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Abstract Single-crystal silicon is extensively used in the

semiconductor industry. Even though most of the steps

during processing involve somehow thermo-mechanical

treatment of silicon, we will focus on two main domains

where these properties play a major role: cleaving tech-

niques used to obtain a thin silicon layer for photovoltaic

applications and MEMS. The evolution and validation of

these new processes often rely on numerical simulations.

The accuracy of these simulations, however, requires

accurate input data for a wide temperature range. Numer-

ous studies have been performed, and most of the needed

parameters are generally available in the literature, but

unfortunately, some discrepancies are observed in terms of

measured data regarding fracture mechanics parameters.

The aim of this article is to gather all these data and discuss

the validity of these properties between room temperature

and 1273 K. Particular attention is given to silicon fracture

properties depending on crystallographic orientations, and

to the brittle–ductile temperature transition which can

strongly affect the quality of silicon layers.

Introduction

Nowadays silicon is the most employed material in semi-

conductor industry. Integrated circuits, solar cells and

micro-electromechanical systems (MEMS) industries

extensively use this material both as single-crystal silicon

(also called monocrystalline silicon), which consists of

silicon where the crystal lattice of the entire solid is con-

tinuous, with no misorientation, and polycrystalline, which

consists of a collection of grains of single-crystal silicon

separated by grains boundaries. Because of its wide use,

silicon properties have been thoroughly investigated in the

past from an electrical and mechanical point of view.

In the last decades, thermo-mechanical properties of

single-crystal silicon have gained more and more interest

due to its use in solar cell and MEMS industries. Common

processes in these industries involve very high tempera-

tures and an assessment of both stresses induced in silicon

during these processes and the residual stresses after the

processes is paramount to analyze the feasibility of these

processes without breaking the sample. MEMS are sensors

and actuators where sensing or actuating parts consist of

micrometers-scaled structures, e.g., cantilevers, bridges

and plates, usually made of silicon. The mechanical prop-

erties of these microstructures have to be tailored and the

residual stresses after the fabrication have to be assessed to

design MEMS with certain properties. A considerable

number of papers have been published on the design of

MEMS which cover a wide range of MEMS, such as

microphones, accelerometers, pressure sensors, switches,

and micro-grippers. In the solar cell industry, mechanical

properties of silicon are important to estimate the final

bowing of very thin wafers after the contact formation.

Further interest in mechanical properties of silicon and,

more precisely, in its post-elastic behavior at very different
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temperature is due to the cleaving technology to manu-

facture thin silicon foils. Various new experimental tech-

niques have been proposed to produce such thin silicon

wafers without kerf loss [1].

Applications exist where the thermo-mechanical and

fracture properties of silicon are changed in order to obtain

a weak layer, such as [2, 3]. Since the presence of such

weak layers inherently changes the thermo-mechanical

properties of bulk silicon, they will not be reviewed in this

paper.

The first work reported in literature about cleaving sil-

icon wafer by using pure thermo-mechanical properties

dates from 1975 [4]. This patent describes an idea on how

to control the propagation of a crack in crystalline mate-

rials to produce thin wafers. The first step is to introduce a

preselected stress concentration into the crystal, e.g., by

means of a notch or a scribe line. Subsequently an internal

tensile stress, acting in normal direction, may be accom-

plished by tensile, compressive, shear forces or by a

bending or torsional moment. Finally, the fracture can be

achieved, e.g., by a wedge, expanding material in the

notch, a stress wave, and impact load.

Later, at the beginning of the eighties, Wilkes [5] pro-

posed a process for cleaving boules of single crystal

material by creating an inward-directed radial stress con-

centration completely around a boule which intersects its

crystallographic plane of minimum bond strength. Then,

triggering the cleavage via a shock wave applied.

Tanielian et al. [6] proposed a method to produce foils by

sputtering deposition of a layer of metal onto a single crystal

substrate. Then, the assembly is treated to stress the metal

layer which then can peel off with a part of the single crystal

substrate still attached. Free standing foils thus produced

have typical thicknesses in the order of tens of micrometers.

