
Electrical transport in the ferromagnetic and paramagnetic state
of potassium-substituted manganites La12xKxMnO3

(x 5 0.05, 0.1 and 0.15)

Dinesh Varshney • Dinesh Choudhary •

E. Khan

Received: 19 February 2013 / Accepted: 13 April 2013 / Published online: 25 April 2013

� Springer Science+Business Media New York 2013

Abstract We report the analysis of resistivity in the

ferromagnetic and paramagnetic state of La1-xKxMnO3

(x = 0.05, 0.10 and 0.15). The phonon frequencies are

estimated from the ab initio theory with calibrated Ham-

iltonian for the atomic interaction between a pair such as

Mn–O and La/K–O including van der Walls interaction.

The modified electron–phonon (acoustic and optic) scat-

tering incorporating the statistical factor and electron–

electron and electron–magnon interactions is effective to

describe the resistivity behaviour for a temperatures less

than the metal–insulator transition (TP) in the ferromag-

netic state of La1-xKxMnO3 (x = 0.05, 0.10 and 0.15). The

Mott–Ioffe–Regel criterion for metallic conductivity is

valid, and kF‘ * 1, eF s * 1. Paramagnetic semicon-

ducting resistivity is consistent with small polaron con-

duction model, and variable-range hopping is inappropriate

for the description of resistivity behaviour in a high-

temperature region, T [ TP. The results suggest that dis-

order-induced localisation of charge carriers dominates

electrical transport.

Introduction

The manganites La1-xAxMnO3 where La is a lanthanide

and A is an alkaline-earth element have attracted much

interest because of their characteristic magnetic and

transport properties such as colossal magnetoresistance [1].

The above-mentioned properties have been explained by

means of a double-exchange interaction between Mn3? and

Mn4? [2] and electron–phonon interaction relating to Jahn–

Teller-type lattice distortion of the MnO6 octahedra to infer

that the low- and high-temperature phases are a spin-po-

larised ferromagnetic metal and a polaronic paramagnetic

insulator, respectively [3]. Lanthanum manganites doped

with monovalent alkali metals such as Na?, K? and Rb?

show similar electrical and magnetic properties to divalent-

doped manganites [4, 5].

Raman spectroscopy provided essential information

about the lattice and JT distortion and orbital ordering in

the manganites, which occur at variable doping levels [6].

In an ideal cubic ABO3 perovskite, all atoms are at cen-

trosymmetric sites and hence do not contribute to Raman

modes. On the other hand, doping at La (A) or at

Mn (B) site essentially causes a change in the structure and

is due to either the mismatch of the ionic radii of the ions in

the unit cell or due to the J–T effect associated with the

Mn3? ions. The result is the orthorhombic (Pnma) and the

rhombohedral (R3-c) structures, both of them presenting

Raman-active phonons.

In reference to polaron participation, Millis et al. [7]

suggest that for higher doping, the strong electron–phonon

coupling localises the conduction band electrons as pola-

rons; however, the polaronic effect is low as T which is

decreased through Curie temperature TC, permitting the

formation of a metallic state. For doped manganites, it is

pointed out that the electron–phonon interactions are sub-

stantial and the existence of insulating states competing with

the DE-induced ferromagnetic metal is important. Besides,

the ferromagnetic (FM) metallic phase, the antiferromag-

netic (AF) charge-ordered insulating state is necessary to

explain the CMR effect [8]. The antiferromagnetic super-

exchange JAF coupling plays a crucial role for the magnitude

of the CMR effect. The JAF is needed to stabilize the
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charge-ordered (CO) AF state that competes with the FM metal.

The origin of the CMR effect relies on the nanometer-scale

short-range order above TC. To obtain CMR effects, clusters of

just a few lattice spacings in size appear sufficient [9].

The parent compound LaMnO3 is an antiferromagnetic

insulator. Compounds of the series La1-xKxMnO3 (x =

0.05, 0.10 and 0.15) exhibit resistance curves characteristic

of a transition from a ferromagnetic–metallic to a para-

magnetic–semiconducting state, as temperature increases.

The transition temperature TP is 239.8 K for x = 0.05,

261.9 K for x = 0.1 and 276 K for x = 0.15 [10]. The low-

temperature ferromagnetic regime (T \ TP) shows metallic

behaviour and the data have been fitted with different

theoretical scattering mechanisms to describe the temper-

ature dependence resistivity. From such a fitting, signatures

of different types of interaction terms (viz., electron–

electron, electron–magnon, or electron–phonon) are found

to govern the transport mechanism in the low-temperature

phase (T \ TP).

Earlier, Kumar and Majumdar solved the disordered

Holstein double-exchange model to study the effect of

disorder at strong electron–phonon coupling and noticed

that even weak disorder enormously enhances the resis-

tivity q at T = 0 K, simultaneously suppressing the density

of states at the Fermi level. Furthermore, the presence of

weak disorder suppresses the temperature-dependent

increase of q and leads to a regime with dq/dT \ 0 which

is attributed to the disorder-induced tendency towards

polaron formation [11]. Later on, it was demonstrated that

the extrinsic disorder controls the interplay of lattice

polaron effects and spin fluctuations and leads to widely

varying regimes in transport explicitly for optimally doped

manganites [12].

We may refer to the work of Alexandrov et al. [13] which

states that polarons behave like heavy particles and can be

mobile with metallic conduction at low temperatures and

form a polaronic Fermi liquid. The resistivity data of

La1-xCaxMnO3 below 100 K are consistently retraced by a

polaron mechanism. Later on, Zhao et al. [14] showed that

the behaviour of resistivity at low temperature is consistent

with small polaron coherent motion that involves a relaxa-

tion due to a low-lying optical phonon mode.

At low temperatures, a dominant T2 contribution in

resistivity is generally observed and has been ascribed to

electron–electron scattering [15, 16]. Jaime et al. [17] have

shown that the resistivity is essentially temperature inde-

pendent below 20 K and exhibits a strong T2 dependence

above 50 K. Kubo and Ohata [18] suggest that two-

magnon processes predict a leading T9/2 dependence of the

resistivity. Alexandrov and Bratkovsky argued that the

resistivity peak and the colossal magnetoresistance of hole-

doped manganites La0.75Ca0.25MnO3 are a result of the

current carrier density collapse with strong electron–phonon

coupling. The ferromagnetic transition in manganites is

driven by an exchange interaction of polaronic carriers with

localised spins [19]. Earlier, we noticed that in

La0.67Ca0.33MnO3, an additional contribution arising from

the electron–electron contribution is a must to analyse the

ferromagnetic metallic resistivity behaviour [20]. This sug-

gests that the electron–phonon, electron–electron and elec-

tron–magnon scatterings must be important causes of

resistivity in the metallic state.

