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Abstract Three-dimensional viscoelastic properties of

four-step three-dimensionally (3D) braided composites are

studied in this paper. Based on the three-cell division

scheme, a multi-scale model for 3D braided composites is

proposed. A periodic boundary condition is applied to

characterize the periodic structure of 3D braided compos-

ites and yarns. Given the viscoelastic parameters of resin

matrix and the elastic constants of fibers, the viscoelastic

properties of yarns are obtained by the finite element

method and Prony Series fitting. The three-dimensional

viscoelastic constitutive relationship of interior cells is

derived based upon the viscoelastic properties of yarns and

resin matrix. Moreover, the viscoelasticity of 3D braided

composites is studied by creep experiment. The visco-

elastic deformation obtained from the multi-scale method

agrees well with the experimental results. The influence of

the two independent micro-structural parameters, braiding

angles, and fiber volume fractions, on the viscoelastic

properties of 3D braided composites is investigated in

detail.

Introduction

Three-dimensionally braided composites have been widely

used in many industries, such as airplanes, space structures,

ships, and building structures. Their complex spatial

structure of yarns significantly improves the transverse

strength, shear stiffness, impact resistance, and resistance

to damage, etc. In recent years, many researchers have

focused their efforts on the micro-structures and elastic

properties for three-dimensionally braided composites. The

typical micro-structure models are the fabric geometric

model [1], the fiber inclination model [2], the three-cell

model [3], and the finite multi-phase element model [4],

etc. The three-cell model is extensively used to predict the

mechanical properties of 3D braided composites because it

is able to describe the micro-structure more accurately. The

elastic strain energy approach was proposed by Ma et al.

[5] based on the fiber structures of four-step braided

composites and the energy method. Byun et al. [6] pre-

dicted the elastic properties of three-dimensionally braided

composites by using the fabric geometric model and the

volume averaging method. Sun and Qiao [7] developed the

fiber-inclination model, and predicted the strength of four-

step braided composites based upon the transverse isotropy

of unidirectional laminas and the Tsai–Wu polynomial

failure criterion. Sun and Gu [8] investigated the out-of-

plane and in-plane compressive failure behavior of 4-step

3D braided composites at quasi-static and high strain rates

by experimental method.

Recently, the finite element method [9–12] and the

multi-scale asymptotic (MSA) analysis method [13–16]

were extensively applied to numerically predict the average

stiffness and strength properties of 3D braided composites

for their accurate prediction. Incorporating with homoge-

nization method, Sun et al. [10] developed the incompati-

ble displacement element and hybrid stress element to

predict mechanical behaviors of braided composites. Xu

and Xu [12] proposed a meso-mechanical finite element

model to predict the effective elastic properties and the
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meso-scale mechanical response of 3D five-directional

braided composites. Chen et al. [13] introduced a homog-

enization method and established a unit cell model to

predict the elastic properties of braided composites. Yu and

Cui [15] investigated tensile strength, bending strength,

and torsion strength of four-step 3D braided composites

through a two-scale method.

The viscoelastic deformation of many resin matrix

composites is significant. The viscoelastic deformation in

resin matrix composites will become more serious, when

the ambient temperature increases, or the internal friction

in composites under loads causes heat. Many researchers

have focused their efforts on the viscoelastic behavior of

polymer matrix composites. Brinson and Knauss [17]

studied the time–temperature behavior of multiphase

composites by the finite element analysis and dynamic

correspondence principle of viscoelasticity. Koishi et al.

[18] investigated the dynamic viscoelastic response of

Kelvin–Voigt composites by using asymptotic homogeni-

zation method. The predicted composite properties were

compared well with the limited measurements. Chung et al.

[19] developed a new practical finite element approach for

viscoelastic micro/macro creep problem via asymptotic

homogenization, and investigated the viscoelastic proper-

ties of woven-fabric composites. Seifert et al. [20] char-

acterized the 3D linear viscoelastic response of a plain

weave composite material at elevated temperature by the

finite element analysis and experimental method. Lévesque

et al. [21] developed a theoretical model to predict the

viscoelastic behaviors of the particle reinforced composites

by the homogenization method. It is very important to

study the viscoelastic properties of three-dimensionally

resin matrix braided composites, since they are widely used

in the long-term and variable temperature environment. Liu

et al. [22, 23] investigated the viscoelastic properties of 3D

braided composites by creep experiments under constant

temperature and constant loads, and discussed the influence

of braiding parameters on the viscoelastic behaviors.