A few years later, Owens [7, 8] and Takeguchi [9]

invented a tool to cleave brittle materials into thin sections

using the same principle of the aforementioned Hillberry

[4], namely the use of a wedge to induce a pure opening

mode into the crystal.

Almost two decades later, Yamaguchi [10] re-proposed

to cleave a wafer from an ingot in a two-step approach:

generation of a line defect on the surface by means of ion

beam along a direction defined by crystal axes and then

cleaving the ingot applying a shock in the same point by

means of a knife-edge. A few years later, Baer [11] chose a

two-step process, where the first is the creation of a notch

at a given depth. The crack is propagated then by applying

light at a wavelength absorbed at the same given depth of a

notch. The heat generated by absorption of such light,

which is scanned along the desired direction, is claimed to

be sufficient to propagate the crack.

Dross et al. [12–14] presented the SLIM-cut process,

which consists in inducing a tensile stress in the silicon

substrate in order to initiate [15] and to propagate a crack at

a given depth . In order to generate such a tensile stress

field, a metallic stress-inducing layer is deposited and the

system brought at high temperature. During the cooling

stage, the mismatch between the coefficient of thermal

expansion (CTE) of the metal and the silicon induces a

tensile stress field that can be high enough to initiate and

propagate a crack all along the silicon substrate [16]. The

temperature range in which lift-off occurs in the SLIM-cut

process, may include the silicon brittle–ductile transition

temperature: specific attention to this brittle–ductile tem-

perature transition must be paid if one wants to obtain

sound defect-free silicon layer after fracture [17, 18].

Alternatively, the stress-inducing layer can also be a

polymer-based material, where the process involves a

much lower thermal budget and peak temperatures, assur-

ing brittle crack propagation [19].

A company [20, 21] is marketing solar cells using the

same principle meanwhile also IBM [22–24] claims being

able to produce multiple high quality thin silicon layers

from a single substrate.

The set up and optimization of the aforementioned

manufacturing processes imply the use of numerical mod-

eling, which in turns requires accurate input data in terms of

thermo-mechanical behavior of silicon. A considerable

number of papers have been published about thermo-

mechanical properties and fracture properties of silicon, but

they are spread all over the literature and they sometimes

contradict each other. In this article, the mechanical prop-

erties of single-crystal silicon between 293 and 1273 K will

be firstly presented and discussed, ‘‘Mechanical properties

of single-crystal silicon’’ section will focus on its thermal

properties in the same temperature range, while ‘‘Thermal

properties of single-crystal silicon’’ section will discuss

about the fracture properties of single-crystal silicon.

Mechanical properties of single-crystal silicon

Silicon, like carbon and germanium, crystallizes at com-

mon pressures in a diamond cubic crystal structure with a

density of 2.329 g cm-3 at 298 K. Therefore, silicon is an

anisotropic material whose properties depend on its relative

orientation to the crystal lattice as well as an orthotropic

material, i.e., a crystal with at least two orthogonal planes

of symmetry. Silicon is a brittle material at room temper-

ature, which means that its behavior is purely elastic until

failure.

Elastic constants

In an anisotropic material, Hooke’s law involves a fourth

rank tensor (either the stiffness C or the compliance S) to
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describe the elastic relationship between the second rank

stress r and strain e tensors:

rij ¼ Cijkleij and eij ¼ Sijklrkl: ð1Þ

In silicon, the combination of cubic symmetry and the

equivalence of the shear conditions enable specifying the

fourth rank tensor with only three independent elastic

constants. These tensors are given with respect to a specific

basis, which in the case of the cubic structure of silicon is

commonly given for the h100i directions.

rii ¼ C11eii þ C12ðejj þ ekkÞ
rij ¼ C44eij

ð2Þ

The tensor can then be easily rotated in the orientation

of interest. Up to now, the best measurement of the elastic

constant is achieved using acoustic wave propagation in the

solid. Even if the values from Mason [25] are often cited in

the literature, the measurement performed a decade later by

Hall [26] reports slightly better accuracy (Table 1).