In order to explain the high-temperature electrical

transport properties, two distinct phenomena based on two

different models, viz., variable-range hopping (VRH) [21]

and small polaron conduction (SPC) [22], were tested. We

may refer to the work of Jaime et al. who suggested that

doping at the Mn site influences the polaronic transport as

it causes a change in the polaron-hopping distance and also

the polaron concentration [23]. Ang et al. [24] showed that

for T [ TP, the resistivity data of their Co-doped bilayer

manganites LaSr2Mn2O7 could fit well using the VRH

model and the SPC model and also using the thermally

activated conduction law.

The present investigations are structured as follows. In

the ‘‘Method of computation’’ section, we first formulate

an effective interionic interaction potential, which

includes the long-range Coulomb, van der Waals (vdW)

interaction and the short-range repulsive interaction up to

second-neighbour ions within the Hafemeister and Flyg-

are approach. This enables us to compute the Debye and

Einstein temperatures of La1-xKxMnO3 (x = 0.05, 0.1

and 0.15). We employ the Bloch–Gruneisen (BG)

method to estimate both the independent contributions of

acoustic and optical phonons and their combined effects.

For the semiconducting region, we compute resistivity

behaviour with Mott’s VRH and SPC. The small polaron

model takes care of the coherent motion of charge car-

riers and involves a relaxation due to a low-lying optical

phonon mode. Details of the numerical analysis and its

results are discussed in the ‘‘Discussion and analysis of

results’’ section.

The main findings for K-substituted manganites include

the following:

(a) The estimated Debye and Einstein temperatures from

the ab initio theory for the atomic interaction

including van der Walls interaction are consistent

with the experimental results;

(b) the optical phonons yield a relatively larger contri-

bution to the resistivity compared to the contribution

of acoustic phonons;

(c) the modified electron–phonon model of resistivity

partially retraces the reported metallic resistivity

behaviour in the temperature range T \ TP for La1-x

KxMnO3 (x = 0.05, 0.1 and 0.15);
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(d) the quadratic temperature dependence of qdiff.

[= qexp. - {q0 ? qe-ph] is interpreted in terms of 3D

electron–electron inelastic scattering;

(e) the T4.5 dependence due to electron–magnon scatter-

ing is further required for a complete explanation;

(f) the Mott–Ioffe–Regel criterion for metallic conduc-

tivity is valid, kF‘ * 1 and eF s * 1;

(g) the VRH model is inappropriate for description of

resistivity behaviour in high-temperature region,

T [ TP; and

(h) the SPC model consistently explains higher temper-

ature resistivity behaviour (T [ TP).

A summary and our main conclusions are presented in

the ‘‘Conclusion’’ section.

Method of computation

Raman spectroscopy provides information about the

electronic and lattice processes responsible for the

physical behaviour of the mixed valence manganites

[25]. The ideal perovskite ABO3 of cubic structure pre-

sents around 15 normal modes of vibration. The lowest

frequency (external mode) corresponds to a vibration of

the A ions against the rigid BO6 octahedra. The inter-

mediate frequency (bending mode) corresponds to a

vibration where the B ion and two apical oxygens move

against the other four oxygens of the octahedron. At the

highest frequency (stretching mode), the B ion moves

against the rigid oxygen octahedron [26]. We can thus

model the phonon spectrum consisting of an acoustic

branch of the Debye type and a separated optical peak

with characteristic Einstein temperature.

The understanding of the dynamical properties of

materials requires the formulation of an effective interionic

potential. To begin with, we made the following assump-

tions: the change in force constants is small; the short-

range interactions are effective up to the second-neighbour

ions; and the atoms are held together by harmonic elastic

forces without any internal strains within the crystal. We

thus express the crystal energy for a particular lattice

separation (r) as

UðrÞ ¼ UCðrÞ þ URðrÞ þ UVðrÞ ð1Þ

The first term is the Coulomb energy with am as the

Madelung constant [27] as follows:

UCðrÞ ¼ �
X

ij

ZiZje
2

rij

¼ � amZ2e2

r
ð2Þ

Here, rij is the separation distance between i (j) ions.

The short-range overlap repulsive energy following

Hafemeister and Flygare [28] is the second term in Eq. (1)

and is

URðrÞ ¼ nbbij exp
ri þ rj � rij

q

� �
þ n

0
bbii exp

2ri � krij

q

� �

þ n
0
bbjj exp

2rj � krij

q

� �
ð3Þ

The ionic radii are ri and rj, k is the structure factor and

n(n0) is the number of nearest (next nearest) ions. Further,

the notations b and q denote the hardness and range

parameters, respectively.

The Pauling coefficients, bij, are defined in terms of

valence [Zi (Zj)] and the number of the outermost electrons

[ni (nj)] in the anions (cations) as

bij ¼ 1þ Zi=nið Þ þ Zj=nj

� �
ð4Þ

The last term in Eq. (1) is the vdW energy, denoted as

UVðrÞ ¼ �
X

ij

cij

r6
ij

þ
X

ij

dij

r8
ij

 !
ð5Þ

¼ � C

r6
þ D

r8

� �
ð6Þ

due to dipole–dipole (d–d) and dipole–quadruple (d–q)

interactions. The abbreviations C and D represent overall

vdW coefficients due to interactions mentioned in Eq. (1),

defined as [27]

C ¼ cijS6ðrÞ þ
1

2
ðcii þ cjjÞS6ð0Þ ð7Þ

and

D ¼ dijS8ðrÞ þ
1

2
ðdii þ djjÞS8ð0Þ ð8Þ

cij and dij are the vdW coefficients due to d–d and d–q

interactions. We follow the variational method [29] to

derive cij and dij as

cij ¼
3

2

e�hffiffiffiffi
m
p

e

aiaj ðai=NiÞ1=2 þ ðaj=NjÞ1=2
h i�1

ð9Þ

and

dij ¼
27

8

�h2

m
aiaj ai=Nið Þ1=2þ aj=Nj

� �1=2
h i2

� ai=Nið Þ þ 20

3
aiaj=NiNj

� �1=2þ aj=Nj

� �� ��1

:

ð10Þ

Here, me is the electron mass, ai is the electronic polaris-

ability and Ni denotes the effective number of electrons of

the ith ion. The values of the overall vdW coefficients are
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obtained using Eqs. (7) and (8) and weighted in terms of

appropriate lattice sums [S6(0), S6(r), S8(0) and S8(r)] [27].