However, there is still little theoretical prediction on the

viscoelastic properties of 3D braided composites.

In this paper, a multi-scale finite element model, i.e., the

three-cell structure model of 3D braided composites on

meso-scale and the representative volume element of yarns

on micro-scale is established. Viscoelastic properties of

resin matrix and yarns are derived. The three-dimensional

viscoelastic constitutive relationship of four-step 3D brai-

ded composites is obtained from the multi-scale model.

Moreover, the viscoelastic properties of 3D braided com-

posites are studied by creep experiment. The viscoelastic

deformation obtained from the multi-scale method is

compared with the experimental results. The influence of

braiding angles and fiber volume fractions on the visco-

elastic properties of 3D braided composites is investigated.

Multi-scale model of 3D braided composites

and periodic boundary

The complex spatial topological structure of three-dimen-

sionally braided composites consists of three kinds of cells,

i.e., interior cells, surface cells, and corner cells [24]. The

viscoelastic properties of 3D braided composites are

determined mainly by the interior cells which take a main

proportion. Therefore, only the interior cell is considered

and the viscoelastic properties of interior cells are used to

represent the viscoelasticity of 3D braided composites in

this study.

The three-cell model division of four-step 3D braided

composites is shown in Fig. 1. The interior cell can be

further divided into Sub-cell A and Sub-cell B, which are

arranged alternately, as shown in Fig. 2.

On micro-scale, assuming that the fibers are uniformly

distributed, the yarns can be regarded as unidirectional

fiber composites, as shown in Fig. 3a. A periodic part of

the yarn called representative volume element (RVE), as

shown in Fig. 3b is analyzed. The structural parameters of

RVE are described as

Vyf ¼
2pr02

ab
ð2:1Þ

where b ¼
ffiffiffi

3
p

a, Vyf is the fiber volume fraction of yarns,

r0 is radius of fibers.

From Figs. 1 and 3, it is shown that the interior cell of

three-dimensionally braided composites and the RVE of

yarns are periodically arranged in 3D braided composites

and yarns, respectively. The deformation on the interfaces

between unit cells should be continuous, i.e., intrusion and

separation are not allowed. The processing method of the

periodic boundary condition for the finite element analysis in

this paper is from Xia et al. [25]. To apply the periodic

boundary conditions, the mesh grids on the opposite surfaces

of the unit cell are same, i.e., the number of nodes on the

opposite surfaces is equal, and the corresponding nodes on

Z

Y

X

X1X2

X3
Interior cell

Surface cell

Corner cell

Fig. 1 Three-cell structure division of 3D braided composites
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the two surfaces have the same coordinates on their planes.

The meshing procedure is as follows: (1) divide the surface

of X1 = 0 to surface grids; (2) copy the grids in the surface of

X1 = 0 to the surface of X1 = hx; (3) divide the other sur-

faces to surface grids by using the same method with step (1)

and step (2); (4) based on the grids on the surfaces, divide the

interior cell to solid grids; (5) delete the surface grids. Then

the mesh grids in the opposite surfaces of the interior cell

could be one-to-one correspondence. The finite element

models of a representative volume element and an interior

cell are established, and the periodic boundary condition is

applied, as shown in Figs. 4 and 5, respectively.

Viscoelastic analysis by multi-scale model

Viscoelastic properties of resin matrix

The resin matrix of three-dimensionally braided composites

in this section is resin ED-6 [26], whose volume deformation

is linearly elastic and shear deformation is described by the

standard linear viscoelastic solid model, as shown in Fig. 6.

The material parameters of ED-6 are shown in Table 1.

The relaxation modulus of resin matrix is expressed as

Cij

� �

¼

K þ 4
3

Y tð Þ K � 2
3

Y tð Þ K � 2
3

Y tð Þ 0 0 0

K � 2
3

Y tð Þ K þ 4
3

Y tð Þ K � 2
3

Y tð Þ 0 0 0

K � 2
3

Y tð Þ K � 2
3

Y tð Þ K þ 4
3

Y tð Þ 0 0 0

0 0 0 Y tð Þ 0 0

0 0 0 0 Y tð Þ 0

0 0 0 0 0 Y tð Þ

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

ð3:1Þ

where K is volume modulus, Y(t) is shear modulus which is

a function of time. Y(t) can be expressed as the first-order

Prony series

YðtÞ ¼ Y0 þ Y1e�t=s ð3:2Þ

For shear deformation, the differential constitutive

equation is written as

Sij þ p1

dSij

dt
¼ q0eij þ q1

deij

dt
ð3:3Þ

where p1 ¼ g2

G1þG2
, q0 ¼ 2G1G2

G1þG2
, q1 ¼ 2G1g2

G1þG2
.