In the context of orthotropic materials, as for silicon, it

is possible to give, for the axes of interest, the elastic

properties in terms of orthotropic material constants

involving the Young’s modulus E, the Poisson’s ratio n,

and the shear modulus G.

The Young’s modulus is a parameter to characterize the

stiffness of an elastic material. It can be measured from the

slope of the linear portion of the stress–strain curve

recorded from an experiment where the specimen under-

goes to a uniaxial load.

Otherwise the Young’s modulus E can be calculated

from the general formulae for cubic crystal [27]:

1

Ehkl
¼ S11 � 2 S11 � S12 �

1

2
S44

� �
m2n2 þ p2n2 þ m2p2
� �

;

ð3Þ

where m, n, p are the ‘‘direction cosines’’, i.e., the cosine of the

angle between the [hkl] direction and the three basis axes (the

h100i directions). For a better understanding, three different

cases, at room temperature, are illustrated in the Table 2

where a classical [110] direction is assumed for the primary

flat. The first column corresponds to the case where the used

basis is equal to the h100i directions and so, for each subscript

x, y, or z, two of the ‘‘direction cosines’’ are null. Therefore,

Ex ¼ Ey ¼ Ez ¼ 1=S11 � 130 GPa: ð4Þ

For the second column, the subscript x (resp. y)

corresponds to the [110] (resp. ½�110�) directions. Therefore,

Ex ¼ Ey ¼ S11 � 2 S11 � S12 �
1

2
S44

� �
1ffiffiffi
2
p
� �2

1ffiffiffi
2
p
� �2

 !�1

¼ 2 S11 þ S12 þ
1

2
S44

� ��1

� 169 GPa

ð5Þ
Ez ¼ 1=S11 � 130 GPa ð6Þ

Same methodology can be used for the third column in the

context of a (111) wafer. Brantley et al. [28] reports

maximum and minimum values of Young’s modulus for

other directions lying in important crystal planes. Concerning

Poisson’s ratio and shear modulus, the cubic crystal

configuration allows also using the following formulae:

tab ¼
S12 þ S11 � S12 � 1

2
S44

	 

m2

am2
b þ n2

an2
b þ p2

ap2
b

� �
S11 � 2 S11 � S12 � 1

2
S44

	 

m2

an2
a þ p2

an2
a þ m2

ap2
a

� �
ð7Þ

Gij ¼ 1=Sij ð8Þ

with a and b two orthogonal directions, and mc, nc, pc, ,

the ‘‘direction cosines’’ of the angle between the c direction

and the basis axes.

Finally, the bulk modulus B can be also obtained from:

B ¼ C11 þ 2C12

3
: ð9Þ

At room temperature (298 K), these formula leads to a

bulk modulus B of 0.9781 9 1011Pa (therefore a

compressibility K of 1.0221 9 10-11Pa-1), which is in

very good agreement with B *0.995 ± 0.005 9 1011 Pa

measured in real experiments [29, 30]. The values of the

Poisson’s ratio and shear modulus for the different

configurations considered are summarized in Table 2.

Table 1 Elastic constants of silicon at 298 K (C: 109Pa, S: 10-12Pa)

C11 C12 C44 S11 S12 S44

165.64 63.94 79.51 7.69 -2.14 12.6

Table 2 Approximate values of elasticity in the reference frame of

standard silicon wafers

Wafer

(GPa)

(100) (111)

Ex 130 169 174

Ey 130 169 174

Ez 130 130 188

myz 0.278 0.362 0.166

mzx 0.278 0.362 0.166

mxy 0.278 0.064 0.241

Gyz 79.6 79.6 60.5

Gzx 79.6 79.6 60.5

Gxy 79.6 50.9 70.0
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For simplified analyses, or analytic expressions, a single

isotropic elasticity value may be used. To insure accuracy,

the choice of this value must depend on the orientation and

loading of the structure. Since the crystal structure of sil-

icon has a cubic symmetry, computations in configurations

presenting orthogonal shapes and loads will be reasonably

accurate, as long as the appropriate elasticity value for the

direction family is used. But for more complex cases with

off-axis orientations or non-rectilinear structures, the use of

the full orthotropic description will have significant bene-

fits for the accuracy of the results.

