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Abstract The synthesis and characterization of a series of

polyalkylthiophenes-containing electron-rich thienothioph-

ene (donor heteroaromatic bicycle) and electron-deficient

benzothiadiazole (acceptor heteroaromatic bicycle) block

have been reported. The polymers are synthesized by Stille

cross-coupling reaction and are found to be having high

molecular weight with number-average molecular weight in

the range of 7.1 9 104–5.7 9 104. The photo-physical,

electro-chemical, and electroluminescent (EL) properties of

the polymers are investigated in detail. The optical band gap of

the polymers is found to be in the range of 1.53–1.54 eV.

These new polymers are luminescent in nature and showed red

photoluminescence in chloroform solution (722–740 nm) as

well as in thin film (781–786 nm). Ionization potential for

these polymers is calculated and falling in the range of

5.23–5.33 eV. Polymer light emitting diodes with configura-

tion ITO/PDOT:PSS/polymer/BCP/Alq3/LiF/Al have been

fabricated, and a deep red emission is observed. The EL

maxima of polymers are found to be in the range of

750–760 nm with threshold voltages around 4.0–5.5 V. The

fabricated devices show luminescence around 40 cd/m2 at

current density of 100 mA/cm2 with maximum value of

580–810 cd/m2 at 11 V.

Introduction

Semiconducting p-conjugated polymers are being exten-

sively investigated as the active materials in polymer light

emitting diodes (PLEDs) and polymer solar cells [1–9]. In

recent years, preparation of alternating conjugated poly-

mers with varying the nature of the co-monomers affords

novel means to design materials with improved functional

properties that cannot be attained by the corresponding

homopolymers [10, 11]. As an example, copolymers with

alternating electron rich and electron deficient monomers

may result a good highest occupied molecular orbital

(HOMO) and lowest unoccupied molecular orbital

(LUMO) alterations to bring the air stability of the poly-

mers with red shifting the absorption band and decreasing

the band gap [12–14].

The electro-active and photo-active materials, generally

used for the organic light emitting diodes are based on

molecules such as thiophene, pyrrole, phenylene, fluorenes,

carbazoles, and various other fused rings [15–19]. Among

the fused ring molecules, thienothiaphene is one of the most

investigated molecule has received considerable attention in

recent years [20–22]. The homo- and copolymers of thie-

nothiophene-based polymers have been used as conducting

materials in various optoelectronic devices like organic thin

film transistors (OTFTs), organic photovoltaics (OPVs) etc.

[23–25]. However, a least attention has been given for using

the thienothiophene-based polymers for PLEDs [26]. This is

because, even though the rigid and planar structure of the

fused ring in the backbone facilitates the intermolecular

charge hopping and charge carrier mobility by lowering the
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reorganization energy, still the intermolecular interaction

and aggregation can quench the fluorescence in solid state

making it a bad choice of materials for this purpose.

Generally, thienothiaphene-based polythiophenes are

predominately hole transporting materials. When these

polymers are used in device structure, creates an imbalance

in electron transport results the charge recombination near

polymer/cathode interface, leads in lowering of EL effi-

ciency due to quenching of excitons by the metal electrode.

Therefore, to achieve high quantum efficiency LEDs using

the polymer, it is also necessary to have balanced charge

injection and transport of both holes and electrons in the

emissive material. The common strategy to construct such

types of polymers is the incorporation of electron donor

and acceptor units in the polymeric backbone [27, 28].

Among various n-type monomers, benzothiadiazole is an

attractive heterocyclic compound having a strong electron

affinity [29]. Benzothiadiazole derivatives are known to be

strongly fluorescent dyes exhibiting low lying HOMO

energy level [30]. Because of such unique opto-electronic

properties, benzothiadiazole-containing polymers and

oligomers are vastly used in various applications like light

emitting diodes [31, 32], liquid crystal displays [33], two

photon absorption [34], and organic solar cells [35, 36].

