand, with the development of computa-

tional tools, a different software has been used to simulate

the flow of the polymer inside the cavities and to predict

the part quality after ejection. Again, processing conditions

on each simulation are changed and their effect on residual

stresses recorded.

Huang and Tai [103] used the experimental design of

Taguchi method to determine the effects of injection

molding conditions on warpage, and the injection process

was simulated using C-MOLD. They found that packing

pressure has the greatest effect in warpage, followed by

mold temperature, melt temperature, and packing time.

However, by analyzing the interaction between factors,

they found that the interaction between the mold temper-

ature and melt temperature has in fact a greater effect on

warpage than the packing pressure by itself and should not

be neglected. Other authors [104–111] have used Taguchi

method and injection molding simulation software as

Moldflow to minimize warpage and sink marks in injection

molded components while obtaining the optimum pro-

cessing conditions. Gao and Wang [112] proposed a Kri-

ging model in combination with Moldflow simulations to

minimize the warpage in injection molding.

More recently, neural networks [113–116] and genetic

algorithms [117] have been used to predict the quality of

injection molded products and to obtain the optimum

processing conditions. Similar to the experimental results,

it has been reported that the packing pressure and melt

temperature contribute significantly to the shrinkage, war-

page, and quality of the injected parts; also, the effect of a

higher temperature gradient between polymer melt and

mold was overcome by the effect of a higher packing

pressure [110, 117].

Although numerical methods combined with statistical

tools are useful, some authors [118, 119] suggest that these

results should be combined with experimental ones, mainly

because factors such as available clamp force, cycle time,

and mold surface finish are not considered. Other factors

affecting residual stress development are the molecular

weight of the polymer (with higher molecular weight

polymers resulting in higher residual stresses [120]), its

degree of crystallinity [121], its relaxation behavior, and

geometric parameters such as thickness and other

J Mater Sci (2014) 49:4399–4415 4405
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Table 2 Thermal-induced stresses models and simulations

Authors Approach Results

Thermoelastic models

Jansen et al. [83, 88–90] Assumed a simple elastic behavior for the solid. Seneral

