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Abstract The abbreviation ‘‘nano-Calphad’’ stands for

‘‘Calculation of Phase Diagrams for nano-systems.’’ Nano-

systems contain at least one phase or at least one interface

layer (film, complexion) with at least one of its dimensions

being below 100 nm. The essential task of nano-Calphad is

to introduce correctly the surface term into the equation for

the Gibbs energy. In view of the controversy between the

Kelvin and Gibbs equations, even this task does not have an

obvious solution (in the present paper, the Gibbs method is

preferred). However, there are many further questions to be

addressed when the Calphad method is converted into the

nano-Calphad method. This paper attempts to give an as full

as possible list of all those problems, such as: (i) the defi-

nition of a new, independent thermodynamic variable,

(ii) the extended phase rule, (iii) the curvature dependence of

the interfacial energies, (iv) the dependence of interfacial

energies on the separation between interfaces (including the

problem of surface melting), (v) the role of the shapes and

relative arrangement of phases, (vi) the role of the substrate

(if such exists), and (vii) the role of segregation, taking into

account its effect on the mass balance within multi-com-

ponent nano-phases and its surface phase transition and

complexion. It is also shown that the well-known meaning

of the tie line in binary two-phase fields is lost in nano-

systems. The issues related to the size limits of materials

thermodynamics and the need for a more complete data-

banks on molar volumes and interfacial energies are

discussed.

Introduction

The Calphad (=calculation of phase diagrams) method to

calculate phase diagrams has become a vital part of

materials science and engineering since the 1970s [1–3].

Traditionally, the Calphad method deals with macroscopic

systems containing phases with all sizes above 100 nm. In

this size range, the size dependence of the molar integral

Gibbs energy of a phase is negligible; thus the results of the

Calphad calculations are independent of the size of the

system and phases.

Since the 1990s, the science and engineering of nano-

materials have been strengthening both in the number of

papers and in market value (see recent papers [4–16]). It is

well known that nano-systems containing phases (or at

least a surface film) with at least one of the dimensions

being below 100 nm have different properties from those

of macro-systems, including their phase equilibria (see

experiments [17–46]). It is expected that phase diagrams

for nano-systems will gradually become a vital part of

materials nanotechnology.

There have already been a considerable number of

papers devoted to the construction of phase diagrams for

nano-systems [17, 21, 29, 37, 38, 42, 46–99]. However,

those 60 papers usually reflect a limited number of aspects

on how the phase diagrams for macro- and nano-systems

differ. The goal of the present paper is to collect all such

features and to work out a generic algorithm to calculate

nano-phase diagrams. This sub-branch of Calphad is sug-

gested to be called here as ‘‘nano-Calphad’’. By definition,
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Egyetemváros, Miskolc 3515, Hungary

e-mail: kaptay@hotmail.com

123

J Mater Sci

DOI 10.1007/s10853-012-6772-9



it is the Calphad method which is applied to systems

containing at least one phase (or interface region, com-

plexion) with at least one dimension below 100 nm. In

other words, the nano-Calphad concept takes into account

the size dependence of the molar Gibbs energy, through its

surface term.

A short summary of the Calphad method

Before introducing differences between the Calphad and

the nano-Calphad method, let us shortly define the basic

features of the Calphad concept. Calphad searches the

relationship between state variables and the equilibrium

state of matter in a given system using computers instead of

empirical measurements (Fig. 1) [100].

Systems are 3-dimensional parts of the universe under

study, and contain a given amount of matter n (mole).

Systems contain a P number of phases denoted as U (=a or

b, etc.). A phase U is a 3-dimensional part of the system,

being uniform throughout, both chemically and physically.

Phases are separated from each other by interfaces. Each

phase contains a certain amount of matter nU and is char-

acterized by its phase fraction yU, defined as: yU � nU=n

(with the relationship between them:
P

U
yU ¼ 1). Systems

contain a C number of components, denoted as i (=A or B,

etc.). In the simplest definition of materials science (to be

used here), components are the elements. The amount of

component i in the system is ni; the average mole fraction

of component i in the system is defined as: xi � ni=n (with

the relationship between them:
P

i

xi ¼ 1). All phases of the

system contain the same components. The amount of

component i in phase U is denoted as: niðUÞ, and the mole

fraction of component i in phase U is defined as: xiðUÞ �
niðUÞ=nU (with the relationship between them:

P

i
xiðUÞ ¼ 1).

If the system is in constant gravitational, electromag-

netic, etc., fields, one needs to define the number of com-

ponents (C) and the identity of the components i. Then, for

macroscopic systems there are C ? 1 independent state

variables (see Fig. 1): pressure (p), temperature (T), and the

average mole fractions of (C - 1) components (xi). These

state variables determine the equilibrium state, character-

ized by the following quantities (see Fig. 1): the number of

phases (P) being in equilibrium, their identity (U), their

equilibrium phase fractions (yU) and the equilibrium

composition of each phase (xiðUÞ). The relationship between

the state variables and the equilibrium state can be estab-

lished empirically, through measurements. For C = 84

(there are 84 stable elements in nature), there are 85

independent state variables. If each is considered with only

100 different values (in fact a much higher resolution is

needed), there are 10085 different combinations of state

variables in nature to be measured. If each member of

mankind living today measures every day one relationship

between the state variables and equilibrium state (which is

a highly optimistic assumption), the time needed to

establish the empirical databank of the above given size is

more than 10158 years, being much longer than the time

passed since Big Bang (1010 years). Thus, the establish-

ment of the full empirical databank for materials equilib-

rium is a mission impossible.

This situation calls for a practical, but theoretically well-

established solution, called the Calphad method, which is

based on thermodynamics of Gibbs [101]. The Calphad

method has two tasks. In step 1 (see Fig. 1), the relation-

ship between the molar Gibbs energy of each possible

phase (GU, J/mol) should be established as function of state

variables (T, p, xiðUÞ). If appropriate models are used

(which enable reasonable interpolations and extrapola-

tions), it takes much less effort to get this relationship for

all phases, than to measure empirically the equilibrium

states for all possible combinations of state variables. This

relationship can be written in five terms:

GU ¼ Go
U þ DGid

U þ DGE
U þ DGmagn

U þ DGstrain ð1aÞ

where Go
U (J/mol) is the Gibbs energy of the mechanical

mixture:

Go
U ¼

X

i

xiðUÞ � Go
iðUÞ ð1bÞ

where Go
iðUÞ (J/mol) is the standard Gibbs energy of pure

component i in non-magnetic, strain-free state of phase U,

which is described as a function of p and T. For metallic

elements in condensed state, the databank of Dinsdale

[102] is widely used, describing Go
iðUÞ by polynomials of

temperature at standard pressure. These polynomials are

derived from the following relationship:

Go
iðUÞ ¼ Uo

iðUÞ þ p � Vo
iðUÞ � T � So

iðUÞ ¼ Ho
iðUÞ � T � So

iðUÞ

ð1cÞ

where Uo
iðUÞ, Vo

iðUÞ, So
iðUÞ, Ho

iðUÞ are the standard molar inner

energy (J/mol), volume (m3/mol), entropy (J/mol K), and

enthalpy (J/mol) of component i in phase U, respectively

C, i, p, T, x i P, Φ, yΦ, xi(Φ)

GΦ

empirical measurements

Calphad step 1 Calphad step 2

Variables Equilibrium state

Fig. 1 The idealized schematic picture of the essence of the Calphad

method
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(all dependent on p and T). The term DGid
U (J/mol) of Eq.

