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Abstract The maximal entropy production principle was

applied to model the growth kinetics of a multi-component

stoichiometric compound. Compared with the solid-solu-

tion phase and the non-stoichiometric compound, the dis-

sipation by the trans-interface diffusion makes the interface

slow down by decreasing the effective interface mobility

and does not result in solute trapping or disorder trapping.

An application to the crystallization of a CuZr stoichiom-

etric compound shows that the transition from the ther-

modynamic-controlled to the kinetic-controlled growth can

be predicted.

Introduction

Most intermetallics and oxides are stoichiometric com-

pounds (SCs) with no or extremely small solubility, i.e.,

line compounds. Modeling their growth kinetics is very

important for not only solidification [1–7] but also solid-

state phase transformations [8–16]. Recent work on some

SC alloy systems (e.g., CuZr intermetallics [17, 18] and

Al–Al3Sm eutectics [19, 20]), further shows that their

abnormally slow growth behaviors upon solidification are

quite useful for selecting the potential glass-forming

systems.

The Gibbs energy of the SC in the thermodynamic

databases is a concentration-independent constant at a

given temperature T. For example, the molar Gibbs energy

diagram for the solidification of a binary SC is shown in

Fig. 1. The Gibbs energy and the concentration of the SC

are gs and Cs. The position of the SC (a point) in the

diagram is denoted as the solid circle. By drawing the

tangent of the liquid curve which goes through the solid

circle (i.e., the common tangent rule), the equilibrium

liquid concentration C
eq
L is determined. If the initial con-

centration C0 ¼ CS, there are no solute diffusions in both

the solid and the liquid and, the SC is crystallized like a

pure element with the growth velocity V given by [21]:

V ¼ V0 Tð Þ 1� exp
Dg

RT

� �� �
; ð1Þ

where the temperature-dependent V0 is the upper limit of V,

and Dg is the driving free energy at the interface. If

C0 6¼ CS, the solute jump at the interface and the solute

diffusion in the liquid happen. From the molar Gibbs

energy diagram, Dg is the vertical distance from the solid

circle to the tangent of the liquid curve at C�L [22] (The

superscript ‘*’ denotes the values at the interface in the

current work). The dissipations by the interface migration

and the trans-interface diffusion cannot be distinguished

from Dg, because there is no tangent for the SC.1 In recent

work of Wang et al. [19, 20], a semi-empirical power

growth law was used to describe the kinetics of the Al3Sm

SC upon eutectic solidification. Svoboda et al. [14–16]

adopted the thermodynamic extremal principle (TEP)

H. Wang (&) � F. Liu

State Key Laboratory of Solidification Processing,

Northwestern Polytechnical University, Xi’an 710072,

Shaanxi, People’s Republic of China

e-mail: haifengw81@nwpu.edu.cn

H. Wang � D. M. Herlach

Institut für Materialphysik im Weltraum, Deutsches Zentrum für

Luft- und Raumfahrt (DLR), 51170 Cologne, Germany

1 For the solid-solution phase, Dg can be divided into the driving free

energy for the interface migration DgC and the trans-interface

diffusion DgD by moving the tangent of the solid curve at CS to C�L
in the liquid curve [22]; please see the two parallel dotted lines in

Fig. 1.

123

J Mater Sci (2014) 49:1537–1543

DOI 10.1007/s10853-013-7835-2



[23–25] (i.e., a simplification of the maximal entropy

production principle (MEPP) [26–28] to the linear ther-

modynamics) to model the stoichiometric precipitates in

the binary and the multi-component alloy systems. How-

ever, all the work above does not show clearly the effect of

the trans-interface diffusion on the growth kinetics of the

SC. As is well-known, the trans-interface diffusion plays an

important role in the growth kinetics of the solid-solution

phase (SSP) and the non-stoichiometric compound (NSC),

e.g., it makes the interface slow down by dissipating part of

the driving free energy at the interface (i.e., the solute drag

effect) and results in solute trapping or disorder trapping

[22, 29–33].