analytical expressions for stress distributions and

shrinkage curves were derived, including effects of

pressure, external forces, and crystallization

Equations were applied to free quenching and injection

molding with hindered shrinkage in the mold

TCT distribution before ejection & 10.0/-20.0/

6.0 MPa

TCT distribution after ejection & 4.0/-12.0/

12.0 MPa

Denizart et al. [91] Thermal stresses were estimated assuming an

orthotropic thermoelastic behavior for the polymer

Center-gate disks were analyzed. Experimental data

was compared with FEM results. Good agreement

was found

CT distribution for PS & -5.0 to -20.0/0.5 to

2.0 MPa depending on processing conditions

Viscoelastic models

Kabanemi and Crochet [92] Thermoviscoelastic model considering the cooling stage

of injection molding and neglecting the effect of

packing pressure

Residual stresses and dimensional changes in

injection molded parts in terms of cooling were

predicted

Zoetelief et al. [7] Linear viscoelastic constitutive law to predict thermal

stresses

Influence of orientation and flow-induced stresses were

neglected

In contrast to slabs cooled at ambient pressures

which show the well-known tensile stress in the

core and compressive in the surfaces, during the

packing stage tensile stresses may develop at the

surface

TCT distribution for ABS & 3.0/-7.0/3.0 MPa

Chen et al. [93] Thermoviscoelastic model, with the initial strain at the

beginning of the cooling stage taken as the packing

bulk strain

Stresses increase in magnitude moving inwards from

the wall. Up to 10.0 MPa in ABS samples

Chang and Tsaur [94] A control volume method was used to obtain the

temperature and pressure profiles

Flow- and thermal-induced stresses were obtained with

a linear thermoviscoelastic model

FEM was used to obtain displacements

Investigated the shrinkage, warpage and sink marks

of injection molded parts

Experimental results on amorphous ABS plates

showed a good correlation with theoretical

predictions, which were also correlate using

C-MOLD commercial software

Kamal et al. [95] Linear elastic and linear thermoviscoelastic

compressible model applied to thin walls

Crystallization effects were considered

Both models provided satisfactory results. However,

the thermoviscoelastic analysis provided the best

predictions for large stresses developed at the

surfaces

TCT distribution for PS & 0.0/-7.0/5.0 MPa

Liu [96] Viscoelatic phase transformation model, using a

standard linear solid and a viscous fluid model for the

solidified polymer and polymer melt, respectively

Simulate and predict thermal residual stresses and

warpage

CT distribution for PS & -7.0/3.0 MPa

Thermorheological models

Choi and Im [97] Thermorheological simple viscoelastic material model

that uses the temperature and pressure histories

developed during the filling and post-filling stages

Deformation was analyzed using a linear elastic 3D-

finite element approach

Residual stresses were predicted during the packing

and cooling stages of injection of amorphous

polymers

Good agreement with available experimental data in

the literature

TCT distribution for PS & 10.0 to 15.0/-7.0 to -

12.0/3.0 to 7.0 MPa

Li and Zhou [98] Thermorheologically simple viscoelastic material

model to consider the stress-relaxation effect in

injection molded parts

Prediction of warpage using theory of shells

Gate design has an effect on warpage: a fan gate is a

little more severe than a rectangular gate

All predicted maximum warpages of the part were in

agreement with experimental data

TCT tensile-skin/compressive-subskin/tensile-core distribution (Fig. 2c), CT compressive-skin/tensile-core distribution (Fig. 2a)
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processing considerations such as the use of release agents

[122].

Other effects of residual stresses on the performance

of injection molded parts

It is well known that residual stresses influence the prop-

erties of injection molded products. These stresses act

internally at room temperature and have the same effects

on the material as externally applied stresses do [122, 137].

Their magnitude can be high enough to induce severe

shape changes in the product, as well as changes in the

overall material performance.

In addition to the shape distortion, the presence of

residual stresses is also expected to affect the mechanical

behavior of the product. Broutman et al. [138, 139] found a

large increase of the notched Izod impact strength and a

decrease in the ductile–brittle transition temperature of PC

and other materials when tensile residual stresses were

reduced. They suggested that the presence of compressive

residual stresses in the surface suppressed craze initiation

in advance of the notch [140]. However, in the case of PVC

and ABS, the impact properties were not significantly

modified by the presence of compressive stresses, leading

to the conclusion that the influence of residual stresses on

impact strength is only significant on those polymers whose

failure initiation is highly localized. When the failure ini-

tiation is not limited to a single craze, as in rubber modified

polymers, the extent of deformation is controlled by mul-

tiple crazing or by shear yielding, and the effect of the

compressive residual stresses is limited [138].

Chaoui et al. [141] studied the effect of residual stresses

on slow crack propagation in MDPE pipes. They found that

the pipes exhibit more resistance to crack propagation in

the outer surface than in the inner one, with compressive

and tensile residual stresses, respectively. They concluded

that the material resistance to fracture is strongly influ-

enced by its thermal history, which determines not only the

residual stresses distribution but also the morphology of the

material. Guevara and Leevers [142] studied the effect of

residual stresses on rapid crack propagation of polyethyl-

ene pipes. They found that the lower the residual stress, the

lower the S4 (Small Scale Steady State) critical tempera-

ture. It was suggested that the additional stored strain

energy prior to fracture helps to drive the crack, and that a

Table 3 Effects of processing

conditions on shrinkage,

warpage, and residual stresses

Processing

parameter

Effect on shrinkage, warpage or residual stresses

Packing pressure Higher packing pressure: lower shrinkage [24, 119, 123–125]

Higher packing pressure: lower frozen-in birefringence [42, 43]

Most significant effect on warpage [103, 105, 111, 126, 127]

Most significant influence on sink mark depth [110, 117]

Cavity pressure: indicator of part quality [14, 128]

Packing pressure effect decreases with fiber content [129]

Packing pressure affected by mold elastic deformation (overpacking) [101, 102]

Melt temperature Higher melt temperature: lower residual stresses [1]

Higher melt temperature: lower shrinkage [124]

Second significant influence on sink mark depth [110, 117]

Mold

temperature

Higher mold temperature: lower residual stresses [1, 130]

High mold temperature: lower shrinkage [119]

Higher mold temperature: higher surface tensile stress [36]

Second important effect on warpage [103, 114]

Temperature difference between the mold surfaces: main cause of warpage [129, 131]

Injection rate Lower injection rate: tensile stresses

Higher flow rate: compressive stresses

Even higher flow rate: decrease in compressive stresses magnitude [1]

Packing time Longer holding time: lower shrinkage [83]

Most significant parameter on shrinkage [126]

Geometry Thinner gates: more uniform shrinkage [101]

Gate dimension has only a small influence on warpage [103]

Triangular rib: most suitable rib for minimizing warpage and sink index [104]

Cooling time Longer cooling time: lower warpage [111, 118]

Cooling rate: dominant factor in the development of residual stresses [121, 132–136]
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change in crack front shape due to the release of a bending

moment can change crack propagation. Similar results

were found by Argyrakis [143]. Davis [144] also found a

difference in rapid crack propagation of single and dual

cooled pipes; however, he attributed the results mainly to

differences in crystallinity.