In this paper, we report the synthesis and electrolumi-

nescent (EL) properties of a series of polyalkylthiophenes

containing alternatively thienothiophene and benzothiadi-

azole moiety in the main chain. The polymers were syn-

thesized by Stille cross-coupling reaction which ensured

achievement of well-defined molecular structure. The

optical and electrochemical properties of the copolymers

are systematically described. To achieve good electrolu-

minescence efficiency and to avoid electrode (cathode)

quenching due to unbalanced electron and hole mobility,

an additional hole blocking and electron transporting layers

were incorporated into the device structure to confine the

emission zone in emissive layer. Electroluminescent devi-

ces with configuration ITO/PDOT:PSS/polymer/BCP/Alq3/

LiF/Al were fabricated, and a deep red electrolumines-

cence was observed on application of suitable voltage.

Experimental

Materials

High purity chemicals used in this study were purchased

from Sigma Aldrich. Tetrahydrofuran (THF) was distilled

over sodium ketyl radical under nitrogen atmosphere.

Anhydrous chlorobenzene was purchased from Aldrich. All

other solvents were purified and dried using the standard

procedures prior to use.

Synthesis of monomers

The monomers 4,7-bis(5-bromo-4-alkylthiophen-2-yl)benzo[c]

[1,2,5]thiadiazole (3a–3c) and 2,5-bis[3-alkyl-5-(trimethylstan-

nyl)thiophen-2-yl]thieno[3,2-b]thiophene (7a–7c) were synthe-

sized according to literature procedure [12, 37].

General procedure for the synthesis of 4,7-bis(5-bromo-

4-alkylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (3a–

3c)

4,7-Bis(4-alkylthiophen-2-yl)benzo[c][1,2,5]thiadiazole

(0.3 mmol) (alkyl chain with –C12H25, –C14H29 or –C16H33)

was dissolved in chloroform (50 mL). The solution was cooled

to 0 �C, and NBS (6.15 mmol) was added to the solution in

portions at same temperature (0 �C) in dark. Subsequently, the

solution was warmed to room temperature and stirred over-

night. 50 mL of water was added to the reaction mixture. The

organic layer was separated, dried over anhydrous MgSO4 and

evaporated. The crude material was purified by column

chromatography (silica gel) using hexane and CHCl3 (90:10)

as eluent to obtain dark red solids.

4,7-Bis(5-bromo-4-dodecylthiophen-2-

yl)benzo[c][1,2,5]thiadiazole (3a)

1H NMR (300 MHz, CDCl3): d 7.73 (s, 2H), 7.68 (s, 2H),

2.61 (t, 4H), 1.65 (q, 4H), 1.25–1.34 (m, 36H), 0.86 (t, 6H).
13C NMR (75 MHz, CDCl3): d 152.12, 143.03, 138.47,

128.02, 125.17, 124.66, 111.60, 31.94, 29.69, 29.46, 29.37,

22.70, 14.12.

4,7-Bis(5-bromo-4-tetradecylthiophen-2-

yl)benzo[c][1,2,5]thiadiazole (3b)

1H NMR (300 MHz, CDCl3,): d 7.75 (s, 2H), 7.72 (s, 2H),

2.62 (t, 4H), 1.65 (q, 4H), 1.24–1.34 (m, 44H), 0.86 (t, 6H).
13C NMR (75 MHz, CDCl3): d 152.12, 143.03, 138.48,

128.03, 125.18, 124.67, 111.60, 31.94, 29.70, 29.46, 29.37,

22.70, 14.12.

4,7-Bis(5-bromo-4-hexadecylthiophen-2-

yl)benzo[c][1,2,5]thiadiazole (3c)

1H NMR (CDCl3, 300 MHz): d 7.74 (s, 2H), 7.70 (s, 2H),

2.62 (t, 4H), 1.65 (q, 4H), 1.24–1.34 (m, 52H), 0.86 (t, 6H).
13C NMR (CDCl3, 75 MHz): d 152.12, 143.03, 138.48,

128.02, 125.17, 124.65, 111.60, 31.94, 29.71, 29.46, 29.38,

22.70, 14.12.
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General procedure for the synthesis of 2,5-bis[3-alkyl-