(1a) is the Gibbs energy change due to the transition from

the mechanical mixture to the ideal solution:

DGid
U ¼ R � T �

X

i

xiðUÞ � ln xiðUÞ ð1dÞ

where R = 8.3145 J/mol K, the universal gas constant.

The term DGE
U (J/mol) of Eq. (1a) is the Gibbs energy

change due to the transition from the ideal solution to the

real solution. For a binary solution A–B, the Redlich–

Kister equation [103] is usually used:

DGE
U ¼ xBðUÞ � 1� xBðUÞ

� �
�
X

j¼0

Lj � 1� 2 � xBðUÞ
� � j ð1eÞ

where Lj (J/mol) is the interaction energy of jth order (valid for

the given A–B solution of the given U phase), being pressure

and temperature dependent. Its temperature dependence is

usually described by a semi-empirical linear equation:

Lj ¼ hj � T � sj ¼ hj � 1� T

sj

� �

ð1fÞ

where hj (J/mol) and sj (J/mol K) are the enthalpy and

entropy terms of the jth order interaction energy, taken as

constants, while sj (K) is their ratio. However, the

extrapolation of this linear equation often leads to high-

temperature artifacts [104, 105]. This is because, the linear

equation contradicts the recently proposed 4th law of

thermodynamics [106], which is based on earlier work of

Lupis and Elliot [107]. One of the equations obeying the

4th law is [105]:

Lj ¼ hj � exp � T

sj

� �

ð1gÞ

where hj (J/mol) is the enthalpy part of the jth interaction

energy at T = 0 K, and sj (K) is the temperature at which

Lj would cross zero if described by an oversimplified linear

Eq. (1f). Equation (1g) guarantees that any real solution U
will gradually approach the state of the ideal solution with

increasing temperature, in accordance with the 4th law of

thermodynamics. It should be mentioned that Eq. (1g) can

lead to a low-temperature artifact, if instead of running the

full Calphad optimization, 4(!) parameters are found from

3(!) measured points of a phase diagram [108]. In contrary

to this, in all systems for which full Calphad optimization

has been carried out so far, it has been shown that Eq. (1g)

indeed removes all high-temperature artifacts without

introducing any low-temperature artifact [109–122].

The excess Gibbs energy term is more complicated for

ternary and multi-component systems (for details see

[2, 3]). In addition to the formal Redlich–Kister polyno-

mials, there are many other solution models (for details see

[2, 3, 123]). The term DGmagn
U (J/mol) of Eq. (1a) is the

Gibbs energy change due to the transition from a non-

magnetic state to a magnetic state if such exists (for details

see [2, 3, 124]). The term DGstrain
U (J/mol) of Eq. (1a) is the

Gibbs energy change due to the transition from a strain-free

state to a state under strain [74, 91, 125], also being a

function of the interface thickness. Equation (1a–1g) are

written for a one-sublattice phase. There are many phases

in nature (especially the compound phases) that contain

two, or several sub-lattices, having more difficult mathe-

matical description (for details see [2, 3, 126, 127]).

Equation (1a–1g) are written for the integral Gibbs

energy of phase U. The components of this phase have their

own partial Gibbs energies denoted as GiðUÞ. The average

values of all partial Gibbs energies of the phase equal the

integral Gibbs energy of the phase:

GU ¼
X

i

xiðUÞ � GiðUÞ ð1hÞ

The partial Gibbs energies can be found from the

integral Gibbs energy as:

GiðUÞ ¼ GU þ 1� xiðUÞ
� �

� dGU

dxiðUÞ

� �

T ;p;xj 6¼i

ð1iÞ

Now, let us suppose that step 1 of the Calphad method is

fulfilled, i.e., the full databank of GU ¼ f ðp; T ; xiðUÞÞ is

known. Having Eq. (1i), the full databank of GiðUÞ ¼
f ðp; T ; xiðUÞÞ is also known. Now, let us proceed to step 2

of the Calphad method (Fig. 1) and see how the parameters

of the equilibrium state can be calculated from the known

Gibbs energy functions. The major rule is that the

equilibrium state is the one (to be selected from the list of

all possible states) which provides the absolute minimum

value for the molar Gibbs energy of the system [101]:

G ¼ min ð1jÞ

The total Gibbs energy of the system (G, J/mol) is

written as an average of the integral Gibbs energies of its

phases:

G ¼
X

U

yU � GU ð1kÞ

where yU is the phase fraction of phase U (for its definition

see above). In the simplest case P = 1, so xiðUÞ ¼ xi, yU ¼
1 and G ¼ GU. In the case of P = 1, the GU functions of

all possible phases U at given values of state variables (p,

T, xi) should be compared to each other to select the

equilibrium phase in accordance with Eq. (1j). In addition,

all possible two-phase mixtures (aþ b) should also be

considered, with the following condition of heterogeneous

equilibrium to be fulfilled for each component i [101]:
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GiðaÞ ¼ GiðbÞ ð1lÞ

Not only 2-phase, but all multi-phase combinations

should be checked for the minimum of total Gibbs energy.

Fortunately, the number of co-existing phases is limited by

the phase rule of Gibbs [101]:

Pmax ¼ C þ 2 ð1mÞ

Equation (1m) follows from the equality of the possible

number of Eq. (1l) (=C � ðP� 1Þ) and the number of all

independent concentrations and other state variables

(=2þ P � ðC � 1Þ). Equation (1m) defines the allowed

interval (1�P�C þ 2) for the number of phases that

can co-exist in equilibrium. For example, Eq. (1m)

provides Pmax = 3 for one-component systems, allowing

the existence of well-known triple points in one-component

phase diagrams, but excluding the existence of quaternary

points.

Although not needed for the Calphad calculations but

useful in the interpretation of phase diagrams, let us also

write the equation for the degrees of freedom (F) defined

as: F � Pmax � P. Substituting Eq. (1m) into this equation

[101]:

F ¼ C � Pþ 2 ð1nÞ

The degree of freedom is the number of state variables

that can be changed independently without changing the

quality of the equilibrium state. The quality of the

equilibrium state is kept unchanged, if parameters P, U
and yU are not changed. In other words, the composition of

the phases (xiðUÞ) is not a qualitative, only a quantitative

measure of the equilibrium state (see Fig. 1).