Hardness

Hardness may be defined as the resistance of a material to

permanent penetration by another material. The most

important and comprehensive work about nanoindentation

experiments to measure silicon hardness was performed by

Bhushan et al. [31, 32]. Even though hardness values are

dependent on the normal load, the indentation depth and

crystallographic orientation, a value of 12 ± 1 GPa could

be considered as average for all the cases. The only

exception is a p-type silicon, boron-doped: it is shown that

the doping using thermal diffusion with boron ions soft-

ened the silicon surface down to *7 GPa [32] .

Temperature effects on elastic constants

The silicon Young’s modulus evolves with temperature.

This thermal dependency is traditionally described for each

elastic constant C11;C12; S11; . . . with the thermal coeffi-

cient of elasticity (TCE) of the considered elastic constant.

More precisely, for each of these constants C, its thermal

variation between T0 and T can be described via a power

series of coefficients TCE(C)k:

C Tð Þ ¼ C T0ð Þ 1þ
X
k� 1

TCE Cð Þk T � T0ð Þk
" #

ð10Þ

Several different measurements of TCE are reported in

the literature [33–35] for the first-order temperature

coefficients, and so their values cannot be given defin-

itively. However, as recently reported by Hopcroft et al.

[36], the results given by Bourgeois et al. [35] seem to

come from the most carefully performed experiments as

the values proposed include the second-order temperature

coefficients (see Table 3).

Macroscopic mechanical behavior at high temperature

As stated before, beyond the elastic regime, silicon is a

brittle material for low temperatures, but exhibits visco-

plastic behavior before ductile failure above the brittle–

ductile temperature TBD. This viscoplastic behavior

strongly depends on strain rate and temperature. At high

temperature, the stress–strain curve of silicon shows two

yield regions. Indeed after elastic domain, and between the

upper yield stress and the lower yield stress, silicon exhibits

a transient softening effect due to a drastic increase of

dislocation density. Then, after the lower yield point, small

and then strong work-hardening are observed (stage I and

II). This behavior is classically modeled in the crystal

plasticity framework, accounting for the discrete nature of

plastic slip in crystal as in [37, 38], or in a more standard

isotropic formulation of plastic flow as in [39, 40]. In the

latest model, the plastic strain rate produced by a crystal

ð _�cPÞ is, in general, determined by the Orowan equation [41]:

_�cP ¼ qmb�m; ð11Þ

where qm is the mobile dislocations density which

corresponds to a part of the statistically stored dislocations

(SSDs) density [27, 42], b is the Burgers vector magnitude,

and �m is the average velocity of these dislocations. In

accordance with experimental measurement, the dislocation

velocity �m is a function of the temperature T (Arrhenius

factor) and of the effective shear stress seff (power law)

�m ¼ m0

seff

s0

� �1=m

exp
�Udis

kT

� �
sign sð Þ; ð12Þ

where m0 and s0 are reference values for the dislocation

velocity and stress, m is the stress exponent, k is the

Table 3 Temperature

coefficients of the elastic

constants

TCE First-order (910-6/K) Second-order (910-6/K)

p-type

4 X cm, B
n-type

0.05 X cm, P
p-type

4 X cm, B
n-type

0.05 X cm, P

TCES11 64.73 ± 0.29 63.60 ± 0.60 61.19 ± 1.1 60.51 ± 0.35

TCES12 51.48 ± 1.5 45.79 ± 2.8 72.26 ± 5.1 75.70 ± 6.1

TCES44 60.14 ± 0.20 57.96 ± 0.17 54.90 ± 1.7 57.31 ± 1.4

TCEC11 -73.25 ± 0.49 -74.87 ± 0.99 -49.26 ± 4.8 -45.14 ± 1.4

TCEC12 -91.59 ± 1.5 -99.46 ± 3.5 -32.70 ± 10.1 -20.59 ± 11.0

TCEC44 -60.14 ± 0.20 -57.96 ± 0.17 -51.28 ± 1.9 -53.95 ± 1.8
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Boltzmann’s constant, and Udis is the activation energy for