The current work aims to develop a sharp interface model

for the growth kinetics of the multi-component SC. Fol-

lowing our former work for the SSP [34–36], the MEPP was

applied to formulate the model self-consistently in thermo-

dynamics. The dissipation by the trans-interface diffusion

was found to decrease the interface mobility considerably if

the liquid concentration at the interface deviates much from

the solid concentration. The growth kinetics of an under-

cooled CuZr SC was predicted and discussed.

The model

Let us consider a closed isothermal system in which an

n-component SC is crystallized from an m-component

undercooled melt (n B m); please see Fig. 2. The solid

S (XS) and the liquid L (XL) are separated by a curved

S/L interface (oXS=L). The growth velocity of the interface

is Vn with n as the normal vector. For simplicity, the partial

molar volumes of all the components in the solid and in the

liquid are assumed to be equal (Vm). If the local Gibbs

energy of the bulk phases is denoted as gk (k = S or L) and

the interface energy is a constant r, the total Gibbs energy

of the system G can be expressed as:

G ¼
X

k¼S;L

Z
Xk

gk

Vm

dXþ
Z

oXS=L

rdoX: ð2Þ

gS is only temperature-dependent due to the invariable

solid concentration Ci
S (i ¼ 1; 2; . . .; n), whereas, gL is not

only temperature-dependent but also concentration-

dependent:

gL ¼
Xm

j¼1

C
j
Ll j

L; ð3Þ

where C
j
L and l j

L (j ¼ 1; 2; . . .;m) are the liquid

concentration and the chemical potential, respectively.

Fig. 1 Molar Gibbs energy diagram for the crystallization of a binary

stoichiometric compound. The position (a point) of the stoichiometric

compound S (CS, gS) is denoted as the solid circle and the

concentration-dependent Gibbs energy of the liquid L is shown as

the thick solid line. By drawing the tangent of the L curve that goes

through the solid circle (i.e., the common tangent rule), the

equilibrium liquid concentration C
eq
L and chemical potential eqlL

i

(i = A or B) are determined. Under non-equilibrium conditions where

the liquid concentration is C�L, the driving free energy at the interface

Dg and the non-equilibrium chemical potential lL�
i (i = A or B) are

determined by drawing the tangent of the L curve at C�L [22]. Dg is the

vertical distance from the solid circle to the tangent. In the multi-

phase field models [7, 9–13], a paraboloid Gibbs energy (e.g., the

dotted curve S0) is assumed to describe the kinetics of the

stoichiometric compound by that of the solid-solution phase. The

application of this approximation method, however, is rather limited

[7]. For the solid-solution phase, Dg can be divided into the driving

free energy for the interface migration DgC and the trans-interface

diffusion DgD by moving the tangent of the S0 curve at CS to C�L in the

L curve [22]. There is, however, no tangent of a point for

the stoichiometric compound. In other words, the kinetics of the

stoichiometric compound is essentially different from that of the

solid-solution phase

Fig. 2 Schematic diagram for the crystallization of an n-component

stoichiometric compound from an m-component undercooled melt

(n B m). The solid S (XS) and the liquid L (XL) are separated by a

curved migrating S/L interface (oXS=L) with a velocity Vn in the

normal direction of oXS=L n. Due to the invariable solid concentration

Ci
S (i ¼ 1; 2; . . .; n), there are no solute fluxes in the solid, i.e., Ji

S ¼ 0.

The liquid concentration and the solute fluxes in the liquid are

denoted as C
j
L and J

j
L (j ¼ 1; 2; . . .;m) and, C

j�
L and J

j�
L are the values

at the interface. For a closed system assumed here, there are no solute

fluxes at the surfaces of the solid and the liquid, i.e., Ji
oXS
¼ J

j
oXL
¼ 0
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Following the transport theorem [37], the rate of the total