Laplacian transformation for Eq. (3.3) gives

ð1þ p1sÞSij ¼ ðq0 þ q1sÞeij ð3:4Þ

Then

PðsÞ ¼ 1þ p1s ; QðsÞ ¼ q0 þ q1s ð3:5Þ

YðsÞ ¼ QðsÞ
sPðsÞ ¼

q0 þ q1s

s 1þ p1sð Þ ð3:6Þ

Laplacian inverse transformation for Eq. (3.6) gives

Y tð Þ ¼ q0 þ ð
q1

p1

� q0Þe�t=p1

¼ 2
G1G2

G1 þ G2

þ G2
1

G1 þ G2

e
�t=ð g2

G1þG2
Þ

� � ð3:7Þ

Viscoelastic properties of yarns and interior cells

Using contracted notations, the 3D creep-type viscoelastic

constitutive equation at constant temperature is expressed

in the form of hereditary integral as

A

A

A A

B B

B

B

1X

2X

3X

'O

Yarn

/2xh

/2yh

/2zh

/2xh

/2yh

/2zh

(a) (b) (c)

γ

Fig. 2 Structure of an interior

cell. a A division scheme of an

interior cell. b Sub-cell A.

c Sub-cell B

Fiber

Resin

2r′

a

b

1

2

3

(a) (b)

RVC

Fig. 3 Micro-structure of yarns. a Cross-section. b Representative

volume element (RVE)
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ei tð Þ ¼
Z t

0�
Dij t � sð Þ drj sð Þ

ds
ds i; j ¼ 1; 2; � � � ; 6ð Þ ð3:8Þ

where Dij(t) is creep compliance.

Because the RVE of yarns and the interior cell of 3D

braided composites are structurally symmetric, their

equivalent viscoelastic properties are considered to be

orthotropic. In this case, a total of nine independent

functions of time are necessary to characterize the visco-

elastic constitutive relationship, and the creep compliance

is given as follows

Dij tð Þ
� �

¼

D11 tð Þ D12 tð Þ D13 tð Þ 0 0 0

D12 tð Þ D22 tð Þ D23 tð Þ 0 0 0

D13 tð Þ D23 tð Þ D33 tð Þ 0 0 0

0 0 0 D44 tð Þ 0 0

0 0 0 0 D55 tð Þ 0

0 0 0 0 0 D66 tð Þ

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

ð3:9Þ

where all entities in the above matrix are functions of time,

that are creep functions.

Considering a uniaxial stepped stress r0
11 in direction X1,

D11ðtÞ, D12ðtÞ and D13ðtÞ are determined as

D11ðtÞ ¼
e11ðtÞ
r0

11

; D12ðtÞ ¼
e22ðtÞ
r0

11

; D13ðtÞ ¼
e33ðtÞ
r0

11

ð3:10Þ

Similarly, D22ðtÞ,D23ðtÞ and D33ðtÞ can be determined.

For a pure shear stepped stress r0
12 in plane X1OX2,

D44ðtÞ is determined as

Fig. 4 Finite element model of

the RVE (Vyf = 85 %).

a Fibers. b Resin matrix. c RVE

Fig. 5 Finite element model of

an interior cell (Vf = 37 %,

Vyf = 85 %, and c = 30�).

a Yarns. b Resin matrix. c An

interior cell

Fig. 6 Standard linear viscoelastic solid model

Table 1 Viscoelastic constants of resin matrix (ED-6) at room tem-

perature [26]

G1 (Gpa) G2 (Gpa) g2 (GPa�h) K (GPa)

3.20 1.80 300 5.56
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D44ðtÞ ¼
c12ðtÞ
r0

12

ð3:11Þ

Similarly, D55ðtÞ and D66ðtÞ can be determined.

Then, the relationship between the creep compliance

and relaxation modulus can be expressed in terms of con-

volution and Laplacian transformation.