The individual vdW coefficients cij and dij are obtained

with certainty and accuracy as the excitation energies are

ignored in Eqs. (9) and (10).

Herein, we shall seek the interionic interaction between

a pair such as Mn–O and La/K–O. It is clear from the

above descriptions that the present effective interionic

potential contains only two free parameters (b and q),

which are determined from the equilibrium conditions

dU

dr

� �

r¼r0

¼ 0 ð11Þ

and bulk modulus

BT ¼
1

9kr0

d2U

dr2

� �

r¼r0

: ð12Þ

The model parameters obtained from Eqs. (11) and (12)

have been used to compute the second-order elastic

constants (SOECs) (C11, C12 and C44) as [30–33]

C11 ¼
e2

4r4
0

�5:112Z2
m þ A1 þ

ðA2 þ B2Þ
2

� �
; ð13Þ

C12 ¼
e2

4r4
0

0:226Z2
m � B1 þ

ðA2 � 5B2Þ
2

� �
; ð14Þ

C44 ¼
e2

4r4
0

2:556Z2
m þ B1 þ

ðA2 þ 3B2Þ
4

� �
; ð15Þ

where (A1, B1) and (A2, B2) are the short-range parameters for

the nearest and the next nearest neighbours, respectively.

These parameters are defined as

A1 ¼
4r3

0

e2

d2

dr2
VijðrÞ

� �

r¼r0

; ð16Þ

A2 ¼
4ðr0

ffiffiffi
2
p
Þ3

e2

d2

dr2
ViiðrÞ þ

d2

dr2
VjjðrÞ

� �

r¼r0

ffiffi
2
p ; ð17Þ

B1 ¼
4r3

0

e2

d

dr
VijðrÞ

� �

r¼r0

; ð18Þ

B2 ¼
4ðr0

ffiffiffi
2
p
Þ2

e2

d

dr
ViiðrÞ þ

d

dr
VjjðrÞ

� �

r¼r0

ffiffi
2
p ð19Þ

where Vij(r) is the short-range potential between the ions as

follows:

VijðrÞ ¼ bbij exp
ri þ rj � rij

q

� �
þ cijr

�6
ij þ dijr

�8
ij : ð20Þ

The elastic force constant j is derived at the equilibrium

interionic distance r0 following

j ¼ r0

2
p2 C11 � C12ð Þ C11 þ C12 þ 2C44ð Þ C44ð Þ
	 
1

3: ð21Þ

Thus, we have estimated the elastic force constants in

terms of the developed potential for a pair such as Mn–O

and La/K–O and the total elastic force constants of the

K-doped LaMnO3. This continuum model thus takes care

of the clear physical binding in doped manganites. We

stress that the analytical model incorporating realistic

interactions can describe those cohesive properties of such

solids that depend on vdW interactions. However, the true

potential must recognize the correct charge distribution and

the relative orientations of the interacting atoms in

manganites, which is a complicated task.

We shall now estimate the acoustic Debye branch char-

acterized by the Debye temperature hD and an optical peak

defined by the Einstein temperature hE. The Debye fre-

quency is characterized as a cut-off frequency at the Brill-

ouin zone boundary. It can be expressed in terms of effective

value of ionic mass and elastic force constant for crystal

lattices with two different kinds of atoms such as Mn–O and

La/K–O, which we deal with. The acoustic-mode and opti-

cal-mode frequencies are estimated in an ionic model using a

value of effective ion charge Ze = -2e.

We choose an acoustic mass M = (2M? ? M-) [Mn(O)

which is symbolized by M? (M-)], j* = 2j, for each

directional oscillation mode to get the acoustic phonon

frequency as [20]

xD ¼
ffiffiffiffiffiffiffi
2j�

M

r
: ð22Þ

In this regard, for a pair-wise potential, the phonons are

optic in origin and the frequency is determined by

the reduced mass of the pair as l-1 = M(A)-1 ?

M(B)-1 where A is the anion (La/K, Mn) and B is

the cation (O)

x2
LO ¼

jþ a
l

; ð23Þ

x2
TO ¼

j� a
l

; ð24Þ

where a is the force constant as

a ¼ 8p
3

ðZeÞ2

X
; ð25Þ

xLO (xTO) symbolized the longitudinal (transverse) optical

phonon frequency and X is the volume of the unit cell.

To formulate a specific model, we start with the general

expression for the temperature-dependent part of the

resistivity, given by
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q ¼ 3p

�he2v2
F

Z2kf

0

v qð Þj j2 SðqÞj j2
D E 1

2kF

� �4

q3dq: ð26Þ

v(q) is the Fourier transform of the potential associated

with one lattice site and S(q) is the structure factor, and

following the Debye model, it takes the following form:

SðqÞj j2 � kBT

Mv2
s

f ð�hx=kBTÞ ð27Þ

f ðxÞ ¼ x2½ex � 1��1½1� e�x��1 ð27aÞ

Using

½ex � 1��1½1� e�x��1 ¼ e�x½1� e�x��2 ð27bÞ

to get

f ðxÞ ¼ x2e�x½1� e�x��2 ð28Þ

f(x) represents the statistical factor. Thus, the resistivity

expression leads to

q � 3

�he2v2
F

� �
kBT

Mv2
s

Z2kF

0

v qð Þj j2

� �hx=kBTð Þ2q3dq

exp �hx=kBTð Þ � 1ð Þ 1� exp ��hx=kBTð Þð Þ

" #
: ð29Þ

vs being the sound velocity. The acoustic phonon

contribution to resistivity leads:

qac T; hDð Þ ¼ 4Aac T=hDð Þ4

� T

ZhD=T

0

x5 ex � 1ð Þ�1
1� e�xð Þ�1

dx
ð30Þ

where x = �hx/kBT. Aac is a constant of proportionality,

defined as

Aac ffi
3p2e2kB

k2
Fv2

s L�hv2
FM

ð31Þ

We may add that the temperature dependence of resistivity

within the BG framework follows [34]

q T ; hDð Þ ¼ c

hD

T

hD

� �m

Jm

T

hD

� �
ð32Þ

where c is a constant, hD is the Debye temperature of the

conventional metal and T is the absolute temperature. Here,

the index m takes integer and non-integer values. The

generalized BG function follows

Jm

T

hD

� �
¼
ZhD=T

0

xme�x

ð1� e�xÞ2
dx ð33Þ

For non-integer values m in the range of 3–5, one can

obtain the best-fitting curve which resembles the experi-

mental q(T) data.