dislocation velocity. The effective shear stress is the

difference between the internal stress si and the applied

stress s:

seff ¼ sj j � sih i; with xh i ¼ xþ xj j
2

: ð13Þ

Then, the different constitutive models available in the

literature are traditionally derived from the work of

Alexander et al. [43], which is quite successful for initial

stages of deformation up to the lower yield point. After this

point, more appropriate models, like the ones proposed by

Delaire et al. [44] or Moon et al. [40] are needed. In the

Alexander and Haasen’s model, the mobile dislocations

density qm is supposed to be equal to the total dislocation

density q, and the internal stress si is given by the

following relation, where a is a constant, and l is the shear

modulus:

si ¼ s0 þ alb
ffiffiffi
q
p

: ð14Þ

The evolution equation for the dislocation density is

finally described by the following equation, in which K is a

material constant taken into account the creation and

annihilation of the SSDs:

_q ¼ K

b
seff

_�cP ð15Þ

Note that in the case of the Alexander and Haasen’s

model, the temperature and strain rate dependence of the

upper suyp and lower slyp yield points are straightly

described by:

suyp=lyp ¼ Cuyp=lyp _c1= 2þmð Þ exp
Udis

2þ mð ÞkT

� �
; ð16Þ

where Cuyp/lyp are constants, respectively, associated to the

upper and lower yield points. The following values for the

different models constants, in case of undoped silicon, can

be found in the literature (Table 4)

Thermal properties of single-crystal silicon

If thermal problems have to be faced, thermal conductivity

(j), diffusivity (D), specific heat (Cp), and emissivity (e) of

silicon have to be known for different temperatures. If

stresses induced by the change of temperature, i.e., thermal

stresses, are of interest, also the CTE (aT) must be

evaluated.

Thermal conductivity, diffusivity, and specific heat

Above 200 K, the thermal conductivity is largely inde-

pendent from the particular sample specification and the

various reported data obtained through different methods

show a rather good agreement [45–49]. The following

values are representative measurements from Glassbrenner

and Slack [46].

Concerning the thermal diffusivity D of single-crystal

silicon, the values in Table 5 were measured from room

temperature up to 1400 K by Abeles et al. [45]. These

measurements were found in between those of Glassbren-

ner and Slack [46] and Shanks et al. [50] which are within

the order of 5 % accurate below 1000 K, but less accurate

above. Specific heat recommended data reported by Hull

[51] are also given in Table 5.

From these previous experimental data, the conductivity

can also be given by the following [52]:

j ¼ j0 1� B
T � T0

T

� �A
" #

;

with
B ¼ 1:093 and A ¼ 0:7805 T\1000 K

B ¼ 0:93795 and A ¼ 0:42 T [ 1000 K


;

ð17Þ

Table 4 Models constant values

b m0 s0 Udis m a K

3.83e-10 m 4.3e-4 m/s 5.5 MPa 2.35 eV 0.91 0.3–2.0 2e-4 m/N

Table 5 Single-crystal silicon thermal conductivity (j), diffusivity

(D), and specific heat (Cp)

T (K) j (W cm-1 K-1) D (cm 2 s-1) Cp (J g-1 K-1)

200 2.66 0.557

300 1.56 0.86 0.713

400 1.05 0.52 0.785

500 0.80 0.37 0.832

600 0.64 0.29 0.849

700 0.52 0.24 0.866

800 0.43 0.19 0.883

900 0.356 0.16 0.899

1000 0.31 0.14 0.916

1100 0.28 0.13 0.933

1200 0.261 0.12 0.950

1300 0.248 0.12 0.967

1400 0.237 0.12 0.983

1500 0.227 1.000

1600 0.219 1.017
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where j0 is the thermal conductivity of silicon

(W cm-1 K-1) at room temperature T0.