L Cik tð Þ � Dkj tð Þ
� �

¼ Cik sð Þ � Dkj sð Þ ¼ s�2Iij ð3:12Þ

where L denotes Laplacian transformation, * denotes

convolution, Cik sð Þ is the Laplacian transformation of

Cik(t) and Dkj sð Þis the Laplacian transformation of Dkj(t), Iij

is a unit matrix. Then,

Cij sð Þ ¼ s�2Iik Dkj sð Þ
� ��1 ð3:13Þ

So Cij(t) can be obtained by

Cij tð Þ ¼ L�1 s�2Iik Dkj sð Þ
� ��1

h i

ð3:14Þ

where L-1 denotes the Laplacian inverse transformation.

Therefore, the 3D relaxation-type viscoelastic constitu-

tive equation at constant temperature can be expressed in

the form of hereditary integral as follows

ri tð Þ ¼
R t

0� Cij t � sð Þ dej sð Þ
ds ds i; j ¼ 1; 2; � � � ; 6ð Þ ð3:15Þ

The fibers in the study are carbon fiber T300 [26] with

their elastic properties shown in Table 2. Assuming that the

fiber volume fraction of yarns Vyf is 85 %, some discrete

data of the entities in the creep compliance matrix are

obtained from the finite element analysis and Eqs. 3.9–

3.11, as shown in Fig. 7. It is shown that if errors are

ignored, there should be D11(t) = D22(t), D13(t) = D23(t),

D44(t) = 2(D11(t) - D12(t)) and D55(t) = D66(t), i.e., only

five independent creep variables are needed to be

determined.

However, the entities in the creep compliance matrix are

described as functions of time for determining the visco-

elastic properties. Prony series is applied to fit the creep

functions. The form of the first-order Prony Series is

f tð Þ ¼ aþ be�t=s ð3:16Þ

The fitting curves and the parameters of creep functions

are shown in Fig. 7 and Table 3, respectively.

Substituting the creep compliances into formula (3.14),

the relaxation modulus matrix is determined. Then, the

Table 2 Elastic constants of fibers (T300) [26]

E1 (GPa) E3 (GPa) G12 (GPa) G13 (GPa) m12 m31

13.8 220 5.52 9.0 0.25 0.30
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Fig. 7 Creep compliances of yarns versus time. a D11(t) and D22(t). b D12(t). c D13(t) and D23(t). d D33(t). e D44(t) and 2(D11(t) - D12(t)).

f D55(t) and D66(t)
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viscoelastic constitutive relationship of yarns can be

obtained from Eq. 3.8 or 3.15.

Assuming that in interior cells the fiber volume fraction

Vf is 37 % and the braiding angle c is 30�, some discrete

data of the entities in the creep compliance matrix are

obtained from the finite element analysis and Eqs. 3.9–3.11

based upon the viscoelastic constitutive relationship of

resin matrix and yarns, as shown in Fig. 8. From the sim-

ulation results, it is shown that if errors are ignored, there

should be D11(t) = D22(t), D13(t) = D23(t), and

D55(t) = D66(t), i.e., only six independent creep variables

are necessary to determine the viscoelastic properties of

interior cells. The analytical expression of the creep com-

pliance can be fitted by first-order Prony series (Eq. 3.16),

as shown in Fig. 8. The parameters of the creep functions

are shown in Table 4. The relaxation moduli matrix is

determined from the creep compliances by Eq. 3.14.

Substituting the creep compliances and the relaxation

moduli into Eqs. 3.8 and 3.15, respectively, the creep-type

and relaxation-type viscoelastic constitutive relationships

of 3D braided composites are determined.

Creep experiment of 3D braided composites

The resin matrix of the experimental specimen is Epoxy

618. Zhou and Zhang [27] obtained the creep curves of

Epoxy 618 from creep experiment, as shown in Fig. 9. The

length, width and thickness of the experimental specimen

are 200, 22.3, and 3.45 mm, respectively. The ambient

temperature is 15 �C. In the experiment, step stress (10 and

17 MPa, respectively) is applied to the specimen for

3730 s. And the average strain of the specimen in the

loading direction is measured during the loading period. It

is shown that the viscoelastic deformation of Epoxy 618 is

significant. After 1 h of the stepped stress load, the creep

strain of Epoxy 618 tends to a steady value.

According to the definition of creep compliance, the

creep compliance of Epoxy 618 can be obtained from the

creep experimental data. In order to obtain the analytical

expression of the creep compliance, the second-order

Prony Series (as shown in Eq. 4.1) is applied to fit the

creep compliance function.