Now, let us suppose that in a C-component system a

mixture of P phases is formed, in agreement with the phase

rule, i.e., supposing P�C þ 2. Then, according to Fig. 1,

(P - 1) independent values of phase fractions yU and P �
ðC � 1Þ independent values of compositions xiðUÞ should be

found by the Calphad method. Thus, the total number of

independent unknowns is (P � C � 1). To find these

unknowns, we have C � ðP� 1Þ equations of the Eq. (1l)

type and additionally (C - 1) equations of material bal-

ance as follows:

xi ¼
X

U

yU � xiðUÞ ð1oÞ

Thus, the total number of independent equations is

(P � C � 1), which is the same as the total number of

independent unknowns. Thus, the Calphad method is always

capable of finding the parameters of the equilibrium state,

supposing that the phase rule is obeyed.

For the particular case of a 2-component, 2-phase sys-

tem (C = 2, P = 2), the equilibrium compositions of the

two phases (xBðaÞ and xBðbÞ) can be found from the two

independent equations of the (1l) type (GAðaÞ ¼ GAðbÞ and

GBðaÞ ¼ GBðbÞ), without using the mass balance Eq. (1o).

Thus, at any average mole fraction of xBðaÞ\xB\xBðbÞ the

equilibrium mole fractions (xBðaÞ and xBðbÞ) will be identical,

and independent of the actual value of xB. The latter will

determine only the phase fraction yb through the mass bal-

ance Eq. (1o). That is why, in the T-xB section (drawn at fixed

p) of macroscopic binary phase diagrams, a tie line can be

constructed within each two-phase region, along which the

equilibrium values of xBðaÞ and xBðbÞ will not depend on xB.

This point is highlighted here, because this property of the tie

lines will be lost in nano-Calphad (see below).

Finally, it should be recognized that in Fig. 1 and above

an idealized picture is shown, supposing that all Gibbs

energy functions can be independently measured and

modeled (step 1) with an accuracy requested for phase

diagram calculations (step 2). Unfortunately, it is not the

case. The measured phase diagrams are also needed for

better results of step 1, and hence steps 1–2 are treated

together. This procedure is called ‘‘optimization’’ or

‘‘assessment’’ [2, 3]. Although great efforts are being made

in many Calphad groups worldwide, the creation of the

84-component, contradiction-free thermodynamic data-

bank is very far. The goal to create this full databank is

further complicated by the fact that in addition to the

constant flow of new measured results and new assess-

ments, there is also a constant flow of new ideas expressed

in better model equations. Sometimes it makes the situation

frustrating; with the acceptance of each new model equa-

tion, any group working on Calphad assessments has to

start building its databank from zero, instead of building

the existing one further. This situation sometimes post-

pones the acceptance of new model equations by the

Calphad community.

As a conclusion to this short introduction to the Calphad

method, let us remind that the Calphad method is inde-

pendent of the size and of the arrangement of phases,

simply because the Calphad method works entirely with

bulk Gibbs energies and neglects any surface or interface

interaction between the phases. Now, let us consider step

by step what modifications should be introduced in the

Calphad method to convert it into the nano-Calphad

method.

On a new, independent state variable for nano-systems

In the majority of nano-phase diagram calculations (except

[66, 128]), the resulting phase diagram is shown at given

radius or diameter of the system. However, the size of a

condensed system is not an independent state variable. This

is because, for a given amount of material its size depends
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on the molar volume, while the molar volume of any phase

is a function of other state variables (temperature, pressure,

composition). Therefore, size (radius or diameter) should

not be used as independent state variable.

In the present paper, the number of atoms in the system

(N) is selected as a new independent state variable, sup-

posing that only condensed phases are considered in the

system. It is supposed that the condensed phases are sur-

rounded by a large vapor phase, keeping equilibrium with

each other, but not exchanging atoms with each other.

If a gas/vapor phase is also considered as part of a nano-

system, then the new independent variable should be N/V,

i.e., the ratio of the total number of atoms in the system (N)

to the available volume for the system (V, m3). In this case,

the volume V should be larger than needed for the con-

densed phase of the largest molar volume, supposing that

all atoms are in this phase (thus the N/V ratio should not

give limitations to the free formation of condensed phases).

In the following part of this paper, only condensed nano-

systems will be considered for simplicity.

The above selected new, independent state variable will

be independent of all other independent state variables.

Thus, the full list of state variables for condensed nano-

systems will be: pressure (p), temperature (T), average

composition of the system (xi), and the total number of

atoms in the system (N), providing (C ? 2) independent

state variables in a C-component system.

The number of atoms in the system and its actual size

can be converted into each other, if other state variables are

known; so the molar volume is fixed and also the shapes of

the phases are known. In this paper, in addition to N, the

radius r (m) also will be sometimes used, especially for

the purposes of comparison with previous equations in the

literature.

It should be recognized that the same choice (N) was

done earlier by Wautelet et al. [66] and later by the author

[128].

The extended phase rule for nano-systems

It should be reminded that ‘‘2’’ in Eqs. (1m, 1n) for the

phase rule is the number of non-concentration state vari-

ables, p and T. As shown above, the number of such state

variables is increased by one (the number of atoms, N) for

nano-systems. Therefore, the extended phase rule of Gibbs

for nano-systems is written as (for a detailed derivation, see

[128]):

Pmax ¼ C þ 3 ð2aÞ

F ¼ C � Pþ 3 ð2bÞ

As follows from Eq. (2a), even for 1-component systems

(C = 1): Pmax = 4, i.e., in addition to the well-known

triple points, a quaternary point also might appear in

1-component nano-phase diagrams. Such a quaternary

point was predicted for the one-component phase

diagram of thallium, at fixed values of all state variables

of N, p, T [128]).

Although the present author has not found Eqs. (2a, 2b)

in the nano-Calphad literature [17–99] prior to the paper

[128], there are papers mentioning that constructing and

understanding phase diagrams for nano-systems differ

qualitatively (and not only quantitatively as usually pre-

sented) from the usual phase diagrams [64, 66, 72, 76].

The extended equation for the integral molar Gibbs

energy of nano-phases

The integral molar Gibbs energy of nano-phases will be a

function of the following variables: GU ¼ f ðp; T ; xiðUÞ;NUÞ
where NU is the number of atoms in the given condensed

phase U, calculated as: NU ¼ yU � N. The major reason why

the Gibbs energy is size dependent is the high specific

surface area of nano-phases (see below). Therefore, Eq.

(1a) will be extended with a new surface term (DGsurf
U ,

J/mol), being the molar Gibbs energy change between the

macroscopic and nano-phases:

GU ¼ Go
U þ DGid

U þ DGE
U þ DGmagn

U þ DGstrain
U þ DGsurf

U

ð3aÞ

The surface term of Eq. (3a) will be a function of all

state variables DGsurf
U ¼ f ðp; T; xiðUÞ;NUÞ. However in the

first approximation, this will be the only term being a

function of NU. In other words, all the other terms of Eq.