5-(trimethylstannyl)thiophen-2-yl]thieno[3,2-b]

thiophenes (7a–7c)

2,5-Bis(5-bromo-3-alkyl-2-yl)thieno[3,2-b]thiophene

(1.25 mmol) (alkyl chain with –C12H25, –C14H29 or –C16H33)

was dissolved in 80 mL of dry THF under a nitrogen atmo-

sphere The solution was cooled to -78 �C, and BuLi (1.7 mL

of 1.6 M solution in hexane) was added drop wise. The mix-

ture was stirred at the same temperature for an additional 1.5 h.

Then 2.87 mmol of Me3SnCl in THF (5 mL) was added drop

wise to the reaction mixture, and subsequently, the whole

mixture was allowed to stir at room temperature overnight.

The solvent was evaporated, the crude material was dissolved

in chloroform (50 mL), and the organic layer was washed with

water. The organic layer was collected, dried over MgSO4

(anhydrous), and evaporated in vacuo to get a brown sticky

liquid. Hot methanol (15 mL) was added to the crude and it

was kept in a refrigerator for 1 h. The methanol layer was

poured out, and the sticky compound was dried under a high

vacuum to obtain the compound as a yellow brown solid.

2,5-Bis[3-dodecyl-5-(trimethylstannyl)thiophen-

2-yl]thieno[3,2-b]thiophene (7a)

1H NMR (300 MHz, CDCl3): d 7.20 (s, 2H), 7.02 (s, 2H),

2.78 (t, 4H), 1.64 (q, 4H), 1.24–1.37 (m, 36H), 0.86 (t, 6H),

0.37 (s, 18H). 13C NMR (75 MHz, CDCl3): d 141.30,

139.16, 138.37, 137.81, 137.17, 136.57, 117.48, 31.97,

30.98, 30.83, 29.73, 29.51, 29.40, 29.21, 22.73, 14.15,

8.18.

2,5-Bis[3-tetradecyl-5-(trimethylstannyl)thiophen-

2-yl]thieno[3,2-b]thiophene (7b)

1H NMR (300 MHz, CDCl3): d 7.21 (s, 2H), 7.00 (s, 2H),

2.79 (t, 4H), 1.62 (q, 4H), 1.23–1.37 (m, 44H), 0.86 (t, 6H),

0.38 (s, 18H). 13C NMR (75 MHz, CDCl3): d 141.30,

139.17, 138.38, 137.81, 137.18, 136.58, 117.48, 31.97,

30.98, 30.84, 29.71, 29.52, 29.40, 29.21, 22.73, 14.16,

8.18.

2,5-Bis[3-hexadecyl-5-(trimethylstannyl)thiophen-

2-yl]thieno[3,2-b]thiophene (7c)

1H NMR (300 MHz, CDCl3): d 7.20 (s, 2H), 7.01 (s, 2H),

2.79 (t, 4H), 1.63 (q, 4H), 1.24–1.38 (m, 52H), 0.87 (t, 6H),

0.38 (s, 18H). 13C NMR (75 MHz, CDCl3): d 141.29,

139.17, 138.37, 137.82, 137.17, 136.59, 117.48, 31.97,

30.99, 30.84, 29.75, 29.53, 29.41, 29.22, 22.74, 14.16,

8.18.

Representative example of polymerization

To a Schlenk, flask was added the compound 3a

(0.37 mmol), compound 7a (0.37 mmol) and CuO

(0.37 mmol) with anhydrous chlorobenzene (10 mL) under

nitrogen. The flask was degassed for 10 min, and then

Pd2(dba)3 (3 mol%) and (o-tol)3P (6 mol%) were added.

The reaction mixture was stirred for 72 h at 140 �C. After

cooling to room temperature, the resulting mixture was

poured into 100 mL of methanol. The precipitate was

recovered by filtration, and the resulting crude polymers

were extracted by Soxhlet apparatus with methanol and

hexane for 12 h each and finally with chloroform to collect

the polymer. The chloroform was evaporated and dried

over vacuum to afford polymer as black powders.