J tð Þ ¼ A� Be�t=s1 � Ce�t=s2 ð4:1Þ

The fitting results are shown in Eq. 4.2 and Fig. 10.

J tð Þ ¼ 2:978� 0:273e�t=0:595 � 0:253e�t=0:0335
� �

� 10�10Pa�1 ð4:2Þ

That is

From Fig. 10, it is shown that the fitting results agree well

with the creep experimental results. Therefore, the visco-

elastic properties of Epoxy 618 can be described by Eq. 4.2.

Laplacian transformation for Eq. 4.1 gives

J sð Þ ¼ A

s
� B

sþ 1=s1

� C

sþ 1=s2

ð4:4Þ

The relationship between relaxation modulus and creep

compliance is

J sð Þ � G sð Þ ¼ s�2 ð4:5Þ

Then

G sð Þ

¼ 1

J sð Þ
� 1

s2

¼ s2 þ 1=s1 þ 1=s2ð Þsþ 1= s1s2ð Þ
A� B� Cð Þs3 þ A 1=s1 þ 1=s2ð Þ � B=s2 � C=s1½ �s2 þ As= s1s2ð Þ

ð4:6Þ

Substituting Eq. (4.3) into Eq. (4.6), it is obtained that

G sð Þ ¼ s2 þ 31:538sþ 50:180

2:453s3 þ 85:354s2 þ 149:440s
ð4:7Þ

Laplacian inverse transformation for Eq. (4.7) gives

Table 3 Entities in creep compliance matrix of yarns (Vyf = 85 %)

a 10�11Pa�1ð Þ b 10�11Pa�1ð Þ s 105s
	 


D11 tð Þ;D22 tð Þ 9.045 -1.210 4.402

D12 tð Þ -3.170 1.080 4.680

D13 tð Þ;D23 tð Þ -0.122 0.0113 2.521

D33 tð Þ 0.534 -0.0020 2.433

D44 tð Þ 24.554 -4.612 4.531

D55 tð Þ;D66 tð Þ 17.355 -4.028 5.523

A ¼ 2:978� 10�10Pa�1;B ¼ 0:273� 10�10Pa�1;C ¼ 0:253� 10�10Pa�1

s1 ¼ 0:595h; s2 ¼ 0:0335h

�

ð4:3Þ
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G tð Þ ¼ 3:358þ 0:335e�t=0:541 þ 0:385e�t=0:0303
	 


� 109Pa

ð4:8Þ

Using Eq. 4.8 as the material parameter input for the

finite element calculation, the viscoelastic deformation of

Epoxy 618 calculated by the finite element method

compares with the experimental results, as shown in

Fig. 11. It is shown that the finite element results agree

well with the creep experimental results. Therefore, Eq. 4.8
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Fig. 8 Creep compliances of interior cells versus time. a D11(t) and D22(t). b D12(t). c D13(t) and D23(t). d D33(t). e D44(t). f D55(t) and D66(t)

Table 4 Entities in creep compliance matrix of interior cells

(Vf = 37 %, Vyf = 85 %, and c = 30�)

a 10�11Pa�1ð Þ b 10�11Pa�1ð Þ s 105s
	 


D11 tð Þ;D22 tð Þ 13.052 -4.395 4.170

D12 tð Þ -3.396 2.184 4.824

D13 tð Þ;D23 tð Þ -2.280 0.853 3.634

D33 tð Þ 3.091 -0.618 3.602

D44 tð Þ 52.129 -26.837 5.444

D55 tð Þ;D66 tð Þ 11.510 -2.268 3.277
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Fig. 9 Creep curves of Epoxy 618 obtained from creep experiment
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Series fitting and creep experiment
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can be used as the material parameter for numerically

simulating the viscoelastic properties of Epoxy 618.

The length, width, and thickness of the experimental

specimen of 3D braided composites are 230, 30, and 5 mm,

respectively. The matrix is Epoxy 618, whose viscoelastic

properties are characterized by Eq. 4.8. The fiber is carbon

T300, whose material parameters are listed in Table 2. The

fiber volume fraction and the interior braiding angle are

45 % and 32�, respectively. The ambient temperature is

15 �C. In the experiment, step stress (120 and 160 MPa,

respectively) is applied to the specimen for 9000 s. Then

the stress is unloaded immediately. After that, the specimen

is maintained at no load for 5400 s. The average strain of

the specimen in the loading direction is measured during

the experimental period.