Gibbs energy change is obtained from Eq. (2) as

_G ¼ 1

Vm

Z
XL

ogL

ot
dX�

Z
oXS=L

g�L � g�S þ rKVm

� �
VndoX

2
64

3
75

ð4Þ

if there is no velocity field in the liquid. Here K is the

interface curvature. The mass conservation law in the

liquid is:

oC
j
L

ot
¼ �VmrJ

j
L; ð5Þ

where J
j
L is the diffusion flux. Regarding that there are no

diffusion fluxes in the solid and at the surface of the solid

and the liquid (i.e., Ji
S ¼ Ji

oXS
¼ J

j
oXL
¼ 0), a combination

of Eqs. (3)–(5) and the Gibbs–Duhem relation (i.e.,Pm
j¼1

C
j
Lol j

L

�
ot ¼ 0) leads to:

_G ¼
Z
XL

Xm

j¼1

J
j
Lrl j

LdXþ
Z

oXS=L

Xm

j¼1

J
j�
L lj�

L

� �(

�Vn

Vm

Xm

j¼1

C
j�
L lj�

L

� �
� gS þ VmrK

" #)
dok ð6Þ

The constraints among the diffusion fluxes in the liquidPm
j¼1 J

j
L ¼ 0 and at the interface

Pm
j¼1

J
j�
L ¼ 0 reduce Eq. (6)

to

_G ¼
Z
XL

Xm

j¼2

J
j
Lr l j

L � l1
L

� �
dXþ

Z
oXS=L

Xm

j¼2

J
j�
L lj�

L � l1�
L

� �(

�Vn

Vm

Xm

j¼1

C
j�
L lj�

L

� �
� gS þ VmrK

" #)
doX ð7Þ

Note that the component 1 is chosen here as the

solvent.

For the bulk liquid, the Gibbs energy is dissipated by the

flux of the solute diffusion J
j
L; see the first term on the right

hand of Eq. (7). For the interface, the Gibbs energy is

dissipated by the fluxes of the trans-interface diffusion

J
j
D ¼ J

j�
L [34] and the interface migration JC ¼ Vn=Vm

[22]; see the second term on the right hand of Eq. (7).

Therefore, the total Gibbs energy dissipation Q can be

according to the TEP [23–25] given by:

Q ¼
Z
XL

Xm

j¼2

J
j2
L

MJ
j

L

dXþ
Z

oXS=L

Xm

j¼2

J
j2
D

MJ
j

D

þ J2
C

MJC

" #
doX; ð8Þ

where MJ
j

L
, MJ

j

D
; and MJC

are the mobilities of the solute

diffusion, the trans-interface diffusion, and the interface

migration [21, 25, 34–36]:

MJ
j

L
¼ D

j

L

Vm

oC
j

L

o l j

L
�l1

Lð Þ �
D

j

L

Vm

C
j

L
C1

L

RT C
j

L
þC1

Lð Þ ;

MJ
j

D
¼ D

j�
L

a0Vm

oC
j�
L

o lj�
L
�l1�

Lð Þ �
D

j�
L

a0Vm

C
j�
L

C1�
L

RT C
j�
L
þC1�

Lð Þ ;

MJC
¼ V0 Tð Þ

RTVm
ð9Þ

Here D
j
L and D

j�
L are the diffusion coefficients, and a0 is

the interatomic spacing.

According to the transport theorem [37], the mass con-

servation law (or the jump condition) at the interface is:

J
j�
L ¼

Vn C
j�
L � Ci

Sdij

� �
Vm

; ð10Þ

where the Dirac delta function dij is introduced because

there are no redundant components from n ? 1 to m in the

solid. Eq. (10) is actually an additional constraint in the

system that should be considered during the application of

the TEP (or the MEPP). The evolution of the system

according to the TEP [23–25] follows2:

d _Gþ1

2
Qþ

Z
oXS=L

Xm

j¼2

kj J
j�
L �

Vn

Vm

C
j�
L �Ci

Sdij

� �� �
doX

8><
>:

9>=
>;¼ 0;

ð11Þ

where kj is the associated Lagrange multiplier. Then,

substituting Eqs. (7) and (8) into Eq. (11) and eliminating

kj yield the diffusion equation in the liquid (i.e., the

classical Fick’s law):

J
j
L ¼ �MJ

j

L
r l j

L � l1
L

� �
¼ �D

j
L

Vm

rC
j
L ð12Þ

and the growth kinetics of the interface:

JC ¼
Vn

Vm

¼ � 1

MJC

þ
Xm

j¼2

C
j�
L � Ci

Sdij

� �2

MJ
j

D

" #�1

� gS �
Xn

j¼1

C
j
Sl

j�
L

� �
� VmrK

" #
: ð13Þ

Even if the redundant components in the liquid have no

contributions to the driving free energy at the interface, their

trans-interface diffusion fluxes influence on the effective

interface mobility Meff
JC
¼ 1=MJC

þ
Pm

j¼2

h
C

j�
L � Ci

Sdij

� �2
.

MJ
j

D
��1

. Because Meff
JC

\MJC
, the trans-interface diffusion,

like the solute drag effect in the SSP and the NSC, makes the

2 The driving free energy for each dissipation process cannot be self-

derived by the MEPP for the nonlinear thermodynamics and needs to

be prescribed by the TEP or the molar Gibbs energy diagram [34].
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interface slow down. If the MEPP for the non-linear

thermodynamics [34] is adopted, the growth kinetics can

be obtained as:

Vn ¼
1

V0

þ
Xm

j¼2

a0

D
j�
L

C
j�
L þ C1�

L

� �
C

j�
L � Ci

Sdij

� �2

C
j�
L C1�

L

" #�1

� 1� exp

gS �
Pn
j¼1

C
j
Sl

j�
L

� �
� VmrK

RT

2
664

3
775

8>><
>>:

9>>=
>>;
; ð14Þ

where the first and the second terms on the right hand are

the kinetic and the thermodynamic contributions, respec-

tively. When n = m and the initial concentration Ci0
L ¼ Ci

S,

Eq. (14) reduces to Eq. (1) in the case of planar solidifi-

cation. The effective upper limit of growth velocity Veff
0 ¼

V0 is only temperature-dependent. Otherwise, Veff
0 ¼

VmRTMeff
JC

is not only temperature-dependent but also

concentration-dependent. Under equilibrium conditions

(V ¼ 0), Eq. (14) reduces to gS �
Pn

j¼1 C
j
Sl

j�
L

� �
� VmrK ¼

0; which is the Gibbs–Thomson equation for the multi-

component SC [38, 39].

Application to the crystallization of a CuZr

stoichiometric compound

The current interface kinetic model (Eq. 14) is applied to

the crystallization of the CuZr SC from a binary Cu–Zr

glass-forming alloy system. The driving free energy at the

interface is obtained from the CALPHAD thermodynamic

assessment by Wang et al. [40]. The interface mobility is

generally assumed to be temperature-dependent and con-

centration-dependent through the diffusion coefficient, the

viscosity, and so on [21, 41]. Following Aziz and Boett-

inger [21], the interface mobility is currently assumed to

depend linearly on the diffusion coefficient in the liquid,

i.e., V0 ¼ fDL=a0 with f as a geometrical factor of order

unity. This assumption is consistent with the recent

molecular dynamics simulations by Tang and Harrowell

[18] and is helpful for understanding the transition from the

thermodynamic-controlled to the kinetic-controlled growth

in undercooled melts [41, 42].

Kinetic phase diagram

The kinetic phase diagram for the crystallization of the

CuZr SC is calculated by setting V0 ¼ fDL=a0 ¼ 1425:8

exp �79759=RTð Þ and VDI ¼ D�L
�

a0 ¼ V0=2 (m s-1);

please see Fig. 3. The thin solid lines are the equilibrium

liquidus and its extension (below the two star symbols).

The thick vertical solid line is the equilibrium solidus.

Under non-equilibrium conditions, the liquid concentration

deviates from the equilibrium concentration to provide the

driving free energy at the interface. For a given V, the

deviation needs to increase gradually to provide more

thermodynamic contribution as the decrease of T because

of the continuous decrease of the kinetic contribution. The

kinetic liquidus therefore bends toward to the solidus at

low T and shows itself as an egg shape. As the increase of

V, the kinetic liquidus becomes smaller and smaller and its

maximal temperature at CL = 0.5 decreases gradually.