It is known to us that in the metallic state, the electron–

phonon, electron–electron, electron–magnon scattering and

polaronic effects are the major proponents of various

conceptions in electrical transport. As the resistivity is

additive, if the Matthiessen rule is obeyed, the resistivity is

represented as a sum q (T) = q0 ? qe-ph (T), where q0 is

the residual resistivity that does not depend on temperature

as electrons also scatter off impurities, defects and disor-

dered regions. However, in the case of the Einstein type of

phonon spectrum (an optical mode), qop (T) may be

described as follows:

qopðT ; hEÞ ¼ Aoph
2
ET�1 ehE=T � 1

h i�1

1� e�hE=T
h i�1

;

ð34Þ

Aop is defined in an analogous manner to Eq. (31).

We have thus modified the electron–phonon scattering

contribution to resistivity by incorporating the statistical

factor in the ferromagnetic metallic state by combining

both terms arising from acoustic and optical phonons:

qe�phðTÞ ¼ qacðT ; hDÞ þ qopðT ; hEÞ: ð35Þ

Henceforth, the total resistivity is as follows:

qðT ; hD; hEÞ ¼ q
0
þ qacðT ; hDÞ þ qopðT; hEÞ

¼ q0 þ 4AacðT=hDÞ4T

�
ZhD=T

0

x5ðex � 1Þ�1ð1� e�xÞ�1
dx

þ Aoph
2
ET�1 expðhE=T � 1Þ½ ��1

� 1� expð�hE=TÞ½ ��1

: ð36Þ

In order to analyse the resistivity data of the high-

temperature region, T [ TP, we have made a computation

following model I, VRH, and model II, adiabatic SPC. In

the high-temperature range, for example, in the

paramagnetic semiconducting state, we have fitted the

resistivity data using the VRH model. The expression as

derived by Mott for conductivity follows [15, 16, 42]

r ¼ roh expð�T0=TÞ0:25: ð37Þ

with roh as a constant and T0 defined in terms of the density

of state in the vicinity of Fermi energy N(eF) and the

localisation length a as

To ¼
18

kBNðeFÞa3
; ð38Þ

5908 J Mater Sci (2013) 48:5904–5916

123



T0 describes the hopping transport in doped manganites

where the carriers are localised by random potential fluc-

tuations and the preferred hopping is between sites lying

within a certain range of energy.

We shall briefly sketch the description of resistivity in

the temperature range T [ TP due to model II. It is worth

mentioning that the most rapid motion of a small polaron

occurs when the carrier hops each time the configuration of

vibrating atoms in an adjacent site coincides with that in

the occupied site. Henceforth, the charge carrier motion

within the adiabatic regime is faster than the lattice

vibrations and the resistivity for SPC is as follows [15,

16, 43]:

q ¼ qosT exp
EP

kBT

� �
; ð39Þ

EP is the polaron formation energy and kB is Boltzmann

constant. The resistivity coefficient qos is given by

qos ¼
kB

nð1� xÞe2D
: ð40Þ

Here, n is the charge carrier density (*1020 cm-3), x is the

hole (Mn4?) content, e, the electronic charge and D is the

polaron diffusion constant. The polaron diffusion constant

for a typical cubic coordination can be given explicitly as

D = a2m/6 where a is the lattice constant and m is the

characteristic frequency of the longitudinal optical phonon

that carries polaron through the lattice.

The parent LaMnO3 at high temperatures is an insulator

with a cubic structure and becomes tetragonal due to dis-

tortions at low temperatures. Doping at a La site by Ca, Sr,

Ba, Na, K and so forth leads to a decrease not only in the

structural phase transition temperature but also in the

overall behaviour of resistivity. However, for optimized

doped x % 0.3, the material is still insulating (at about

room temperature and higher) and the resistivity is much

higher than the Mott limit [15, 16, 43]. The substitution at

the La site by divalent (monovalent) ions changes the

valence of the Mn site as the outer Mn d-orbital shows

twofold degeneration and the result is Jahn–Teller

(breathing type) distortion of the oxygen octahedra focused

at each of the Mn-occupied (unoccupied) sites. The energy

required for the formation of a local lattice distortion is

about 0.6 eV per site. Identifying a strong electron–phonon

coupling, and hence polaronic transport, is essential in the

doped materials. At high temperatures, the Jahn–Teller

distortions are decorrelated, but do not disappear [35].

On the other hand, the double-exchange mechanism

shows that the oxygen ion is closed shell and supports

hopping. In the true sense, an electron jumps onto a Mn ion

on the right simultaneously as an electron hops onto the

O ion from the Mn on the left. Henceforth, in the double

hopping, both hopping electrons should have the same spin

via the oxygen (O2-) ions. Following Hund’s rule, the

Mn3? and Mn4? ions should have the electron parallel the

spin moments for hopping. This mechanism connects the

parallel alignment of Mn moments (ferromagnetism) with

hopping of carriers (metallic conduction). Thus, the

effective positive exchange coupling induced by the car-

riers was known as double exchange.

Actually, the lattice vibration of O ions essentially

pushes the electrons towards vacant states in the Mn ion

inducing a local distortion of the lattice. Such self-trapping

of the charge carriers is substantial above the Curie tem-

perature. However, below the Curie temperature, the self-

trapping disappears because the bandwidth broadens and

the electrons are much more mobile. It is inferred that at a

high temperature, the effective positive exchange coupling

induced by the carriers does not solely contribute to the

resistivity and that a strong electron phonon interaction

arising from the Jahn–Teller splitting of the outer Mn

d level is essentially required [36].