(3a) remain the same as known for macroscopic phases of

Eq. (1a) at given values of p; T; xiðUÞ and at NU !1.

After Gibbs [101], the molar Gibbs energy of the surface

can be written as:

DGsurf
U ¼ NAv

NU
� AU;abs � rU=s ð3bÞ

where NAv is the Avogadro number (6:02 � 1023 mol-1),

AU;abs is the absolute surface area (m2) of phase U, rU=s is the

interfacial energy (J/m2) between phaseU and the surrounding

phase (denoted as ‘‘s’’). The following relationship is valid

between the number of atoms in a phase (NU), its absolute

volume (VU;abs, m3), and its molar volume (VU, m3/mol):

NU � VU ¼ NAv � VU;abs. Substituting this equation into Eq.

(3b), another version of Eq. (3b) is found:
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DGsurf
U ¼ AU;spec � VU � rU=s ð3cÞ

where AU;spec is the specific surface area (m2/m3 = m-1) of

phase U, defined as:

AU;spec �
AU;abs

VU;abs

¼ NAv � AU;abs

NU � VU
ð3dÞ

As follows from Eq. (3c), the surface term of the Gibbs

energy is proportional to the specific surface area of the

phase, which depends not only on the number of atoms in

the phase but also on the shape of the phase. This gives rise

to an additional problem of nano-Calphad: the equilibrium

shape and arrangement of phases should be found from Eq.

(1j) (see below).

Let us specify Eq. (3c) for a thin film of thickness d,

surrounded by two parallel phases a and b. The specific

surface area of one side of a thin film is written as:

AU;spec ¼ AU;abs= d � AU;abs

� �
¼ d�1. Substituting this equa-

tion into Eq. (3c), and taking into account the two sides of

the thin film, the surface term of its Gibbs energy is

obtained:

DGsurf
U ¼ VU

d
� rU=a þ rU=b

� �
ð3eÞ

For comparison, the surface term of the Gibbs energy

for a sphere of radius r:

DGsurf
U ¼

3 � rU=s

r
� VU ð3fÞ

where 3=r ¼ AU;spec is the specific surface area of a sphere

of radius r, being the ratio of its surface area (4 � p � r2) to

its volume (4 � p � r3=3).

As follows from Eq. (3c), the nano-effect is due to the

large specific surface area of the nano-phase. This is in

contrast to the common belief in the materials science lit-

erature claiming that the nano-effect is due to the curvature

of the nano-phase. This misbelief originates from the

Kelvin equation [47]. Kelvin used the Laplace equation in

his derivation. The Laplace pressure describes the inner

pressure within a phase of a curved interface. For a

spherical 1-component phase of radius r, the Laplace

pressure is written as [129]:

p ¼ po þ
2 � ro

U=s

r
ð4aÞ

where po is the outer pressure, usually taken as the standard

pressure. Now, let us consider the equations for the Gibbs

energy with a surface term and that for a standard Gibbs

energy for one-component phases:

GU ¼ Uo
U þ p � Vo

U � T � So
U ¼ Go

U þ DGsurf
U ð4bÞ

Go
U ¼ Uo

U þ po � Vo
U � T � So

U ð4cÞ

Let us substitute Eq. (4a) into Eq. (4b) and express the

surface term by taking into account Eq. (4c):

DGsurf
U ¼

2 � ro
U=s

r
� Vo

U ð4dÞ

Equation (4d) is valid for 1-component phases. For a

more general case of solutions, Eq. (4d) becomes:

DGsurf
U ¼

2 � rU=s

r
� VU ð4eÞ

Comparing Eqs. (4e) to (3f) one can see that the two

differ in a numerical coefficient (2 vs. 3). This difference in

the numerical coefficients of Eqs. (3f, 4e) is a sign of a

qualitative difference between the approaches of Gibbs and

Kelvin, as both Eqs. (3f, 4e) cannot be correct at the same

time. The present author cannot find any fault in the logic

of Gibbs. However, there are at least two faults of logic in

the derivation of Eq. (4e), the way how the Kelvin equation

is derived today:

i. although mathematically everything is correct in the

above derivation, there is a physical fault: the inner

pressure of Eq. (4a) should not be substituted for the

state variable p (outer pressure) of Eq. (4b).

ii. the Laplace pressure of Eq. (4a) can be derived from

the equation of the Gibbs energy including its surface

term Eqs. (3a, 3c) (see [130, 131]), and so there is no

sense in substituting the result back into the same

equation.

Due to the above, Eq. (4e) and all its consequences are

incorrect. Those consequences are far-reaching: the Kelvin

equation for the vapor pressure above a nano-droplet, the

Gibbs–Thomson equation for a melting point of a nano-

crystal, and the Ostwald–Freundlich equation for the sol-

ubility of the nano-crystal (sometimes called also the

Gibbs–Thomson equation) should all be corrected, as

shown below.

At this point, it should be noted that in the minority of

papers [56, 72–74, 91, 97] the correct Eqs. (3c–3f) are

used. The incorrect Eq. (4e) and its consequences (the

Kelvin equation, the Gibbs–Thomson equation, and the

Ostwald–Freundlich equation) are common in the literature

of chemistry and its derived sciences, such as biology,

metallurgy, and materials. Why the physics community

prefers the Gibbs equation to the Kelvin equation is

probably connected with the importance of thin films in

physics. Thin films by definition do not have curvatures, so

from the Kelvin equation (4e) it seems that they do not

have a surface term of their Gibbs energies. Thus, based on

the Kelvin equation, all of their thermodynamic properties

are expected to be independent of the thickness of the thin
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film, being in contradiction with observations [17, 18]. On

the other hand, Eq. (3e) obtained after Gibbs is in accor-

dance with the experiments.

The corrected Kelvin equation

The original Kelvin equation provides the equilibrium vapor

pressure (p, Pa) around a spherical droplet of radius r [47]:

p ¼ po � exp
2 � rl=g � Vl

r � R � T

� �

ð5aÞ

where po is the vapor pressure (Pa) above a flat liquid

surface (r !1). Equation (5a) is in full accordance with

Eq. (4e), although Eq. (4e) was derived later from Eq. (5a)

using the thermodynamics of Gibbs. If Eq. (3c) is used

instead of Eq. (4e) for the surface term of the Gibbs energy,

the corrected Kelvin equation can be obtained (for details

see [132]):

p ¼ po � exp
Al;spec � rl=g � Vl

R � T

� �

ð5bÞ

For a particular case of a spherical droplet of radius r,

Eq. (5b) simplifies to [132]:

p ¼ po � exp
3 � rl=g � Vl

r � R � T

� �

ð5cÞ

The corrected Gibbs–Thomson equation

The Gibbs–Thomson equation was published neither by

Gibbs, nor by W. Thomson (=Lord Kelvin), rather by

J.J. Thomson [48]. It is an extension of the Kelvin equation

for the case of the melting point (Tm, K) of a spherical

nano-crystal of radius r (neglecting the molar volume

change upon melting):