When V approaches its maximal value 0.0227 m s-1, the

kinetic liquidus and solidus converge to the point

(CL = 0.5, T = 1094.6 K). The kinetic phase diagram

implies that there is a critical interface temperature below

which the growth velocity begins to decrease for a given

C�L, i.e., the transition from the thermodynamic-controlled

to the kinetic-controlled growth.

Transition from the thermodynamic-controlled

to the kinetic-controlled growth

To show the transition more clearly, the evolution of

V with the interface undercooling DTI is calculated for a

fixed C�L; please see the lines in Fig. 4. The concentrations

chosen are on the right side of the solidus in Fig. 3.

Independent on C�L, V increases firstly and then decreases

as the increase of DTI. The maximal velocity Vmax

decreases gradually as the increase of C�L and so is the

Fig. 3 Equilibrium (V ¼ 0) and non-equilibrium (V 6¼ 0) phase

diagrams for the crystallization of a CuZr stoichiometric compound.

Below the two stars is the extension of the equilibrium liquidus.

Under non-equilibrium conditions (V 6¼ 0), the liquid concentration

deviates from the equilibrium concentration to provide the driving

free energy at the interface. For a given V , the deviation needs to

increase gradually to provide more thermodynamic contribution as

the decrease of T because of the continuous decrease of the kinetic

contribution. The kinetic liquidus therefore bends toward to the

solidus at low T to show itself as an egg shape

1540 J Mater Sci (2014) 49:1537–1543
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corresponding interface undercooling DT^I . Since an

increase of C�L from 0.5 to 0.6 makes the maximal point

decrease from (Vmax = 0.0227 m s-1, DT^I = 132.2 K) to

(Vmax = 0.008 m s-1, DT^I = 108.15 K), the effect of the

trans-interface diffusion on the growth kinetics of the SC

could be significant. Similar calculation results are

obtained if the concentrations chosen are on the left side of

the solidus.

The physics behind the transition is that there is a

competition between the driving free energy from the

thermodynamics and the interface mobility from the

kinetics. Figure 5 shows the evolution of Dgj j ¼

gS � CSlZr
L � 1� CSð ÞlCu

L

		 		 and V0 with DTI for

C�L ¼ 0:5. As the increase of DTI, Dgj j increases contin-

uously, V0 decreases constantly. Therefore, the thermody-

namics dominates initially, and V increases with DTI. After

that the kinetics becomes more and more dominant and

finally results in the decrease of V with DTI. Consequently,

a transition from the thermodynamic-controlled to the

kinetic-controlled growth happens for the crystallization of

the CuZr SC.

To show the effect of the trans-interface diffusion on the

transition, the evolution of Vmax
k (k = 1 and 2 correspond to

the case with (VDI ¼ V0=2) and without (VDI ¼ 1) the

effect of the trans-interface diffusion, respectively) and

DT^Ik with C�L is calculated; please see Fig 6a, b. As the

increase of the deviation of C�L from CS ¼ 0:5, Vmax
k

decreases continuously and so is DT�Ik. The differences

between the two cases are neglectable for DT�Ik but not for

Vmax
k , e.g., a deviation of 0.15 for C�L from CS ¼ 0:5 makes

Fig. 4 Evolution of the growth velocity V with the interface

undercooling DTI for a fixed liquid concentration at the interface

C�L. The V �DT relation measured by Wang et al. [17] is showed as

the solid circles. The experimental results can be well reproduced if

the current growth kinetic model is incorporated into the dendrite

growth theory to consider the contributions of the thermal and the

curvature undercooling to DT

Fig. 5 Evolution of the absolute value of the driving free energy at

the interface Dgj j and the upper limit of growth velocity V0 with the

interface undercooling DTI for C�L ¼ 0:5. A continuous increase of the

thermodynamic contribution Dgj j is followed by a constant decrease

of the kinetic contribution V0, thus resulting in the transition from the

thermodynamic-controlled to the kinetic-controlled growth

Fig. 6 Evolution of the maximal velocity Vmax
k (a) and the

corresponding critical interface undercooling DT^Ik (b) with the liquid

concentration at the interface C�L. k = 1 and 2 correspond to the case

with (VDI ¼ V0=2) and without (VDI ¼ 1) the effect of trans-

interface diffusion, respectively. The relative differences in Vmax

between the two cases are showed as the dotted line in Fig. 6a. The

differences between DT^I1 and DT^I2 are indistinguishable in b

J Mater Sci (2014) 49:1537–1543 1541
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Vmax decrease by more than 15 % (the dotted line in