Discussion and analysis of results

Any discussion of the mixed-valent oxides necessitates the

knowledge of the structural aspects, and this is particularly

true of the calculations reviewed here. Also, applying the

available information on the developed theory inevitably

entails certain complications and one has to find suitable

data that vary from technique to technique. Special atten-

tion is paid in this approach to address the issue of whether

long-range or short-range interactions are at the origin of

the transport properties of the divalent K-doped manga-

nites. The effective interionic potential is thus constructed

in an easily generalisable manner with a realistic value of

the structural parameters, which actually control the

resistivity behaviour. The values of Debye and Einstein

temperature have been computed using the values of the

two model parameters, namely range (q) and hardness

(b), for a pair such as La/K–O and Mn–O, which has been

evaluated from the experimental values of equilibrium

distance and bulk modulus.

The values of the overall vdW coefficients C and

D involved in Eqs. (7) and (8) have been evaluated from

the well-known Slater–Kirkwood variational methods [29]

which are listed in Table 1. We use the A site ionic radii

(La/K) as 1.514 Å. Within the continuum model, we notice

that the hardness parameter (b1 and b2) decreases and the

range parameter (q1 and q2) decreases with the increased K

doping concentration (x) in hole-doped La1-xKxMnO3. The

model parameters and the SOECs are illustrated in Table 2.

The elastic force constant j is derived at the equilibrium

interionic distance r0 following Eq. (21). The calcu-

lated values of j are 5.767 9 105, 5.775 9 105 and
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5.838 9 105 g ms-2 for x = 0.05, 0.1 and 0.15, respec-

tively. Due to a lack of other theoretical calculations, the

deduced value of the model force constant could not be

compared. Nevertheless, the evaluation of the elastic force

constant gives a valuable guide to the behaviour of vdW-

type forces in predicting the model phonon energies. Yet,

the goal is not to determine the manner in which such

interactions lead to the description of phonon frequencies,

but to discuss the electrical resistivity behaviour.

Finally, we evaluate the values of acoustic and optical

phonon frequency (xD, xLO and xTO) corresponding to

Debye and Einstein temperature. The computed values of

xD, xLO and xTO are presented in Table 3. We must

mention that these computed values of xD, xLO and xTO

for La1-x KxMnO3 with (x = 0.05, 0.1 and 0.15) could not

be compared due to the lack of experimental data. How-

ever, the computed values of the Debye and Einstein

temperature for La0.7Ba0.3MnO3 and other manganites

following the EIoIP approach yield consistent results with

the available experimental results [37–41].

It is true that the two-orbital model based on Wannier

functions predicts the electronic states such as charge

ordering in manganites. It is pointed out by Marzari et al.

[42] that the Wannier function approach of the electronic

problem is useful for the description of electron dynamics

following semi-classical theory as well as the magnetic

interactions in solids. In the present investigation, we do

not intended to discuss the electron dynamics as well the

magnetic interactions, but focused on determining the

acoustic (optical) phonon frequency to estimate the elec-

tron–phonon contribution of resistivity in the ferromag-

netic metallic phase.

The developed effective interionic interaction potential

takes care of the interactions between a pair such as Mn–O

and La/K–O. The interactions thus are attractive Coulomb

and vdW as well as a short-range overlap repulsive inter-

action following Hafemeister- and Flygare-type potential.

The advantage of using this potential is that it takes care of

a number of nearest (next nearest) ions, the valence and a

number of the outermost electrons in the anions (cations).

Thus, it takes care of the structural parameters that yield an

approximately correct description of the interactions

between a pair such as Mn–O and La/K–O. Henceforth, we

will estimate the acoustic (optical) phonon frequency

consistent with the Raman measurements to estimate the

electron–phonon contribution of resistivity.

We must refer to the work of Millis [35] who deter-

mined the elastic parameters using a mean field approxi-

mation with emphasis on Mn–O bond lengths and

evaluated Mn–Mn and Mn–O force constants for the lattice

Table 1 Van der Waals coefficients of La1-xKxMnO3 (x = 0.05, 0.1, 0.15) (cij in units of 10-60 ergcm6 and dij in unit of 10-76ergcm8)

x cii cij cjj C dii dij djj D

Mn–O 120.18 180.39 270.87 1543 131.53 193.35 284.10 1355

x = 0.05 La/K–O 12.75 56.99 270.87 632.09 19.42 74.58 284.10 579.8

x = 0.1 La/K–O 12.21 55.06 270.87 618.88 18.43 71.53 284.10 560.6

x = 0.15 La/K–O 11.67 53.13 270.87 605.66 17.44 68.48 284.10 541.5

Table 2 The model parameters (b, q) and the second-order elastic constants for La1-xKxMnO3 (x = 0.05, 0.1, 0.15) samples

x Model parameters Second-order elastic constants

b1 (La/K–O)

(10-12 erg)

q1 (La/K–O)

(Å)

b2 (Mn–O)

(10-12 erg)

q2 (Mn–O)

(Å)

C11

(1012 dyne cm-2)

C12

(1012 dyne cm-2)

C44

(1012 dyne cm-2)

0.05 75.9 26.7 5.39 33.7 7.79 3.65 2.57

0.1 71.8 26.7 5.39 33.7 7.97 3.66 2.57

0.15 67.5 26.7 5.37 33.6 8.04 3.71 2.62

Table 3 Parameters obtained corresponding to the best fit to the experimental data of La1-xKxMnO3 (x = 0.05, 0.1, 0.15) samples by using

BG model

x TP (K) xD (meV) xLO (meV) xTO (meV) Parameters obtained from BG model

q0 (X cm) Aac 9 10-4 (X cm K-1) Aop 9 10-3 (X cm K-1)

0.05 240 49.78 76.41 74.97 0.12 8 2.5

0.1 262 50.37 76.46 75.02 0.1 3 1.5

0.15 276 51.18 76.87 75.44 0.06 1.25 0.6
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distortions. On the other hand, in the present model, we have

considered both Mn–O and La/K–O bond lengths to obtain the

Mn–O, La/K–O and total force constants for strong electron–

phonon interaction. The formulated effective interionic

interaction potential includes the long-range Coulomb, vdW

interaction and the short-range repulsive interaction up to

second-neighbour ions within the Hafemeister and Flygare

approach. The interionic interaction between a pair such as

Mn–O and La/K–O enables us to find the total force constant

with consistent Debye and Einstein temperatures.