Emissivity

There have been several studies of the thermal radiation

emitted by silicon at elevated temperatures. But since sil-

icon emissivity strongly depends on many factors, such as

the sample thickness, doping, surface conditions, etc.,

experiments must be interpreted with care before applying

one of the various measured silicon emissivity values to

any kind of model. As first approximation, an emissivity

value acceptable regarding the different experimental

results is null at room temperature, which then rises

smoothly with temperature increase to a maximum value of

0.7 at 1220 K.

Thermal expansion

The single-crystal silicon thermal expansion coefficient aT

has been measured in the range 120 to 1500 K by several

means such as an interferometric dilatometer [53, 54], X-

ray diffractometry [55], and other techniques [56]. The

reported measurements were found in good agreement

between different methods (Table 6). From these mea-

surements, a fitting expression of the linear thermal

expansion coefficient aTð10�6 K�1Þ is given by [55]:

aðTÞ ¼ 3:725 1� e�5:88�10�3ðT�124Þ
� �

þ 5:548� 10�4T

ð18Þ

with T between 120 and 1500 K. At room temperature

the recommended value is að298:2Þ ¼ 2:59� 0:05�
10�6 K�1. Note that the effect of temperature on silicon

density can also be evaluated from these values.

Fracture properties of single-crystal silicon

Brittle–ductile transition

Single-crystal silicon is a brittle material at room temper-

ature, in which cracks propagate without any appreciable

plastic deformation. Nevertheless, it exhibits a ductile

behavior above a certain temperature TBD, for a given

loading rate (or increase rate of stress intensity) and doping

level. Single-crystal silicon brittle–ductile transition

experiments were carried out especially by St. John [57],

Brede and Haasen [58], Hirsch et al. [59–61], George and

Michot [62], Hsia and Argon [63]. They pointed out that

silicon presents a particularly sharp brittle–ductile transi-

tion. This transition is indeed associated with a sudden

increase in stress to fracture, in order to intercept the yield

stress curve. This transition occurs over a very narrow

temperature range, typically less than 10 K (Fig. 1). The

microscopic studies of the fractured samples have shown

that there is hardly any dislocation activity at the crack tip

below the brittle–ductile transition temperature, few hun-

dred dislocations can be seen from the crack, moving into

the bulk, along well-defined crystallographic directions

approaching TBD and a huge amount of dislocations

nucleate above this critical temperature TBD. It is also

important to note that if silicon is pre-deformed to intro-

duce dislocations and dislocations sources, it exhibits a

softer transition [64].

Figure 2 illustrates the Arrhenius plot of the most cur-

rent data on the brittle–ductile transition temperature. It

shows that, although all the lines for intrinsic silicon have

the same slope, the intercepts vary widely from one result

to another, showing the dependence on the testing methods

(especially levels of crack tip perfection). It also points out

that p-type dopants do not affect the brittle–ductile tran-

sition temperature, while n-type dopants decrease it.

Moreover, TBD increases with a higher rate of stress

intensity. These experiments have determined TBD as a

function of, using the activation energy for the
Table 6 Single-crystal silicon

thermal expansion coefficient

values

T (K) v (W cm-1 K-1)

300 2.616

400 3.253

500 3.614

600 3.842

700 4.016

800 4.151

900 4.185

1000 4.258

1100 4.323

1200 4.384

1300 4.442

1400 4.500

1500 4.556 Fig. 1 Sharp brittle–ductile transition in silicon. The stress intensity

at fracture rises abruptly at TBD
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brittle–ductile transition UBD (this activation energy was

found to be nearly equal to Udis in Eq. (12):

_K ¼ A exp
�UBD

kTBD

� �
; ð19Þ

where A is a model constant, and k is the Boltzmann

constant. UBD was measured to be 2.1 eV for intrinsic, and

1.6 eV for n-type silicon by Samuels and Roberts [59]. The

most quantitative model proposed for the brittle–ductile

transition in silicon is the one proposed by Hirsch and

Roberts [61, 65]. In this model, the shielding of the crack

front by dislocations emitted from there competes with the

rise of the stress intensity factor KI to the critical value KIc.