Tm ¼ To
m �

2 � rsl � Vs

r � DmS
ð6aÞ

where To
m is the melting point (K) of a large crystal

(r !1), DmS is the melting entropy (J/mol K). If Eq. (3c)

is used instead of Eq. (4e) for the surface term of the Gibbs

energy, the corrected Gibbs–Thomson equation can be

obtained (for details see [132]):

Tm ¼ To
m �

As;spec � rsl � Vs

DmS
ð6bÞ

For a particular case of a spherical crystal of radius r,

Eq. (6b) simplifies to [132]:

Tm ¼ To
m �

3 � rsl � Vs

r � DmS
ð6cÞ

It should be mentioned that Eqs. (6a–6c) are valid for a

solid crystal embedded in a liquid matrix [17, 53] and if the

temperature dependence of parameters rsl, DmS and Vs are

neglected. In a formal treatment, when the solid and liquid

phases are treated separately (not in contact with each

other), the term of rsl � Vs of all Eqs. (6a–6c) should be

replaced by the term rsg � Vs � rlg � Vl

� �
[22, 50, 52, 56,

59, 72, 74]. This replacement usually does not change the

numerical results considerably, due to the validity of the

approximated equalities Vs ffi Vl and rsl ffi rsg � rlg.

The corrected Ostwald–Freundlich equation

The Ostwald–Freundlich equation (being also the extension

of the Kelvin equation) is due to Freundlich and it provides

the equilibrium solubility (xAðlÞ) of a spherical solid phase

A(a) of radius r in a large liquid solution (l), supposing

ideal behavior in the liquid solution [51]:

xAðlÞ ¼ xo
AðlÞ � exp

2 � ra=l � VAðaÞ
r � R � T

� �

ð7aÞ

where xo
AðlÞ is the solubility of the large crystal (r !1).

To add to the confusion, Eq. (7a) is also called the ‘‘Gibbs–

Thomson’’ equation in some papers, as it is related to Eqs.

(5a–6a). If Eq. (3c) is used instead of Eq. (4e) for the

surface term of the Gibbs energy, the corrected Ostwald–

Freundlich equation can be obtained (for details see [133]):

xAðlÞ ¼ xo
AðlÞ � exp

AAðaÞ;spec � ra=l � VAðaÞ
R � T

� �

ð7bÞ

For a particular case of a spherical crystal of radius r,

Eq. (7b) simplifies to [133]:

xAðlÞ ¼ xo
AðlÞ � exp

3 � ra=l � VAðaÞ
ra � R � T

� �

ð7cÞ

For a historical reason, let us mention that Eq. (7c) was

already published in 1900 by Ostwald [49], using the same

original ideas of Gibbs as being used in the present paper

[101]. However, Eq. (7c) of Ostwald was later ‘‘corrected’’

by Freundlich [51], and this mistakenly corrected equation

is called today (quite ironically) the Ostwald–Freundlich

equation. The corrected back Eq. (7c) is suggested to be

referred to in the future as ‘‘the Ostwald equation.’’

The curvature dependence of the interfacial energies

For precise calculations, the curvature dependence of the

interfacial energy should be taken into account. It was also

Gibbs who derived a curvature-dependent equation for

surface tension [101]. However, he did it not for the pur-

poses of nano-Calphad, rather to make sure that measure-

ments performed on sub-millimeter objects do not affect

the results of measured surface tension values (they do
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not). This subject received renewed attention only after the

work of Tolman [134]. The most general equation for the

curvature dependence of the interfacial energy of a spher-

ical phase of radius r is written as:

ra=b ¼
ro

a=b

1þ 2�d
r

ð8aÞ

where ra=b is the curvature-dependent interfacial energy

(J/m2), ro
a=b is the interfacial energy (J/m2) at the limit of

r !1, and d is the distance (m) from the surface of

tension to the dividing surface for which the superficial

density of the particle vanishes (its value is proportional to

the intermolecular, or interatomic distance). The Tolman

equation has been discussed and improved in the literature

[135–148]. Although there is no final choice made in the

present paper between different approaches [134–148], it is

stressed that this question should be addressed in all papers

dealing with curved nano-phases. This aspect of phase

equilibrium calculations has already been taken into

account in some papers [60, 149, 150].

It is worth to mention that in deriving Eq. (8a), Gibbs

used the Laplace pressure described by Eq. (4a). This is the

third reason why the Laplace pressure should not be used to

derive the Kelvin Eq. (4e). Finally, let us mention that the

difference shown above between the Ostwald and the

Freundlich equations is partly compensated if the curvature

dependence of the interfacial energy is taken into account,

as shown in [133]. As a further example, let us write here

the modified version of Eq. (6c), taking into account the

curvature dependence of the interfacial energy (note a

possible replacement of the term rsl � Vs by the term

rsg � Vs � rlg � Vl

� �
depending on the situation—see

explanation after Eq. (6c)):

Tm ¼ To
m �

3 � rsl � Vs

r þ 2 � dð Þ � DmS
ð8bÞ

Equation (8b) provides somewhat lower melting point

depression values for small particle sizes compared to Eq.

(6c), and thus it partly compensates the difference between

Eqs. (6a, 6c).

The dependence of interfacial energies

on the separation between interfaces

If there is more than one phase in a nano-system, usually

the separation between different interfaces will also be

below 100 nm. At this distance, the so-called interfacial

adhesion force acts between the phases, first described by

Derjaguin [151], de Boer [152], and Hamaker [153] (see

also recent books on the subject [154, 155]). This interfa-

cial adhesion force arises because the interfacial energies

of neighboring interfaces affect each other from a small

distance [130, 131].

Let us consider two phases a and b in a larger phase c,

with two parallel a/c and b/c interfaces, with a distance

(separation) of z (m) between them. If phases a and b are

close enough to each other (yet not touching each other) the

molecules/atoms along their opposing interfaces will gen-

erate some change in the energetic states of each other. In

other words, the a/c and b/c interfacial energies will

become functions of separation z. In order to find this

relationship, let us first define the boundary conditions:

i. at infinite separation (z ? ?), the interfacial energies

have their standard, z-independent values: ra=cð1Þ ¼
ra=c, rb=cð1Þ ¼ rb=c,

ii. at zero separation (z = 0), the two particles touch each

other and so the sum of their interfacial energies

becomes the interfacial energy of the a/b interface:

ra=cð0Þ þ rb=cð0Þ ¼ ra=b. Formally, this can be

divided into two parts as: ra=cð0Þ ¼ p � ra=b and rb=c

ð0Þ ¼ ð1� pÞ � ra=b with parameter 0 \ p \ 1 (for

simplicity, parameter p can be taken as p = 0.5).