In order to analyse the transport mechanism of the

potassium-substituted manganites with x = 0.05, 0.1 and

0.15 in the intermediate-temperature ferromagnetic region

below TP, we begin with the electron–phonon interaction to

discuss the metallic behaviour of q(T). Figures 1, 2 and 3

illustrate the results of the temperature dependence of

resistivity with the electron–phonon interaction from

Eq. (31). The contributions of acoustic and optical phonon

towards resistivity are clubbed and the resultant resistivity

is exponential at low temperatures and nearly linear at high

temperatures until the transition temperature. In the fol-

lowing calculations, we have used residual resistivity

q0 & 0.12, 0.1 and 0.06 X cm for x = 0.05, 0.1 and 0.15

[10]. The coefficients Aac (Aop) as functions of doping

concentration are shown in Table 3. It is noticed that the

electron–phonon along with residual resistivity partially

retraces the metallic resistivity behaviour of La1-xKxMnO3

with (x = 0.05, 0.1 and 0.15) manganites and other tem-

perature-dependent mechanisms such as electron–electron,

and electron–magnon scattering should also be invoked.

It is noticed from the plot that the estimated q is lower

than the reported data from T % 150 K for La1-xKxMnO3

with (x = 0.05, 0.1 and 0.15) near the metal–insulator

transition temperature (TP). The difference between the

measured q and calculated qdiff. [= qexp. - {q0 ? qe-ph

(= qac ? qop)}] is plotted in Fig. 4. A quadratic tempera-

ture dependence of qdiff. is depicted at low temperature.

The quadratic temperature contribution for resistivity is an

indication of conventional inelastic electron–electron

scattering.

The quadratic temperature dependence of qdiff. is con-

sistent with the earlier argument made by Urushibara et al.

[15, 16]. The additional term due to electron–electron

contribution was required in understanding the resistivity

behaviour, as extensive attempts to it the data with residual

resistivity and phonon resistivity were unsuccessful. It is

noteworthy to comment that in conventional metals, the

electron–electron contribution to the resistivity can at best

be seen only at very low temperatures, due to its small

magnitude in comparison with the phonon contribution.

The existence of quadratic temperature dependence of

resistivity over a wide temperature interval permits one to

believe that the electron–electron scattering is also signif-

icant in determining the resistivity in manganites.

We again refer to Fig. 4, where a substantial deviation

from the T2-like behaviour and a rapid rise in qdiff. are

observed in the intermediate-temperature region (185\
T \ TP). We perform a similar set of exercises with the

difference between the measured and calculated qdiff.

[= qexp. - {q0 ? qe-ph (= qac ? qop)}] beyond 185 K

(plotted in Fig. 5). The T4.5 temperature dependence of qdiff.

is depicted at higher temperature. The T4.5 temperature
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contribution for resistivity is an indication of electron–

magnon scattering. In the intermediate-temperature region

(185 \ T \ TP), the manganites appear to be normal

metallic ferromagnet with the resistivity dominated by spin-

wave scattering.

For hole-doped manganites, Snyder et al. [22] stressed

that an additional T4.5 contribution as a result of the elec-

tron–magnon scattering process is essential. In the recent

past, we had also noticed that the spin-wave scattering in

the FM phase was important in discussing the electrical

resistivity behaviour of La0.67Ca0.33MnO3 [20]. We admit

that in the higher temperature limit, the difference can be

predicted linearly with T4.5 in accordance with the elec-

tron–magnon scattering in the double-exchange process.

The feature of T4.5 temperature dependence of qdiff. is

consistent with the quantum theory of two-magnon scat-

tering [18] and is valid for half-metallic ferromagnets.

Consequently, besides electron–phonon and electron–

electron interaction, another possibility for the changes in

carrier density arose due to the presence of spin waves in

the metallic system and is caused by spin-wave scattering.

We now address the metallic behaviour of doped man-

ganites. If the high-frequency phonon modes are indeed

strongly coupling with charge carriers, the effective mass

of the carriers should be substantially enhanced. The Fermi

energy and the corresponding density of states are conve-

niently obtained from the thermoelectric power results [10]

using eF = -p2kB
2 T/[3|e|�Sc

diff(T)] and N(eF) = 3n3DV/2eF

(where n3D is the three-dimensional charge carrier density

which is obtained following n3Dd3 = 1 and V is the unit

cell volume). The density of states in turn yields the

electronic specific heat coefficient using c = (pkB)2N(eF)/3

(see Table 4). It is noticed that the above values are con-

sistent with the c values in other hole-doped divalent

manganites [43] and could not be compared due to a lack of
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experimental data on hole-doped monovalent manganites.

The effective mass of the carrier along the conducting Mn–

O plane is deduced from electronic specific heat coefficient

c, using m* = 3�h2pcd/kB
2 .

The estimated electron parameters for La1-xKxMnO3

with x = 0.05, 0.1 and 0.15 are the Fermi wave vector kF, the

Fermi velocity vF and the plasma frequency xp as given in the

Table 4. We stress that the effects induced by electron cor-

relations and mass renormalizations by electron–electron

interactions are crucial in magnetic systems such as doped

manganites [44]. It is known that in conventional metals,

electron–phonon scattering is mathematically identical to

conventional impurity scattering and leads to resistivity

proportional to (vF
2‘)-1 where ‘ is the mean free path. The

mean free path in this approximation is usually related to the

Fermi velocity and is estimated following ‘ = vFs. We fol-

low the Drude relation, s-1 = q0xp
2/4p, to obtain the scat-

tering rate Rs = s-1. The estimated values of Rs and ‘ are

given in Table 4. We must mention that the residual resis-

tance obtained for nominally the same compositions may

vary significantly for different groups of compounds. It

remains unclear whether q0 only characterizes the sample’s

quality or if there is an intrinsic component in the residual

resistivity [45]. For the Sr-doped manganites, the resistivity

data in the crystalline films yield q0 as low as 10-5 X cm and

are in the range of typical metallic conductors [15, 16]. The

deduced values of Fermi energy (eF) for La1-xKxMnO3 with

x = 0.05, 0.1 and 0.15 correspond to a narrow energy band.

We notice that the K-doped lanthanum manganites are good

metals as the product eF s * 1.

The electron correlations in view of the mass enhance-

ment effect in narrow band materials are important in doped

LaMnO3. We notice that enhanced electron mass m*/mE [ 1

in La1-xKxMnO3 (see Table 4) leads to reduced plasma

frequency and hence a reduced zero temperature elastic

scattering rate in comparison to conventional metals. It is

perhaps worth noticing that in hole-doped manganites, the

scattering rate at low temperatures is of the order of

1015 s-1 [18]. Furthermore, the Mott–Ioffe–Regel criterion

for metallic conductivity is valid, as the deduced mean free

path is greater than the Mn–O bond length. The use of the BG

expression in estimating the electron–phonon contributions

is thus validated as the product kF‘ * 1.