The effect of residual stresses on the fatigue life of a

polymer is also known. Hornberger and Devries [145, 146]

found that compressive residual stresses enhance fatigue

life, while tensile stresses usually decrease it. Compressive

stresses decrease the sensitivity of the polymer to flaws;

and since fatigue is dependent on the stress intensity factors

at those flaws, the fatigue life is increased. Sauer et al.

[147] have reported increases in fatigue life by a factor of

20 in PS with the reduction of tensile stresses. Hornberger

and Devries reported a tenfold increase in the mean fatigue

life of PC samples [145]; however, they also suggested that

the morphology of the polymer also has an important

influence on the fatigue life of the polymer.

Siegmann et al. [3] studied the effect of residual stresses

on density distribution and tensile properties of quenched

PPO specimens. A steep density gradient at the surface of

the specimens was found. Tensile modulus and ultimate

tensile stress increased significantly from the surface to the

inner layers. By analyzing fracture surfaces, they also

found that fracture initiation sites and thus the fracture

energy are influenced by residual stresses, the latter being

higher when fracture initiates at the inner layers.

Turnbull et al. [148] studied the impact of residual stress

and molecular orientation on environmental stress crack-

ing. The difference in threshold stress measured for the

annealed and as-processed specimens indicated the exis-

tence of a net tensile residual stress in the very near-surface

region of their specimens.

It has been found that tensile stresses accelerate the rate

of photochemical degradation of polymers by accelerating

molecular scission, while compressive stresses generally

retard it [149–152]. Kwok et al. [153] suggested a pre-

mature ejection and quenching of injection molded com-

ponents with an aim of obtaining compressive stresses at

the outer layers and improving resistance against ultravi-

olet irradiation.

Residual stress measurement techniques

Techniques for characterizing residual stresses in plastics

are basically of two types: destructive and non-destructive

[5, 154, 155]. Destructive methods are based on the

relaxation of strains after the removal of a specific amount

of material, and the measurement of these strains to cal-

culate the residual stresses. Non-destructive methods are

mainly used to measure stresses at the surface of the

specimens, such as photoelastic methods. Hughes et al.

[156] also mention predictive techniques, in which com-

puter simulations are used to predict residual stresses;

however, results must be validated by experimental data

collected using one of the previous techniques.

Destructive methods

Layer removal

The layer-removal technique, first applied to metal sheets,

was developed by Treuting and co-author [157]. It involves

the removal of successive uniform layers of material from

the surface of the specimen and the measurement of the

resulting curvatures as a function of specimen thickness.

The measured curvature as a function of depth removed

can be used to calculate the stress distribution through the

thickness of the sample prior to layer removal. The tech-

nique has been the primary method used for plastics [158],

but the limitation to flat sheets is a major constraint as is

the inability to assess very near-surface stresses. In contrast

to other methods, it provides a complete picture of the

distribution of residual stresses. When the following con-

ditions are satisfied, the accuracy of the method is limited

only by the precision of the measurements [157]: the

specimen is linear in pure bending for the range of cur-

vature, the stress does not vary in the plane of the specimen

but only through the thickness, and the process of removing

successive layers does not disturb the stresses in the

remaining material.

Coxon and White [159] examined the residual stresses

in injection molded PP bars using a stress-relaxation

method and the layer-removal technique. The layer-

removal technique showed that the stresses near to the

surface were compressive and those in the interior tensile.

White et al. [160–162] examined the layer-removal tech-

nique for determining residual stress distributions for

moldings with depth-varying elastic modulus. They con-

cluded that although this is a more exact method, in the

majority of cases, the unmodified Treuting and Read pro-

cedure is perfectly adequate. Hastenberg et al. [130] used

the layer-removal method to determine the influence of

annealing on the thermal stress distribution on flat plates of

three amorphous polymers: PS, PC, and polyphenylene

ether/high-impact polystyrene blend. A good reproduct-

ibility was obtained. They found that an annealing treat-

ment significantly reduces the overall stress level, without

affecting the stress pattern.

Akay and Ozden [131, 163] measured the residual

stresses in injection molded ABS and PC specimen using

the layer-removal technique and evaluated the effect of the

curvature measurement device on the reliability of the

results. The accuracy of the measurements depended on the
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type of device employed (coordinate machine, dial gage,

and optical scanner). A peg/pegboard arrangement was

found to enable accurate reproduction of the specimen

curvature. As expected, a non-contact method such as an

optical scanner produced the most reliable curvature

measurements.