Then, one can write the following general equations:

ra=cðzÞ ¼ ra=c þ p � ra=b � ra=c

� �
� f ðzÞ ð9aÞ

rb=cðzÞ ¼ rb=c þ ð1� pÞ � ra=b � rb=c

� 	
� f ðzÞ ð9bÞ

The above boundary conditions can be translated into

the boundary conditions for function f(z): (i) at infinite

separation (z ? ?): f(z) = 0, and (ii) at zero separation

(z = 0): f(z) = 1. Depending on the type of cohesion

energy within phase c, two types of f(z) functions are used,

both obeying the above boundary conditions:

f ðzÞ ¼ n
nþ z

� �2

ð9cÞ

f ðzÞ ¼ exp
�z

n

� �

ð9dÞ

where n is the interaction length (m), being several times

the atomic diameter in phase c. Equation (9c) is used for

phases with van-der-Waals interaction between the mole-

cules [130, 131] in agreement with the van-der-Waals type

interfacial adhesion force [151–155], while Eq. (9d) is used

for metallic phases with short range interaction [59].

As an example, let us apply Eqs. (9a, 9b, 9d) to the case

of a thin liquid layer, covering a solid surface in a gas

(vapor) environment (Fig. 2b). The sum of the two inter-

facial energies is written by adding Eqs. (9a, 9b) and

substituting Eq. (9d):
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rðzÞ ¼ rs=l þ rl=g þ Dr � exp
�z

n

� �

ð9eÞ

Dr � rs=g � rs=l � rl=g ð9fÞ

Equation (9e) allows the prediction of surface melting,

schematically shown in Fig. 2. The total Gibbs energy

change per unit area (J/m2) accompanying surface melting

can be written as the sum of the bulk term and of the

surface term as follows, if the T-dependence of the melting

entropy is neglected:

DmGðzÞ
A

¼ z

Vo
s

� To
m � T

� �
� DmSo � Dr � 1� exp

�z

n

� �� �

ð9gÞ

If T\To
m (i.e., below the macroscopic melting point),

the value of the z-dependent Gibbs energy change upon

melting passes through a minimum as function of z in

accordance with Eq. (9g), if Dr[ 0. This minimum

corresponds to the equilibrium thickness of the molten

surface layer, as shown in Fig. 3. The equation for the

equilibrium thickness of the melting layer zeq (m) follows if

Eq. (9g) is substituted into the mathematical condition of

the minimum point (dDmGðzÞ=dz ¼ 0) and the resulting

equation is solved for z, denoted as zeq:

zeq ¼ n � ln Dr � Vo
s

n � DmS � To
m � T

� �

" #

ð9hÞ

The temperature dependence of zeq is shown in Fig. 4.

As follows from Eq. (9h), surface melting below the

melting point takes place only if Dr [ 0 and only in a

limited temperature range, in the proximity of the melting

point. The ‘‘proximity’’ can be calculated from the

condition of zeq� n by the equation: To
m � T

� �
�Dr �

Vo
s =ðe � n � DmSÞ (with e = 2.718…). With parameter

values of Fig. 4 ‘‘proximity of the melting point’’ means

To
m � T

� �
� 37 K, i.e., 1000 K � T � 963 K—see Fig. 4.

The phenomenon of surface melting has been known for

a long time (for a review see [156]). Its influence on

melting of nano-particles is discussed in [59, 157–160]

(note: the terms ‘‘surface melting’’ and ‘‘melting point

depression of nano-particles’’ are only related to each

other, but not equivalent to each other). Not only surface

α = s

β = g

γ = l z

α = s

β = g

surface melting

(a) (b)

Fig. 2 Schematic of surface

melting. A thin surface layer of

a bulk solid surface (2a)

converts into a thin liquid film

of thickness z covering a solid

surface (2b)
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Fig. 3 Dependence of the melting Gibbs energy per unit area on the

thickness of the thin liquid film of Fig. 2b, calculated by Eq. (9g)

(parameters: To
m � T = 10 K, DmSo = 10 J/mol K, Vo

s ¼ 10�5

m3/mol, Dr = 0.1 J/m2, n = 1 nm)
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Fig. 4 Dependence of the equilibrium thickness of the liquid layer on

a solid substrate as function of temperature, calculated by Eq. (9h)

(parameters: To
m = 1000 K, DmSo = 10 J/mol K, Vo

s ¼ 10�5 m3/mol,

Dr = 0.1 J/m2, n = 1 nm)
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melting, but also the formation of amorphous thin films can

be explained by a similar formalism [91, 161–163]. The

effect of strain has a high importance in this subject

through its influence on interfacial energies [91, 163, 164].

A similar formalism is applicable also for grain boundary

pre-melting [165].

The role of the shapes and relative arrangement

of phases

Some examples of arrangements and shapes of two phases

in the same two-phase system are shown in Fig. 5. As was

mentioned above, the classical Calphad method does not

make any difference between these situations, for the rea-

son that it works only with bulk Gibbs energies. However,

to apply Eqs. (3a, 3c, 3d) correctly, the shapes and

arrangements of all phases in a system should be pre-

defined. Moreover, Eqs. (3c, 3d) should be extended to take

into account different interfaces surrounding the same

phase, as:

DGsurf
U ¼ VU �

X

s

AU=s;spec � rU=s ð10aÞ

where AU=s;spec is the partial specific interfacial area

(m2/m3 = m-1) of phase U along its contact with a given

surrounding phase s (taking into account a number of such

different surrounding phases), defined as:

AU=s;spec �
AU=s;abs

VU;abs

¼
NAv � AU=s;abs

NU � VU
ð10bÞ

where AU=s;abs is the absolute interfacial area (m2) of phase

U along its contact with a given surrounding phase s.

The shape and the relative arrangement of phases are not

known a priori. When calculating phase diagrams for nano-

systems, all possible shapes and arrangements for phases

should be analyzed and the equilibrium shapes and

arrangement of the phases will be the one which corre-

sponds to the total minimum value of the Gibbs energy

described by Eq. (1j).

It should be noted that the importance of the shape and

arrangement of phases has been recognized since the work

of Reiss and Wilson [52]. Since then, this effect was taken

into account in about 20 % of nano-Calphad papers

[42, 53, 57, 59, 64, 66, 73, 76, 89, 90].

The role of the substrate

In the majority of phase diagram calculations performed

for nano-systems so far, the nano-system virtually levitates

in space, having no contact with any other substrate.

Although this is certainly one of the possibilities, it is of

real scientific and technical interest what will happen if

nano-phase b surrounded by phase a comes into contact

with a foreign substrate c. As follows from Fig. 6, the

interfacial areas of different interfaces are different in

subfigures of Fig. 6, thus the energetic states of nano-phase

b will also be different. We can presume that the presence

of a wettable substrate c will stabilize the wetting nano-

phase b.