The monovalent K-doped manganites thus illustrate

metallic behaviour below the metal–insulator transition

temperature TP. The TP increases with the K doping con-

centration. With increased doping, the monovalent

K-doped manganites behave as a good metal, and this is

attributed to the fact that there are twice as many Mn4?

ions as there are K ions and each of these Mn4? will

contribute a hopping hole.

We must refer to the work of Egilmez et al. [46] who

incorporate the effects of the grain boundary-induced

lattice disorder on the resistivity in Sm0.55Sr0.45MnO3 at

temperatures near the metal–insulator transition. The low-

temperature resistivity data (T B 75 K) of the SmSrMnO

were successfully fitted using the relation q = q0 ? q2

T2 ? q5 T5 with q0 as the residual resistivity and q2 and q5

as the electron–electron and the electron–phonon scattering

coefficients, respectively. It is further noticed that in this

temperature range, the disorder does not affect the tem-

perature dependence of q; however, it causes an increase in

the coefficients q0, q2 and q5 by two orders of magnitude.

In contrast to electron–phonon scattering as the source

of resistivity in the FM metallic state, the angle-resolved

photoemission spectroscopy data for the bilayer manganite

La1.2Sr1.8Mn2O7 identify a coherent polaronic metallic

ground state below the metal–insulator transition [47]. The

FM state is a polaronic metal with a strong anisotropic

character of the electronic excitations, strikingly similar to

the pseudogap phases in heavily underdoped cuprate high-

temperature superconductors such as Bi 2212. A strong

mass enhancement and a small renormalization factor are

found to account for the metallic properties [48]. The

temperature dependence of resistivity in the metallic state

is intimately related to polaronic metallic ground state, and

the insulator-to-metallic state can be attributed to the

polaron coherence condensation process acting in concert

with the double-exchange mechanism. We may comment

that the present theory finds an enhanced mass of holes as a

carrier (m*/me [ 1 for La1-xKxMnO3 with x = 0.05, 0.1,

0.15) from the electronic specific heat coefficient to vali-

date the Mott–Ioffe–Regel criterion. However, a detailed

analysis is further required to understand the polaronic

metallic state in the ferromagnetic phase and the conden-

sation process analogous to underdoped cuprate high-

temperature superconductors. We shall address this issue in

the near future.

Let us now discuss the semiconducting behaviour of the

resistivity data in the high-temperature region and the

Table 4 The estimated electron parameters for La1-xKxMnO3 (x = 0.05, 0.1, 0.15) manganites

x eF

(eV)

N(eF) 9 10-19

(eV-1 cm-3)

c
(mJ mol-1 K-2)

m*/mE kF 9 10-7

(cm-1)

vF 9 10-7

(cm s-1)

xp

(eV)

Rs 9 10-16

(s-1)

‘(Å)

0.05 1.52 3.10 2.722 2.959 3.750 1.46 1.248 3.819 0.03

0.1 1.81 2.63 2.303 2.504 3.749 1.72 1.356 3.759 0.04

0.15 2.03 2.34 2.049 2.229 3.748 1.94 1.437 2.532 0.07
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paramagnetic semiconducting state (T [ TP). We have

computed the temperature-dependent resistivity of La1-x

KxMnO3 with (x = 0.05, 0.1, 0.15) using the VRH and

adiabatic SPC models. Keep in mind that the charge carrier

motion is faster than the lattice vibrations in the adiabatic

regime and hence the nearest-neighbour hopping of a small

polaron leads to mobility with a thermally activated form.

We shall first discuss the VRH model for carrier con-

duction. Originally, in the VRH theory, there was compe-

tition between the potential energy and the hopping distance

of electrons. Figure 6 show the plots of ln r * T-1/4

revealing good concurrence with the VRH model [Eq. (32)].

The values of fitting parameters obtained from the fit of the

high-temperature resistivity of La1-xKxMnO3 with

(x = 0.05, 0.1, 0.15) by the VRH model are given in

Table 5. The fitted value of T0 and the localisation length or

the average hopping distance {a = 4.6 Å [21]} yield the

density of states at the Fermi level, N(eF), of the order of

1020 eV-1 cm-3. The above sets of values are consistent

with the fitting parameters for Nd0.33Ln0.34Sr0.33MnO3 [49].

To cross-check, we use the thermoelectric power mea-

surement to calculate experimental value of the density

of states at the Fermi level [43]. The deduced density

of states N(eF) % 3.109 9 1019, 2.63 9 1019 and

2.34 9 1019 eV-1 cm-3 for La1-xKxMnO3 with (x = 0.05,

0.1 and 0.15). We comment that the value of density of states

at the Fermi level obtained from the semiconducting resis-

tivity fit using VRH is higher by an order as obtained from the

thermoelectric power measurements. This unphysical result

leads us to argue that the VRH model is not the proper choice

to describe resistivity behaviour in the high-temperature

region T [ TP for La1-xKxMnO3 with (x = 0.05, 0.1 and

0.15). It was stressed by Mott and Davies [15, 16] that the

VRH model is applicable only for the temperature region

(TP \ T \ hD/2) in doped semiconductors.

The above is true for hole-doped monovalent manga-

nites La1-xKxMnO3 with (x = 0.05, 0.1 and 0.15) with

TP % 240, 262 and 276 K and hD % 582, 589 and 598 K.

In the passing, we must refer to Viret and coworkers who

earlier stressed that the above discrepancy in the density of

states at the Fermi level might be due to spin-dependent

potential in doped manganites [21]. The above results are

consistent with previous work on La1-xNaxMnO3, La1-x

BaxMnO3 (x = 0.3) and other doped manganites [37–41,

50–53]. In strongly correlated electron systems such as

mixed-valent manganites, carrier hopping is always of a

variable-range type at low temperature, as at low temper-

atures, the thermal energy (kBT) is insufficient to allow

electrons to hop to their nearest neighbours. However,

electrons conveniently hop to farther neighbours to find a

smaller potential difference. Thus, there is a competition

between the potential energy difference and the distance

that electrons can hop. On the other hand, at higher tem-

peratures, the electron conduction is due to the activation

above the mobility edge.

We have further used the adiabatic SPC model for the

analysis of resistivity behaviour for high temperature.