Fig. 6a). In other words, the trans-interface diffusion plays

an important role in the kinetics of not only the SSP and the

NSC but also the SC if the deviation of the liquid con-

centration at the interface from the solid concentration is

significant.

Compared with the experimental results

in an undercooled Cu50Zr50 melt

Cu50Zr50 alloy was undercooled by electrostatic levitation

to measure the growth velocity V as function of underco-

oling DT [17]. It was found that V increases firstly and then

decreases with DT; please see the solid circles in Fig. 4.

Tang and Harrowell [18] reported similar results for the

isothermal crystallization of the CuZr SC using the

molecular dynamics simulation. Although such an abnor-

mal V �DT relation is quite different from our general

understanding of the undercooled metallic melts in which

V always increases with DT [43], it was frequently

observed experimentally in the organic, the inorganic and

the polymeric systems [41, 42]. A viscosity- dependent V0

proposed by fitting with the experimental results in the

organic and the inorganic but not the metallic systems [41]

was adopted by Wang et al. [17] to predict the V �DT

relation. Although Vmax ¼ 0:025 m s-1 was reproduced, a

large deviation of 127 K from the corresponding und-

ercooling DT^ ¼ 200 K(the solid circles in Fig. 4) was

found. Our work for C�L ¼ 0:5 (i.e,. the crystallization of

the CuZr SC from the undercooled Cu50Zr50 melt) shows

that Vmax ¼ 0:0227 m s-1 at DT^I ¼ 132 K; please see

Fig. 4. Vmax is also predicted and the difference between

DT^I and DT^ 68 K is nearly two times smaller than that of

Wang et al. [17] 127 K. The experimental results can be

well predicted if the current growth kinetic model is

incorporated into the dendrite growth theory (e.g., [44, 45])

to consider the contributions of the thermal and the cur-

vature undercoolings to DT .

Conclusions

A thermodynamically consistent growth kinetic model was

developed for the multi-component SC based on the MEPP

(the TEP). In contrast to the kinetics of the SSP and the

NSC, there is only one interface condition for the SC [Eq.

(13) or (14)]. If the initial concentration is same as the SC,

the Gibbs free energy at the interface is totally dissipated

by the interface migration. Otherwise, it is dissipated by

both the interface migration and the trans-interface diffu-

sion. The trans-interface diffusion makes the interface slow

down by decreasing the interface mobility and it does not

result in solute trapping or disorder trapping. The

dissipation by the trans-interface diffusion cannot be sep-

arated from the driving free energy at the interface.

Adopting the linearly diffusion coefficient-dependent

interface mobility of Aziz and Boettinger [21], the transi-

tion from the thermodynamic-controlled to the kinetic-

controlled growth during the crystallization of the CuZr SC

was predicted.

It must be pointed out that a paraboloid Gibbs energy3 is

usually introduced to ensure the correct equilibrium con-

ditions and a minimal solubility in the SC to satisfy the

equal diffusion potential conditions in the multi-phase field

models [11]; please see the dotted line in Fig. 1 (S0). By

this way, the growth kinetics of the SC can be described by

that of the SSP. The curvature of the paraboloid must be

chosen carefully to fit the Gibbs energy of the SC and avoid

any unreasonable simulation result. Although widely used

[7, 9–13], this approximation method is limited to near-

equilibrium conditions with weak Gibbs–Thomson effect

[11]. The current work shows that the growth kinetics of

the SSP and the SC are essentially different and thus the

multi-phase field model for the SC needs to be re-derived

self-consistently in thermodynamics (e.g., by the MEPP

[36]).
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