As pointed out by Denizart et al. [91], the time elapsed

between the layer removal and the measurement of the

curvature is critical. Some authors prefer to reduce this

time to a minimum [4, 130], while others wait until the

curvature reaches its maximum value [1, 164].

Although Siegmann [3] and White [158] consider that

machining does not affect the residual stress distribution in

a significant way when the correct cutting techniques are

used, other authors suggest the opposite [91, 163]. Jansen

et al. [165] used an Excimer laser as the milling tool for

applying the layer-removal method. They found that some

disadvantages associated with the layer-removal method

were overcome: stress-relaxation effects were effectively

excluded since the heating of adjacent material during

milling was shown to be negligible. Moreover, an

improvement of the measurement resolution was possible

as with the laser technique small layers of well-controlled

thickness could be removed.

Hole-drilling

The hole-drilling technique was first proposed by Mathar

[166] for residual stress measurement. The technique is

relatively simple and has been standardized for metallic

plates as ASTM Standard E837 [167]. It is a semi-

destructive residual stress measurement technique in which

a rosette of strain gages is bonded on the surface of the

specimen at the point where residual stresses are to be

measured. Then, a hole is drilled precisely through the

center, and the measured strains are used to calculate the

stresses for the two principal axes in the plane of the

sample [168]. Sicot et al. [169] studied the influence of two

experimental parameters—the depth of each drilled incre-

ment and the influence of the relative position of the strain

gages compared with the radius of the hole drilled—on the

determination of residual stresses using the incremental

hole-drilling method. Results showed that these parameters

have a significant effect on the magnitude and stability of

the residual stresses, mainly because of significant stresses

relaxation. Kim et al. [170] used the incremental hole-

drilling method to measure the residual stresses in injection

molded PS parts. Results were compared with the ones

from the layer-removal method. They found that the

measured residual stresses are in fact affected by additional

stresses generated during these techniques, and thus the

experimental environment needs to be improved. In other

work, Kim et al. [171, 172] used the finite element method

for calibration of residual stresses in each increment on the

hole-drilling method. Residual stress distributions obtained

by both experiments and numerical methods accorded well

with each other. Maxwell and Turnbull [173] made a

comparative evaluation of the layer-removal method and

hole-drilling techniques for measurement of residual stress

in ABS samples. They found that residual stresses deter-

mined by hole drilling were not equi-biaxial and did not

balance through the thickness of the specimen, and con-

cluded that although hole-drilling technique is a more

flexible technique than layer-removal technique, the results

obtained are not as reliable.

Although it is a relatively simple technique, the utili-

zation of the strain gage rosettes presents some practical

disadvantages [174] such as the hole must be drilled

exactly at the center of the rosette, the strains measured by

the gages are average values in the range of the length of

the strain gage, and, as in the layer-removal techniques, it

is very difficult to identify the additional deformation

which resulted from machining (hole drilling). To over-

come some of these issues, Chen et al. [174, 175] and

Shankar et.al. [176] propose to combine hole-drilling

technique with Moiré interferometry, an optical technique

that allows to obtain more accurate measurements.

Chemical probe technique

The chemical probe technique is a more speculative

approach based on exposing the stressed part or product for

a specific period of time to an environment of varying

aggressiveness. When a polymer, for example, is immersed

in a solvent, it will craze [177–179]. Reference data exist

for the relationship between stress and time to crazing for

different polymer–environment combinations. Observation

of the crazing and the size of the cracks will indicate the

level of stresses at the external surface of the part. This

technique is also known as solvent crazing, and is similar

to the ASTM method for determining residual stresses in

ABS parts by immersion in glacial acetic acid [180].

Turnbull et al. [168] used the chemical probe technique to

measure the residual stresses in annealed PC and ABS

specimens. They concluded that this technique detects only

very near tensile surface stresses, which is its major limi-

tation as it lacks the ability to measure the residual stress

distribution across the part thickness.

Non-destructive methods

Photoelasticity is a well-known technique for measuring

the stress state in complex parts. Residual stresses result in

distortion of the polymer chains and induce anisotropy of

polarizability, which can be determined by birefringence

measurements [168]. Although the technique is limited to
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transparent materials and its analysis can be complicated

due to the effect of molecular orientation induced by pro-

cessing, it has been successfully applied to the analysis of

frozen-in orientation in injection molded samples [40, 181–

184]. Wimberger-Friedl and Hendriks [17] measured

birefringence in quenched PC specimens. They found that

PC is very suitable for the measurement of stress-induced

birefringence because of its high positive stress-optical

coefficient in the melt and in the glassy state. Wiesauer

et al. [185] used polarization-sensitive optical coherence

tomography (PS-OCT) to determine and map the internal

birefringence properties of PS samples, and obtain infor-

mation about the stress state within the materials. OCT is

an imaging technique capable of recording cross-sectional

images of transparent and turbid structures with microm-

eter-scale resolution [186]. PS-OCT provides additional

information on the birefringence properties of a material,

as it maps the retardation between the vertical and hori-

zontal polarization components and the orientation of the

fast optical axis within the sample, leading to enhanced

structural contrast.