Poly{4-(4-dodecyl-5-(4-dodecyl-5-(2-(3-dodecylthiophen-

2-yl)thieno[3,2-b]thiophen-5-yl)thiophen-2-yl)thiophen-2-

yl)-7-(4-dodecylthiophen-2-yl)benzo[c][1,2,5]thiadiazole}

(PTTBz-C12)

Monomer 3a and 7a are used for polymerization. Yield:

69 %. Molecular weight (GPC, THF): Mn = 57000.

Mw/Mn = 3.7. Decomposition temperature (Td) (TGA, 5 %

wt. loss): 410 �C. FTIR (KBr, cm-1): 2922, 2851, 1642,

1570, 1486, 1460, 1382, 1263, 1175, 1072, 862, 822, 719.

Poly{4-(4-tetradecyl-5-(4-tetradecyl-5-(2-(3-

tetradecylthiophen-2-yl)thieno[3,2-b]thiophen-

5-yl)thiophen-2-yl)thiophen-2-yl)-7-(4-tetradecylthiophen-

2-yl)benzo[c][1,2,5]thiadiazole} (PTTBz-C14)

Monomer 3b and 7b are used for polymerization. Yield:

66 %, Molecular weight (GPC, THF): Mn = 59500.

Mw/Mn = 3.3. Decomposition temperature (Td) (TGA, 5 %

wt. loss): 410 �C. FTIR (KBr, cm-1): 2922, 2851, 1631,

1487, 1462, 1384, 1270, 1166, 1017, 863, 795, 711.

Poly{4-(4-hexadecyl-5-(4-hexadecyl-5-(2-(3-

hexadecylthiophen-2-yl)thieno[3,2-b]thiophen-

5-yl)thiophen-2-yl)thiophen-2-yl)-7-(4-hexadecylthiophen-

2-yl)benzo[c][1,2,5]thiadiazole} (PTTBz-C16)

Monomer 3c and 7c are used for polymerization. Yield:

61 %. Molecular weight (GPC, THF): Mn = 71000.

Mw/Mn = 3.2. Decomposition temperature (Td) (TGA, 5 %

wt. loss): 390 �C. FTIR (KBr, cm-1): 2922, 2851, 1630,

1484, 1465, 1386, 1272, 1164, 1002, 865, 792, 715.

Materials analysis

Number-average and weight-average molecular weight of

the polymers were determined by using a Waters 2690
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separations module apparatus and a Waters 2487 dual k
absorbance detector, with chloroform as the eluent and

polystyrene as standards. Thermo gravimetric analysis

(TGA) was carried out in a Hi-Res TGA 2950, TA

instrument with a heating rate of 10 �C/min under N2

atmosphere. 1H NMR spectra were recorded on a Bruker

Avance 300 MHz spectrometer. Fourier transform infrared

(FT-IR) spectra were obtained from Jasco 4200 FT-IR

spectrometer. UV–Vis absorption spectra were recorded on

a Varian Cary 5000 spectrometer in chloroform solution

and polymer thin films cast onto a cover glass slide. PL

spectra were recorded on a Fluorolog Jobin spectropho-

tometer (Yvon-Horiba, Model-3-11). Cyclic voltammetry

was carried out on Auto lab PGSTAT 100 using a three-

electrode cell. A platinum plate was used as working

electrode and a platinum wire as counter electrode. An

Ag/Ag? electrode (Ag in a 0.01 mol/L of AgNO3) was

used as the reference electrode. An anhydrous 0.1 M solu-

tion of tetrabutylammonium-tetrafluoroborate (Bu4N?BF4
-)

in acetonitrile purged with nitrogen was used as supporting

electrolyte. All the solvents were dried and purified using the

standard purification techniques.