The main feature of the model is that the material becomes

ductile only when the emitted dislocations shield every

point of the crack front. In this sense, the mobility of the

dislocations plays the major role in this model.

Fracture toughness

As for the mechanical properties, the single-crystal silicon

fracture toughness KIc depends on the crystallographic

orientation. Vickers micro-hardness indentation associated,

or not, with four point bending, and double-cantilever

beam are the most commonly used methods to evaluate this

toughness anisotropy. Since the different reported silicon

fracture studies have emphasized the fracture anisotropy on

the low index planes, we will focus here on the fracture

toughness of these planes, i.e., {100}, {110}, and {111}

planes, although many higher order index planes surface

energy values sit between the ones of the low index planes

[66]. These results suggest that silicon may also cleave on

crystallographic planes other than the low index ones [67,

68]. Table 7 summarizes the fractures toughness and

fracture energy values at room temperature reported in the

literature. As seen in the previous section, these fracture

Table 7 Reported silicon

fracture toughness and fracture

energy values

MD Molecular dynamics, DFT
density functional theory

Fracture planes Fracture toughness

KIc (MPa m1/2)

Fracture energy

cs (J m2)

{111} {110} {100} {111} {110} {100}

[69] 0.62

[70] 0.62 0.71 0.75

[57] 0.93

[71] 0.82 0.90 0.95

[72] 0.65 0.80

[73] 1.00

[74] 0.78

[75] 1.05–1.19

[76] 1.14–1.19 1.07–1.18 0.82–1.15

[77] 0.95

[68] 1.22 0.81–1.01 0.86–1.25

[78] 0.66

[79] 0.68–0.73

[80] 1.15

[81] 1.12 1.29

[82] 0.63–0.74 1.11

[83] (DFT) 1.73 1.73

[84] (MD) 1.19 1.50 2.26

[85] (DFT) 1.56

[86] (MD) 0.656 1.45

[86] (DFT) 0.646

Fig. 2 Brittle–ductile transition temperature in silicon. Data from:

ABC [58], D [57], EF [62], GH [59]. Doping levels: ABCH n-type,

and DEFGH intrinsic
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toughness values are valid for temperatures below the

brittle–ductile transition one. In case of simulated values,

the method is written in parentheses: molecular dynamics

(MD) or density functional theory (DFT).

The referenced articles might report values either in

terms of fracture surface energy c(hkl) or fracture toughness

KIc(hkl). The following approximate equation, in which

E[hkl] is the Young’s modulus in the perpendicular direction

to the crack surface, was used to convert them when

necessary:

KIcðhklÞ ¼ 2cðhklÞE hkl½ �

� �1=2

: ð20Þ

As first remark, the countervailing maxima and minima

in the modulus and fracture resistance variations lead to a

very small variation in toughness with fracture planes.

Silicon is reported to have two principal cleavage planes:

{111} planes, usually the easiest cleavage plane and {110}

planes. In other words, the cleavage energy of {111} is

lower than {100} one and thus, crack will unlikely

propagate on the {100} plane.

Different crack propagation directions have been studied

for both fracture planes. The h110i propagation directions

were seen to be the preferred propagation directions on

both cleavage planes. Nevertheless, on the {111} fracture

surface, the anisotropy with respect to propagation

direction manifests itself only in faint markings along

h110i directions. Complementary, cleavage fracture on the

{110} plane is very anisotropic. Propagation along the

h110i directions is easy and results in nearly perfectly flat

fracture surfaces, while along the h110i directions, per-

pendicular to the preferred direction, the crack deflects

onto {111} planes inclined by 35.26� with respect to the

original fracture plane [68, 75, 87]. In contrast to the results

of the {110} fracture planes, the cracks introduced along

the {100} planes were observed to deviate from these

planes. These results can be understood by the fact that the

fracture toughness of the {100} planes is almost the same

as those of the higher order planes near {100}. Cracks

following the {100} planes even deflect onto {110} planes,

inclined by 45� with respect to the {100} planes, since

these second planes exhibit the minimum fracture tough-

ness value among the possible deflecting planes [81, 84].