In this situation, the same Eqs. (10a, 10b) should be used

instead of Eqs. (3c, 3d). An example is Eq. (3e) describing

the total surface term of a thin film surrounded by two large

parallel phases. The situation described in this and previous

chapters are very similar. The difference is that the mac-

roscopic phase c of Fig. 6 might not be considered as part

of the nano-system, for simplicity. However, if this phase c
is in thermodynamic equilibrium with phases a and b, then

its influence on the final equilibrium can be taken into

account using Eqs (10a, 10b).

Let us mention that there are several papers [84, 96,

166–168] in which the effect of the substrate has been

taken into account in nano-Calphad calculations.

α β

α β

α β

(a)

(b)

(c)

Fig. 5 Examples of possible shapes and arrangements of phases in a

two-phase system
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The role of segregation

If phase U consists of C components (with C [ 1), the

composition of each interface is generally different from

that of the bulk, which is called segregation (it can be

positive or negative). Segregation is one of the ways to

decrease the total interfacial energy of a phase. Thus, the

influence of segregation on the interfacial energy and on

the total equilibrium in nano-systems should be taken into

account. Although it can be done through the original

Gibbs adsorption equation [101], it is more convenient to

use the Butler equation [169]:

rU=s ¼ rAðU=sÞ ¼ rBðU=sÞ ¼ . . . ¼ riðU=sÞ ð11aÞ

The partial interfacial energies riðU=sÞ (J/m2) are written

as [170]:

riðU=sÞ ¼ ro
iðU=sÞ þ

R � T
f � V2=3

iðUÞ � N
1=3
Av

� ln
xiðU=sÞ

xb
iðUÞ

 !

þ
b � DGE

iðU=sÞ � DGE
iðUÞ

f � V2=3

iðUÞ � N
1=3
Av

ð11bÞ

where ro
iðU=sÞ is the interfacial energy (J/m2) of the U=s

interface of pure component i of phase U, f is a geometrical

constant depending on the structures of both the bulk and

the interface, taken equal for liquid metal/vapor interfaces

f ffi 1:00 [171], xiðU=sÞ is the mole fraction of component i

at the U=s interface, xb
iðUÞ is the mole fraction of component

i of the bulk of phase U (excluding its surface/interface

regions), b is the ratio of surface bonds to bulk bonds,

taken equal for liquid metal/vapor interfaces b ffi 9=11

[171], DGE
iðUÞ is the bulk partial excess Gibbs energy of

component i (J/mol) described by Eqs. (1e, 1f), being a

function of temperature and bulk composition (xb
iðUÞ),

DGE
iðU=sÞ is the interfacial partial excess Gibbs energy of

component i (J/mol) described by the same Eqs. (1e, 1f)

using the same parameters, but being a function of

temperature and surface composition xiðU=sÞ. The material

balance equations are written as:

X

i

xiðU=sÞ ¼ 1 ð11cÞ

X

i

xb
iðUÞ ¼ 1 ð11dÞ

xiðUÞ � NU ¼ xb
iðUÞ � NbðUÞ þ

X

s

xiðU=sÞ � NU=s ð11eÞ

NU ¼ NbðUÞ þ
X

s

NU=s ð11fÞ

where xiðUÞ is the average mole fraction of component i of

phase U, NU is the number of atoms in phase U, Nb(U) is the

number of atoms in the bulk of phase U, while NU/s is the

number of atoms at the U/s interface. The latter two

quantities are written as:

NU=s ¼
AU=s;abs

f
� NAv

VU

� �2=3

ð11gÞ

NbðUÞ ¼ NU �
X

s

NU=s ð11hÞ

A simplified version of Eqs. (11a–11d) with xb
iðUÞ ¼ xiðUÞ

has been proven to describe correctly the concentration

dependence of surface tension of bulk liquid metallic alloys

[172–185]. The same method has been extended from the

liquid/vapor surface to the liquid/liquid [186] and solid/

solid [187] interfaces, thus it can be generalized to any

interface. The same simplified Eqs. (11a–11d) with

xb
iðUÞ ¼ xiðUÞwere used in calculations of phase diagrams

for nano-systems by Tanaka et al. [67, 68, 79, 94] and later

by other groups [42, 77, 96, 97].

The full set of Eqs. (11a–11h) is suggested here for

the first time. It is superior to the simplified set of

γ

β
α

αβ

γ

α
β

γ

(a)

(b)

(c)

Fig. 6 Possible shapes and arrangements of a nano-phase b in the

environment of phase a depending on the substrate phase c
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Eqs. (11a–11d) with xb
iðUÞ ¼ xiðUÞ as it takes into account

the material balance limitations upon segregation from a

nano-phase. Although the necessity to do so was already

mentioned by Wautelet et al. [66], to the best knowledge of

the author this idea has not been implemented into the

nano-Calphad algorithm so far. According to the full set of

Eqs. (11a–11h) for nano-phases, the bulk composition xb
iðUÞ

is usually not identical to the average composition xiðUÞof

the phase (xb
iðUÞ 6¼ xiðUÞ), due to the interplay between the

segregation and the limited number of segregating atoms in

the nano-phase.

For C components and s interfaces we have s � ðC � 1Þ
equations of type (11a) and (C - 1) equations of type

(11e), i.e., together (s � C � sþ C � 1) equations. On the

other hand, we have (C - 1) unknowns of xb
iðUÞ type and

s � ðC � 1Þ unknowns of xiðU=sÞ type at given values of xiðUÞ,

p, T, NU and AU=s;abs. Thus, the number of unknowns

(s � C � sþ C � 1) equals the number of equations, i.e., the

solution can be found in a unique way. Substituting the

unknowns xb
iðUÞ and xiðUÞ into Eqs. (11b), the partial inter-

facial energies of all the components can be found at all

interfaces, which leads to the interfacial energy at each

interface, in agreement with Eq. (11a).

An interesting feature of the Butler equation has been

found recently [188–190] for the systems with positive

excess Gibbs energy values, becoming partly immiscible

below a certain bulk critical temperature. In a limited

interval of composition and temperature, Eqs. (11a–11d)

lead to 3 mathematical solutions for the surface composi-

tion instead of one, among which only the mathematical

solution with the minimum surface tension has a physical

sense. However, at a given temperature (below a certain

surface critical temperature) there is one special bulk

composition at which the surface tension values of two

mathematical solutions with two different surface compo-

sitions coincide: this is a first order surface phase transition

(SPT). When the bulk composition exceeds the SPT com-

position of a surface-active component, a nano-layer rich in

the surface-active component is formed on the top of the

bulk liquid solution.

This phenomenon was predicted independently in the

same year by Cahn [191] and Helms [192], although

experimental evidence existed before [193]. Since then, the

SPT phenomenon has been proven to exist both theoreti-

cally and experimentally along surfaces [194–213] and also

along inner interfaces [214–216], including dislocations

[217] and grain boundaries [218–226]. This surface or

interface nano-layer is not a new phase. It is rather an

interface film, or an adsorbed layer, sometimes called

‘‘complexion’’ [227–232]. Complexions can be modeled by

the combination of Eqs. (9–11).