Hauk et al. [187] presented an evaluation of different

X-ray techniques used to measure residual stresses in

semicrystalline polymers. Although some of its limitations

are that the specimens should have a crystalline structure

and that the measurement depth is limited, and research has

extended to amorphous polymers. Barret and Predecki

[188, 189] introduced fillers consisting of crystalline par-

ticles or powders in amorphous polymers, and then mea-

sured their lattice deformation in the injected part by

diffracting X-rays at high Bragg angles. Assuming a per-

fect contact between the particles and the matrix, the stress

state was deduced. Hughes et al. [156] used synchrotron

X-rays to measure residual strains in commercial HDPE

gas pipeline samples. Measurements were feasible in

samples of complex geometry and although the technique

is used in crystalline polymers, it is suggested that there is

also applicability for low- and non-crystalline polymers via

the mixing of small volumes of metal powders.

Sanchez and Hornberger [190] used holographic inter-

ferometry to monitor the physical relaxation of a plastic-

molded component during heating and estimated the initial

stress state. Colpo et al. [191] used an embedded Optical

Fibre Bragg Grating sensor for characterizing residual

strains in an epoxy block during the curing and postcuring

stage. Other techniques for measuring residual stresses

based on the change in material properties such as refrac-

tion of light or electrical conductivity, mainly in thermo-

plastic composites, are described by Parlevliet et al. [192].

The indentation method, which is almost non-destruc-

tive, can be used to measure residual stresses in plastic

parts for practical applications, particularly for small or

complex parts. Pak et al. [193] applied an indentation

method to measure residual stresses in injection molded

components. The load–displacement curve was measured

for indentation at stressed and non-stressed positions.

Residual stress distribution of the injection molded part

was calculated by comparing the load–displacement curve

results with respect to the indentation depth. Good agree-

ment with numerical results and those measured by the

hole-drilling method was found.

Comments on the state of the art

Previous sections show the great effort that has to be done

to understand the mechanisms of residual stress build-up.

Several models for estimating temperature history during

filling, packing, and cooling have been developed, and

different models such as the residual temperature field have

been applied to estimate thermal residual stresses. The

same has happened for flow-induced stress, although more

complex situations have been found here. The viscoelastic

nature of polymers and the high shear and pressure con-

ditions to which the polymer is subjected to, result in a

complex flow of the polymer inside the mold, which in

turns results in a complex deformation, orientation,

stretching, and relaxation of polymer chains. All these set

up residual stresses, which results in part warpage and

shrinkage.

Most of these models assume constant through thickness

polymer properties, such as constant modulus, density,

thermal properties, and orientation, among others, which is

far from reality. A more detailed analysis is needed for

more complex shapes where the thickness varies across the

geometry, and where processing conditions generate dif-

ferent temperature and pressure histories, and thus different

polymer structures and properties, affecting the residual

stress distribution.

Despite the huge effort for estimating warpage, most of

the work has focused on simple geometries such as flat

plates, disks, L-shaped specimens, and rectangular boxes.

Estimation of warpage of more complex parts is chal-

lenging as the polymer melt faces different restrictions

during flow which changes the polymer chains’ orientation.

During filling and packing, restriction comes from the mold

itself, while after ejection, it is the part geometry which

inhibits uniform shrinkage and polymer chains relaxation.

Although some authors have worked with ribbed speci-

mens [84], other common features such as snap fits and

bosses require attention, especially in parts subjected to

critical loading.

Another interesting area to pursuit is simulation. Com-

mercial software predict warpage of injection molded

components based on semi-empirical data. Developing a

model that can cope with complex geometries and be used
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on finite element analysis is needed. As mentioned previ-

ously, simulations must be accompanied by experimental

data and one way to achieve it is using instrumented molds

for complex geometries, in which pressure and temperature

histories could be monitored and a detailed analysis of the

effect of different processing conditions in residual stress

built up could be done.

Finally, transformation-induced residual stresses might

need special attention. Although some models consider

crystallization and include its effect on changing density,

modulus and other properties, the effect of spherulite for-

mation on the volume of the part might be of interest.
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