The viscoelastic deformation of 3D braided composites

with the same braiding parameters, matrix and fibers as the

experimental specimen is derived from the multi-scale

method. The viscoelastic deformation derived from the

multi-scale method is compared with the creep experi-

mental results, as shown in Fig. 12. It is shown that the

viscoelastic deformation derived from the multi-scale

method agrees well with the experimental results. The

maximum error between the multi-scale prediction and

experimental results is 6.31 %.

Effects of braiding angles and fiber volume fractions

on viscoelasticity

The interior cell of four-step 3D braided composites with

1 9 1 pattern, as shown in Fig. 2, is characterized by two

independent parameters, the braiding angle c and the fiber

volume fraction Vf. In this section, the effects of braiding

angles and fiber volume fractions on the viscoelastic

properties are studied by the multi-scale method. Only the

viscoelastic properties related to directions X1 and X3 are

investigated since the viscoelastic behaviors of 3D braided

composites in directions X1 and X2 are same.

The viscoelastic constitutive relationships of 3D braided

composites with the same fiber volume fraction (Vf = 37 %)

and different braiding angles (below 45�) are derived. The

creep compliance curves are presented in Fig. 13. It is shown

that with the increase of braiding angles, the creep compli-

ances in direction X1, the shear creep compliances in plane

X1OX2 and the shear creep compliances in plane X1OX3

decrease, while the creep compliances in the braiding

direction X3 increase. With the same braiding angle incre-

ments, the decrements of creep compliances in direction X1

and plane X1OX3 decrease, while the increments of creep

compliances in the braiding direction X3 increase. It also

indicates that the impact of braiding angles upon the visco-

elastic properties related to the braiding direction X3 is much

significant.

The creep compliances with the same braiding angle

(c = 40�) and different fiber volume fractions are pre-

sented in Fig. 14. It is shown that with the increase of

fiber volume fractions, the creep compliances in direc-

tion X1, the creep compliances in the braiding direction

X3, the shear creep compliances in plane X1OX2 and the

shear creep compliances in plane X1OX3 decrease. With

the same fiber volume fraction increments, the decre-

ments of creep compliances in direction X1, the braiding

direction X3 and plane X1OX3 decrease. It is also shown

that the influence of fiber volume fractions on the vis-

coelastic behaviors related to different directions is

similar.
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d X1OX3-plane shear (D55(t))
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Conclusion

In this paper, three-dimensional viscoelastic properties of

3D braided composites at constant temperature were

characterized by a multi-scale model. Based on the three-

cell division scheme, the multi-scale model in which the

unit cell is composed of yarns and resin matrix, and the

yarn is composed of fibers and resin matrix, was proposed.

A periodic boundary condition was applied to the interior

cell of 3D braided composites and the RVE of yarns.

On the yarn scale, given the viscoelastic parameters of

resin matrix and the elastic constants of fibers, the 3D

viscoelastic constitutive relationship of yarns was obtained

by the finite element method and Prony series fitting. The

simulation result indicates that only five independent creep

functions are necessary to fully characterize the visco-

elastic properties of yarns. On the interior cell scale, given

the viscoelastic properties of resin matrix and yarns, the 3D

viscoelastic constitutive relationship of interior cells was

obtained by again the finite element method and Prony

series fitting. It is shown that the equivalent viscoelastic

properties of interior cells are orthotropic, and the visco-

elastic responses related to directions X1 and X2 are same.

Moreover, the viscoelasticity of 3D braided composites is

studied by creep experiment. The viscoelastic deformation

of 3D braided composites obtained from the multi-scale

method agrees well with the experimental results.

Furthermore, the effects of braiding angles and fiber vol-

ume fractions on the viscoelastic behaviors of four-step 3D

braided composites with 1 9 1 pattern have been investi-

gated. When braiding angles are below 45�, with the increase

of braiding angles, the viscoelastic deformation of the X3-

direction (braiding direction) tension increases, while the

viscoelastic deformations of the X1-direction tension, X1OX2-

plane shear and X1OX3-plane shear decrease. The impact of

braiding angles upon the viscoelastic properties related to the

braiding direction X3 is much significant. The viscoelastic

deformations of the X1-direction tension, X3-direction tension,

X1OX2-plane shear, and X1OX3-plane shear decrease with the

increase of fiber volume fractions.
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