Aside, there is an experiment of Deegan et al. [88] who

observed that cracks which deviate from the h110i plane

can travel in arbitrary directions, moreover these directions

can fluctuate wildly creating a fractal fracture surface. This

influence of the crack propagation direction in a given

fracture plane, and the fact that cracks often deflect from

the original fracture plane, are therefore responsible for the

large scatter in the measured toughness value for each

fracture plane, as clearly pointed out in Table 7. Many

other parameters contribute to this scatter, including the

testing method, specimen surface preparation, and the

crack length measurement in case of indentation fracture

method.

Even though some ambiguities exist in the literature

regarding the exact value of the fracture toughness of

single-crystal silicon, it appears that the earliest measure-

ments of silicon fracture toughness [69, 70], using the well-

defined double-cantilever beam geometry, are the least

ambiguous from a testing geometry perspective, and in best

agreement [89] with both MD calculations, based on

known bond-rupture energies, and experimental scaling of

fracture resistance with band-gap in elemental and com-

pound semiconductors. Over the past 40 years, subsequent

measurements using smaller cracks from indentation frac-

tographic methods seem to always overestimate fracture

toughness while providing critical information on the

orientation dependence of fracture toughness. In Table 8 is

summarized the range of values reported for fracture

toughness and fracture energy and some recommended

values based on aforementioned considerations. Both val-

ues for fracture toughness and fracture energy are reported

for reader’s convenience, using Eq. (20) to convert them.

Crack speed

The development of high-speed data acquisition has extended

studies to dynamic crack propagation at crack driving forces

greater than the equilibrium fracture resistance. Different

experiments [78, 90–93] show that cracks propagate with

velocities of about 1–5 km s-1. There is therefore an apparent

speed gap between 0 and *1–2 km s-1 for crack driving

forces just exceeding the fracture resistance [94, 95].

A possible explanation of this phenomenon is described

by many scholars [96–98] and recently by Bernstein and

Table 8 Summary of reported and recommended silicon fracture

toughness and fracture energy values

Fracture planes {111} {110} {100}

Reported experimental range

Fracture toughness

KIc (MPa m1/2)

0.62–1.22 0.68–1.19 0.75–1.29

Reported simulated range

Fracture energy

cs (J m2)

1.19–1.45 1.50–1.73 1.56–2.26

Recommended value

Fracture toughness

KIc (MPa m1/2)

0.62 0.71 0.75

Recommended value

Fracture energy

cs (J m2)

1.022 1.483 2.163

986 J Mater Sci (2013) 48:979–988

123



Hess [99] where they indicate the presence of lattice

trapping barriers as major player for the propagation of a

brittle fracture, i.e., the fracture crack might lead to a

configuration where the stress could be below or above the

Griffith stress but the crack is stable [96].

Deegan et al. [88] report that, depending on the speed of

the crack propagation, transitions from straight to wavy to

multiply branched cracks are possible and could be dis-

continuous, bistable, and hysteretic. At large crack driving

forces, the velocities approach an apparent upper limit

approximately equal to 75 % of the Rayleigh wave speed

cR *4.6 km s-1 depending on the direction of crack

propagation [100, 101].

Conclusion

Single-crystal silicon has been extensively used in the

electronic industry, and therefore numerous studies have

also been performed and most of the needed parameters for

the computation are available in the literature. These data

have been gathered and compared here for a large tem-

perature range.

Due to its crystalline structure, silicon is a strongly

anisotropic material whose properties depend on orienta-

tion relative to the crystal lattice, especially regarding its

fracture behavior. Several toughness values have been

found in the literature. However the variation of fracture

toughness between each orientation planes remains small.

More importantly, silicon is a brittle material at room

temperature, which means that its behavior is purely elastic

until it fails. But it also exhibits a sharp brittle–ductile

transition at a precise temperature.
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