The summary for the nano-Calphad concept

Let us consider a C-component-condensed nano-system

with the following state variables (Fig. 7): total N atoms at

pressure p and temperature T, with (C - 1) components of

average mole fractions of xi, in contact with a given

(equilibrium) substrate material (there can be several sub-

strates and one of them can be an equilibrium vapor phase).

One should find the equilibrium state of the system,

including the following independent parameters: the num-

ber of equilibrium phases (P), their identity (U), their phase

fractions (yU), average compositions (xiðUÞ), and also their

shapes and relative arrangement.

Similar to the Calphad method, all possible combina-

tions of phases should be considered and their total Gibbs

energies should be compared using Eq. (1j) to find the

equilibrium state with a minimum total Gibbs energy. The

maximum number of phases in equilibrium should be in

agreement with Eq. (2a) (without taking into account the

macroscopic equilibrium substrates, or the equilibrium

large vapor phase). Within each phase combination stud-

ied, different shapes and arrangement of phases should be

separately studied, including their arrangement to the

substrates(s) if such are present (see Figs. 5, 6). Within

each combination of phases, Eq. (1j) is used to find the

most probable shapes and arrangements of phases ensuring

the minimum of the total Gibbs energy. For systems with

more than one component, the bulk partial and integral

Gibbs energies of all phases should be expressed in terms

of xb
iðUÞ, being the result of the interplay between segre-

gation and the limited number of atoms (molecules) within

a given nano-phase. This is so even if the final result can be

written in terms of the average composition of the phases

(xiðUÞ). Using this framework, the equilibrium state can

always be found.

It is worth to discuss the difference between macro- and

nano-systems for 2-component, 2-phase systems (C = 2,

P = 2). As it was shown above, the tie line is valid in 2-phase

regions of binary phase diagrams for macro-systems

(Fig. 8). However, due to the complexity of the algorithm

shown above, the equilibrium values of xBðaÞ and xBðbÞ cannot

be found in an independent way from yb. In other words,

these three quantities (xBðaÞ, xBðbÞ and yb) will be intercon-

nected, and thus all three of them will have different values if

xB gradually changes within the same two-phase region. It

means that the meaning of the tie line within two-phase

regions of binary nano-phase diagrams is lost. It also means

that the way how phase diagrams for nano-systems are

constructed and the way how they are interpreted, should

also be different from that we are used to for phase diagrams

of macro-systems. It should be noted that the same conclu-

sion was reached earlier [64, 66, 72, 76, 82].
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In addition to phases, the appearance and thickness of

adsorbed layers (called also adsorbed films, thin films, sur-

face melted layers or complexions) also can be predicted

using the concept described here (see Sects. 7 and 10). These

complexions can radically change the properties of the sys-

tem, promising high industrial potential [59, 91, 188–232].

These complexions can exist at the surface/interface of both

macroscopic and nano-phases. Thus even in a seemingly

macro-systems, the role of nano-thin complexions some-

times can play an unexpected and important role.

Some additional remarks

One of the constant questions with the equilibrium of nano-

systems is that thermodynamics is a statistical science, so it

should have a certain size limit. Indeed, the obvious size

limit is NU = 1 atom for a vapor phase. For a condensed

phase, at least 33 = 27 atoms are needed to ensure

‘‘structure’’ of a phase.

Another aspect of this size problem is that the smaller

number of atoms the system has, the larger is the effect of

fluctuations. In other words, the result of the equilibrium

calculation can be still meaningful as an average state but

with small N, the system can fluctuate between two or

several states of similar total Gibbs energy.

Finally, it should be mentioned that for the successful

calculation of phase diagrams for nano-systems, the

existing databank for the bulk Gibbs energies of phases

should be enlarged by the corresponding databanks on

molar volumes and interfacial energies. Especially the

latest is far from being completed, despite the efforts of the

HTC (high-temperature capillarity) community (see [233]

and the present special issue).

Conclusions

The ‘‘nano-Calphad’’ concept has been introduced here,

being an extension of the Calphad method for systems

containing at least one phase (or at least one interface film,

complexion) with at least one of its dimensions being

below 100 nm. First, a ‘‘classical’’ Calphad method is

summarized for reference.

It is shown that instead of a widely used radius (diam-

eter) of a system, a number of atoms should be used as a

new, independent state variable for nano-systems. As a

consequence, the phase rule of Gibbs should be extended,

allowing more phases to co-exist in equilibrium (thus, a

quaternary point is predicted in one-component phase

diagrams). The Kelvin equation is shown to be based on an

erroneous derivation. Instead, a Gibbs equation is sug-

gested here to describe the surface term of the Gibbs

energy. As a consequence, nano-effects are due to high

specific surface area and not due to the high curvature of

the phases. Thus, the Kelvin equation (for vapor pressure),

the Gibbs–Thomson equation (for melting point), and the

Ostwald–Freundlich equation (for solubility) are corrected.

The dependence of interfacial energies on both the

curvature of the interface and its separation from other

interfaces is discussed. The latter is useful to predict the

equilibrium thickness of surface (and interface) liquid and

amorphous layers. In phases (both macro- and nano-) with

more than one-component, segregation of components to

the surfaces and interfaces is taken into account using the

Butler equation. The usual formalism is extended here to

take into account the material balance limitations due to the

interplay between segregation and a limited number of

segregating atoms in nano-phases. It is shown that surface

C, i, p, T, x i, N, substrate P, Φ, yΦ, xi(Φ), (shape + arrangement)Φ

GΦ

empirical measurements

Calphad step 1 Calphad step 2

Variables Equilibrium state

Fig. 7 The idealized schematic picture of the essence of the nano-Calphad method (the substrate should be in equilibrium with the nano-system;

there can be several substrates, one of them can be an equilibrium vapor phase)
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Fig. 8 A schematic of a tie line in a two-phase field of a binary phase

diagram. For macro-systems, the equilibrium compositions of the two

phases (xBðaÞ and xBðbÞ) are independent of the actual average

composition of the alloy xB within the interval of xBðaÞ � xB� xBðbÞ. In

nano-systems this constancy is not valid, as the equilibrium compo-

sitions xBðaÞ and xBðbÞ are functions of the average composition xB

J Mater Sci

123



phase transition (SPT) can be predicted using the same

formalism. This can explain the existence of adsorbed

films, interfacial layers, and complexions.

In contrary to Calphad, the results of nano-Calphad

depend on the shapes and relative arrangement of phases,

and also on the presence of substrates (even if the substrate

is not a part of the nano-system). It is shown that the

meaning of tie lines within the Calphad method is lost

within the framework of nano-Calphad. This (and the

extended phase rule) makes it necessary to re-think the way

how we present and interpret nano-phase diagrams in the

future.
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