Device fabrication and characterizations

Indium-tin oxide(ITO)-coated glass substrate with a sheet

resistance *20 X/cm2 was used as anode. The substrate

was patterned and cleaned using deionized water, acetone,

trichloroethylene, and isopropyl alcohol sequentially for

20 min each using an ultrasonic bath and dried in vacuum

oven. The poly(3,4-ethylenedioxythiophene):poly(styrene-

sulfonate) (PEDOT:PSS) as hole transport layer and syn-

thesized polymer as emitting layer were deposited on the

pre-cleaned substrate sequentially using spin coating

technique. A layer of 2,9-dimethyl 4,7-diphenyl-1,10-phe-

nanthroline (BCP) as a hole and exciton blocking layer

(HBL) maintaining a layer thickness of 60 Å and tris(8-

hydroxyquinolinato)aluminum (Alq3) with a layer thick-

ness of 280 Å as electron transport layer were deposited

under high vacuum (1 9 10-5 torr) at a deposition rate of

0.1 Å/s. The thicknesses of the deposited films were

monitored in situ by quartz crystal monitor. Finally, a

cathode comprising 10 Å lithium fluoride and 1000 Å

aluminum was sequentially deposited onto the substrate to

complete the device structure. The EL spectra were

recorded with a high resolution spectrometer (Ocean

Optics HR-2000CG UV-NIR). The current density–volt-

age–luminescence (J–V–L) characteristics were measured

with a luminance meter (LMT l-1009) interfaced with a

Keithley 2400 programmable voltage–current digital

source meter. All the measurements were performed at

room temperature under ambient atmosphere, without any

encapsulation.

Results and discussion

Polymer synthesis and thermal properties

The two different set of monomers (3a–c and 7a–c) with

different alkyl chain lengths [–C12H25 (a), –C14H29 (b),

–C16H33 (c)] used for the polymerizations were synthesized

by the reported procedure (Scheme 1). The monomers

were then subjected to a Stille polymerization utilizing

Pd2(dba)3, (o-tol)3P, and CuO in chlorobenzene to obtain

Polymers PTTBz-C12, PTTBz-C14, and PTTBz-C16,

respectively (Scheme 2). The polymerization reactions

were preceded smoothly, and good yield of the polymers

was obtained after purifications. Since it is well known that

in palladium (0) mediated synthesis of poly(phenylenes),

concentration of the macro monomers plays an important

role [38], the polymerizations were done in a concentrated

solution. The resulting polymers obtained as a black-purple

solid showed good solubility in most of the chlorinated

solvents, toluene and THF (maximum solubility was found

to be 20–30 mg/mL solvent). The synthesized polymers

were characterized by FTIR, TGA, and GPC analysis, and

their results are introduced in experimental section. The

molecular weight of the polymers was determined using

gel permeation chromatography (GPC) calibrated with

polystyrene standards. GPC showed that the polymers have

slightly broad molecular weight distribution (Table 1).

Using THF as the eluent and polystyrene as the standards,

the GPC data demonstrate that the number-average

molecular weight (Mn) of the polymers was found to be in

the range of 57 9 103–71 9 103 g/mol. The polydispersity

index (Mw/Mn) of the polymers was found to be in the

range of 3.2–3.7. It is important to note that similar thie-

nothiophene-based polymers containing thiazolothiazole

molecules synthesized by our group possessed a molecular

weight of 15000–16500 with a limited solubility only in

chlorobenzene and o-dichlorobenzene [37]. The thermal

properties of the polymers investigated by TGA are shown

in Fig. 1 and summarized in Table 1. The polymers

exhibited good thermal stability with thermal decomposi-

tion temperature (Td) *400 �C with 5 % weight loss. The

results indicate that the introduction of benzothiodiazole

moiety in the main chain enhances the thermal stability

than other similar thienothiophene-based polymer [37].

Optical properties

The optical absorption spectra of the polymers were mea-

sured in chloroform solution as well as in solid thin films.