Charge carriers in the insulating region, above TP, are not

itinerant and transport properties are governed by thermally

activated carriers (polarons) [22]. The conductivity in the

high-temperature (T [ TP) PM-insulating state is domi-

nated by the hopping motion of self-trapped small polarons

[24]. To elucidate the nature of the charge transport

mechanism in this high-temperature region, ln(q/T) has

been plotted as a function of 1/T in Fig. 7. The good linear

fits reveal that the conduction in the PM semiconducting

region obeys the small polaron-hopping model, and the

activation energy obtained from fitting is given in Table 5.

Table 5 Parameters obtained from the fitting of experimental data using VRH and SPC models

T0

106 (K)

N(eF)

1020 (eV-1 cm-3)

D

10-3 (cm2 s-1)

qos

10-5(X cm K-1)

Ep

(meV)

x = 0.05 2.69 4.63 6.13 9.256 63.7

x = 0.1 2.03 6.10 6.22 8.749 61.9

x = 0.15 2.00 6.20 6.33 7.700 52.9
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Fig. 6 Plots of ln(r) vs. T-1/4 of La1-xKxMnO3 (x = 0.05, 0.1,

0.15) samples. The solid line represents best fit to the equation

r = r0exp(-T0/T)1/4. Symbols are the experimental data taken

from [10]
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The decrease in Ep is also attributed to improvement of the

grain surface state caused by the K addition.

We have first determined the diffusion coefficient using

the lattice constant; the longitudinal optical phonon fre-

quency and polaron formation energy are listed in Table 5.

The best-fitting value of Ep is consistent with the earlier

reported values of polaron formation energy of ranges from

58 to 170 meV in La0.67A0.33MnO3 (A = Li, Na, K and

Rb) [54]. The value of qos is found to decrease with the

increased K doping concentration, which implies an

increase in the carrier density. The fact that Ep gradually

decreases for higher doping is due to the phonon softening

effect on carrier transport owing to Jahn–Teller distortions

in the La1-xKxMnO3. Henceforth, above TP, the Jahn–

Teller-type distortion present in the unit cell traps the

charge carriers and gives rise to polarons. Hence, above TP,

the resistivity shows polaronic-type behaviour. With these

facts, we state that the SPC model is only plausible for the

higher temperature resistivity behaviour (T [ hD/2).

Conclusion

Either double-exchange mechanisms or small polarons

have primarily described in the physics of manganites. The

behaviour of electrical resistivity in doped manganites

needs further clarification. The reported behaviour of

electrical resistivity in K-doped manganites is analysed in

the framework of the additional model of electron–phonon

interaction using the model phonon spectrum consisting of

two parts: an acoustic branch of Debye type and optical

mode with characteristic Einstein temperature. Deduced

values of Debye and Einstein temperatures from the model

potential with the long-range Coulomb, vdW interaction

and the short-range repulsive interaction up to second-

neighbour ions within the Hafemeister and Flygare

approach are consistent with Raman spectroscopy mea-

surements. For the sake of simplicity, a single (longitudinal

and transverse) optical phonon mode has been considered,

with a flat dispersion relation.

The high-energy optical phonon yields a large contri-

bution to the resistivity and is attributed to a significant

optical phonon-hardening effect on carrier transport. It is

noticeable that the contribution from acoustic and optical

phonons together with the residual resistivity is smaller

than experimental data. A clear straight line is depicted

from *150 to *185 K temperature whilst plotting the

difference as a function of power temperature indicative of

electron–electron scattering. We further explore the role of

electron–magnon scattering in the electrical transport

mechanism. It is noticeable that the role of two-magnon

scattering in the resistivity behaviour is prominent above

185 K. The incorporation of T4.5 dependence is essential

and consistently retraces the measured resistivity at higher

temperatures. It is inferred from the above analysis that the

electrical transport below TP is dominated not only by

electron–electron scattering but also by electron–magnon,

presumably involving spin fluctuations of charge carriers.

We may comment that apart from the resistivity due to

domain, grain boundary and the electron–phonon scatter-

ing, the electron–electron and electron–magnon scatterings

are essential for a complete description of the metallic

behaviour of La1-xKxMnO3 with (x = 0.05, 0.1 and 0.15).

The mean free path is comparable with the Mn–O bond

length, and the products kF‘ * 1 and eF s * 1 favour

metallic conduction. Hence, it is appropriate to use the

Bloch–Gruneisen expression in estimating the electron

phonon contributions at T \ TP, and this is associated with

the dynamic Jahn–Teller distortion, arising from the local

lattice distortion due to the strong electron–phonon

coupling.

The resistivity data of the semiconducting state at the

high-temperature region, T [ TP, are analysed by using both

the VRH and adiabatic SPC models. Deduced values of N(eF)

from resistivity fit using VRH are consistent with those

obtained from thermoelectric power measurements. The

SPC model with realistic physical parameters consistently

retraces the semiconducting behaviour. The nearest-neigh-

bour hopping of a small polaron leads to mobility with a

thermally activated form and successfully retraced the
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Fig. 7 Variation of ln(q/T) vs. inverse temperature (T-1) of La1-x

KxMnO3 (x = 0.05, 0.1, 0.15) samples. The solid line represents the

best fit to the equation q = qosT exp(EP/kBT). Symbols are the

experimental data taken from [10]
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reported experimental curve in the paramagnetic phase.

Above TP, the Jahn–Teller-type distortion present in the unit

cell traps the charge carriers and gives rise to polarons.

Hence, above TP, the resistivity shows polaronic-type

behaviour.

To this end, the ferromagnetic metallic and para-

magnetic semiconducting resistivity behaviour of

La1-xKxMnO3 manganites with (x = 0.05, 0.1 and 0.15) is

investigated based on electron–phonon, electron–electron

and electron–magnon as well SPC by deducing Debye,

Einstein temperature, the diffusion coefficient and the

polaron formation energy. The developed approach con-

sistently explains the reported behaviour in the low-tem-

perature regime (T \ TP) as well in the high-temperature

regime (T [ TP). The scheme opted in the present study is

so natural that it extracts only the essential contributions to

describe the resistivity behaviour. As hD is about

582–600 K in this system, the use of BG expression and

Debye model with T \ hD is valid at low temperatures.

Although we have provided a simple explanation of these

effects, there is a clear need for good theoretical under-

standing of the resistivity behaviour in view of the for-

mation of small polarons of magnetic origin in manganites.
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