The spectroscopic data of the polymers are summarized in

Table 2. In solution, the polymers showed two distinct

absorption peaks: one between 408 and 422 nm and the

other at 549–570 nm. Thin films of the copolymers were
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spin coated on glass substrate from their solution in chlo-

roform. In solid state, the polymers showed two absorption

peaks, one at 456–470 nm and the other at 626–648 nm

(Fig. 2). UV–Vis absorption spectrum of the polymers

shows similar feature in solid and solution state. However,

both the higher and lower energy peaks were red-shifted by

*50 and *70 nm from the solution to the film. The red-

shift indicates the higher co-planarity of the polymer and

the enhanced intermolecular electronic interactions in the

solid state. The optical band gap of the polymers has been

calculated from the onset of the optical absorption in thin

film (*800 nm) and found to be in the range of

1.53–1.54 eV.

Photoluminescence (PL) data for the polymers in solu-

tion as well as thin films are summarized in Table 2. The

thin film of the polymer sample was spin coated on glass

substrate from the chloroform solution and allowed to

evaporate slowly to get a uniform film. PL were then

recorded upon excitation at the wavelength of the absorp-

tion maxima. The PL spectra of the polymers appear

around 722–740 nm in solution. In solid film, the PL was

S
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Scheme 2 Synthesis of the polymers

Fig. 1 Thermo-gravimetric analysis traces of the synthesized

polymers
Table 1 Molecular weight distribution and thermal stability of the

polymers

Polymer Mn
a Mw/Mn Yield (%) Td (�C)b

PTTBz-C12 57000 3.7 69 410

PTTBz-C14 59500 3.3 66 410

PTTBz-C16 71000 3.2 61 390

a Determined by GPC relative to polystyrene standards
b Temperature at 5 % weight loss
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observed at 778–786 nm (Fig. 3). The PL spectra obtained

for the thin films of the polymers show red-shift in relation

to the solution counterpart, as shown in Table 2. The red

shifting of the polymer PL is due to the molecular

aggregation.

Electrochemical properties

The electrochemical characteristics of polymer thin films

coated on Pt electrode were studied by cyclic voltammetry

in a 0.1 M tetrabutyl-ammoniumtetrafluoroborate solution

in acetonitrile at a scan rate of 100 mV/s, and the results

are summarized in Table 2. The oxidation peak of the

polymers became sharper, while the side chain of the

polymers increased (Fig. 4). This could be due to the faster

movement of the charge in polymer matrix due increasing

in inter polymeric distance. All the polymers exhibited a

quasi-reversible oxidation process. The onset oxidation

potential (Eox,onset) of the polymers was found to be in the

range of 0.5–0.6 V, which is higher as compared to the

(Eox,onset) of pure polythienothiophene. The high Eox of the

current set of polymers is attributed to the presence of

electron deficient benzothiadiazole unit. As the molecular

weight (and thus conjugation length) of polymers was

found to increase with increasing the side chain length, the

Eox of the polymers also follows the same trend. This

behavior could be due to decreasing in the effective con-

jugation by increasing in the side chain length. The HOMO

of the polymer is estimated from the onset potential of

oxidation by considering the energy level of the reference

ferrocene/ferrocenium (Fc/Fc?) redox couple and found to

possess between 5.23 and 5.33 eV. This higher level of

HOMO prohibits the formation of adverse exciplexes in

association with the hole transporting materials. The

LUMO levels of the polymers were estimated from the

Fig. 2 UV–Vis absorption spectra of polymers thin film

Fig. 3 PL spectra of the polymers thin film

Table 2 Optical and electrochemical properties of the polymers

Polymer kmax (nm) kPL (nm)c kPL (nm)d kEL (nm)e Eg (eV)f Eox,onset (V)g HOMO (eV) LUMO (eV)h

Filma Solutionb

PTTBz-C12 456, 626 408, 549 722 786 760 1.53 0.50 -5.23 -3.70

PTTBz-C14 469, 647, 707(s) 419, 569 729 778 753 1.54 0.58 -5.31 -3.77

PTTBz-C16 470, 648, 705(s) 422, 570 740 781 750 1.54 0.60 -5.33 -3.79

a UV–Vis spectra of films deposited by slow evaporation from solution on top of glass slides
b UV–Vis spectra of polymers recorded in CHCl3 solution
c PL emission spectra of the polymers recorded on CHCl3 solution
d PL emission spectra of the polymer films deposited by slow evaporation from solution on top of glass slides
e EL spectra of the polymers recorded from the devices
f Optical band gap
g All potentials are reported versus Fc/Fc? based on the assumption that the redox couple of Fc/Fc? is 4.8 eV relative to vacuum
h LUMO levels were calculated from the HOMO values and the optical band gap
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HOMO values and the values of optical band gap. The

LUMO values of the polymers were calculated to be in the

range of 3.70–3.79 eV.

Electroluminescence properties

Multi layer PLEDs having configuration, glass:ITO/PE-

DOT:PSS/polymer/BCP/Alq3/LiF/Al have been fabricated

as shown in Fig. 5b. The schematic energy level diagram of

PLED device structures used in this study has been shown in

Fig. 5a. The energy level and HOMO–LUMO values of

PEDOT:PSS, BCP, and Alq3 have been taken from the lit-

erature [39, 40]. From the energy level diagram of the fab-

ricated device (Fig. 5a), the charge carrier recombination

and emitting zone should be localized at the polymer/BCP

interface. The barrier for holes is estimated from the HOMO

level of polymers (5.23–5.33 eV) and BCP (6.4 eV) to be

1.17–1.07 eV. This means that the holes, which pass over the

polymer layer can be obstructed at the interface of polymer/

BCP effectively, resulting into limiting the recombination

zone in emissive layer (polymer layer). At the same time,

there are no barriers for electrons coming from cathode, thus,

if more holes can arrive and be accumulated at this interface,

it should be beneficial to their recombination with injecting

electrons. From the energy level diagrams, it can be clearly

seen that BCP and Alq3 layers act as good hole blocking and

electron transporting layers, respectively. Hence, all devices

showed a bright red emission when appropriate positive bias

was applied with EL spectra ranging from 650 to 900 nm

(Fig. 6). The main peak of the observed EL maxima was

centered at 760, 753, and 750 nm for PTTBz-C12, PTTBz-

C14, and PTTBz-C16, respectively (Table 2). Throughout

the series of the polymers, the EL spectra show a slight blue

shift with increase in side chain length. This could be

attributed to increase in band gap resulting from decreased

net conjugation length due to polymer chain twisting. In most

case the EL spectra of the polymers were found to be blue

shifted as compared to the corresponding PL spectra. This

phenomenon was also observed in polymers containing

thiazolothiazole polymers [34].

Figure 7 show the voltage–luminescence (V–L) and

current density–voltage (J–V) (inset) curves of the devices

having synthesized polymers as emissive materials and

showed a typical diode characteristic. When a forward bias

was applied, the increase of current as well as luminescent

intensity was observed for the polymer devices. The turn-

on voltages were found to be 4.0, 4.0, and 5.5 V for the

PTTBz-C12, PTTBz-C14, and PTTBz-C16 device, and

the maximum luminescences were 581, 688, and 813

cd/m2, respectively. The comparatively inferior device

performance could be due to the strong intermolecular

interaction and aggregate formation of the polymers, which

quench fluorescence in solid state. However, we also
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Fig. 4 Cyclic voltammograms of the polymers
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believe that the luminescence of these polymers can be

improved by material and device optimization.

Conclusion

We have synthesized a series of high molecular weight

polyalkylthiophenes containing an electron-rich thienothi-

ophene and electron-deficient benzothiodiazole block in

the main chain. The optical and electrochemical charac-

terizations reveal that all the polymers have low band gap

with HOMO and LUMO energy levels ranging from 5.23

to 5.33 eV and 3.70 to 3.79 eV, respectively. When used in

EL devices, these polymers shown a deep red emission

with a maxima ranging from 750 to 760 nm in ITO/

PDOT:PSS/Polymer/BCP/Alq3/LiF/Al device configura-

tion. A highest luminescence of 813 cd/m2 has also been

realized. These interesting optoelectronic properties also

render them promising materials for OPV application.
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