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Abstract The cluster expansion method (for configura-

tional enthalpy of mixing) and cluster variation method (for

configurational entropy of mixing) (CE–CVM) together

offer a systematic hierarchy of approximations for repre-

sentation of phase diagram, thermochemical, thermo-

physical and structural data as opposed to the traditional

CALPHAD methods which neglect the effects of local order

and vibrational and electronic mixing contributions to the

Gibbs function. The CE–CVM has not been very widely used

for computation of phase equilibria since it is algebraically

complex. A procedure has been developed for simultaneous

nonlinear optimization of all the relevant data under the

framework of CE–CVM. Vibrational and electronic mixing

contributions have also been included using the CE method.

The procedure has been successfully utilized for computing

the solid-state regions of the phase diagrams of Sc–Zr and

Sc–Ti. Debye temperatures and short-range order (sro)

parameters have been calculated for these systems.

Introduction

The cluster variation method (CVM) proposed by Kikuchi

[1] as a theory of cooperative phenomena, provides a

systematic hierarchy of approximations for obtaining con-

figurational entropy of alloy systems by considering local

order as accurately as desired in terms of increasingly

larger atomic clusters. The potential of CVM came to be

well recognized ever since van Baal [2] demonstrated the

effect of tetrahedral multiatom interactions (in terms of a

set of adjustable parameters in the configurational energy

expression) on the topology of phase diagrams of a pro-

totypical binary fcc ordering system. The phase diagram of

the fcc-based Au–Cu system with an acceptable topology

was, for the first time, obtained by Kikuchi and de Fontaine

[3]. The CVM is also shown to subsume many of the earlier

models in its class as lower levels of the general hierarchy

of the method [4]. The tetrahedron–octahedron (T–O)

approximation of CVM for close packed structures, which

includes second neighbor interactions, successfully

accounts for the stability of observed ground states as well

as favorably compares with the Monte-Carlo calculations

at finite temperatures [5]. On the other hand, an irregular

tetrahedron (IT) includes these interactions in bcc struc-

tures and provides a good CVM approximation [6, 7].

Sanchez et al. [8] subsequently proved that any function

depending on atomic configuration (such as configurational

energy) could be rigorously expressed as a bilinear sum of

the products of correlation functions and their respective

cluster expansion coefficients (CECs), since the former

form a set of complete and orthonormal basis functions at

the chosen level of cluster approximation. This powerful

property is utilized in the method of cluster expansions

(CE), which, when combined with CVM makes it very

versatile and eminently suitable for optimization purposes
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[9] as well as in the use of first principles electron energy

calculations for the determination of phase equilibria [10].

The CALPHAD techniques [11, 12] traditionally neglect

the effects of short-range order (sro) and vibrational

and electronic mixing contributions to the Gibbs function

both of which are invariably present in alloy systems. The

attempts to combine these with CVM are not entirely

satisfactory, because all the effects of the so-called

Unidentified Factors Overlooked [13] are treated in an

empirical manner in terms of a Redlich–Kister polynomial.

In the standard CALPHAD techniques, the model param-

eters are determined by optimization of experimental data

using least-squares techniques as discussed by many

authors [11, 12, 14, 15]. However, CVM has not been

extensively used for computing optimized phase equilibria.

The developments in and the applications of CVM are well

documented by de Fontaine [10, 16], Finel [17], Saunders

and Miodownik [11] and more recently by Inden [7].

In this investigation, CE–CVM has been used for

obtaining optimized phase diagrams of binary alloy systems

exhibiting disordered cph (a) and bcc (b) phases, respec-

tively, using the T–O and IT approximations. The configu-

rational contribution to Gibbs functions of these phases is

reviewed in section ‘‘Configurational thermodynamics of a
and b phases’’. The vibrational and electronic mixing con-

tributions to Gibbs functions have been considered in the

framework of CE–CVM in section ‘‘Vibrational and elec-

tronic contributions’’ by generalizing the expressions for

pure components. A complete procedure for simultaneously

optimizing the phase equilibria, thermochemical, thermo-

physical and structural data has been developed and

presented in section ‘‘Determination of internal and phase

equilibria’’ and ‘‘Simultaneous optimization’’. This proce-

dure is illustrated in sections ‘‘The scandium–zirconium

system’’ and ‘‘The scandium–titanium system’’ with refer-

ence to the solid-state regions of Sc–Zr and Sc–Ti phase

diagrams, which exhibit only the above mentioned phases in

the solid state. These diagrams respectively exhibit a con-

gruent maximum and monotectoid ? eutectoid reactions.

The results are discussed in section ‘‘Discussion’’ and con-

clusions presented in section ‘‘Conclusions’’.

Configurational thermodynamics of a and b phases

In CE–CVM, one begins by choosing a basic or maximal

cluster of sites in the structure which contains all sites up to

a particular neighbor distance. The cluster sites are popu-

lated with the atomic species A and B to obtain atomic

cluster configurations. An independent set of configuration

variables for specifying the cluster configurations can be

obtained through the use of occupation and site operators.

The occupation operators are defined as under [7].

PA
i ðPB

i Þ ¼ 1 if A Bð Þ atom occupies site i and

¼ 0 otherwise
ð1Þ

For an orthogonal basis, the site operator is defined as

follows:

ri ¼ PA
i � PB

i ð2Þ

Using these definitions, we obtain

PA
i ¼

1

2
ð1 þ riÞ and PB

i ¼
1

2
ð1 � riÞ ð3Þ

A correlation function is defined as an average of the

corresponding cluster function over all the sites in the

structure. The cluster function in turn is equal to the product

of appropriate site operators. Thus /a
1 ¼ hrii and /a

2 ¼
hrirji correspond to the correlation functions for the phase a
for the clusters formed, respectively, by a single site (point)

and first neighbor pair sites if the sites i and j are first neighbor

pairs. The set of correlation functions for all the subclusters

and the basic cluster form an independent set of

configuration variables. Similarly, a cluster variable is an

average of the products of appropriate occupation operators.

Thus, for example, qa
1 ¼ hPA

i i ¼ xa
A and qa

2 ¼ hPB
i i ¼

xa
B correspond to the fractions of A and B atoms while qa

3 ¼
hPA

i PA
j i, qa

4 ¼ hPA
i PB

j i ¼ hPB
i PA

j i and qa
5 ¼ hPB

i PB
j i

correspond to the fractions of first neighbor AA, AB, BA

and BB pair configurations, respectively, on the cluster of

first neighbor pair sites i and j for the phase a. Clearly, these

cluster variables are functions of the correlation functions

and can be expressed as their linear functions by substituting

from Eqs. 3. Thus qa
1 ¼ qa

1ð/
a
1Þ, qa

2 ¼ qa
2ð/

a
1Þ, qa

3 ¼
qa

3ð/a
1 ;/

a
2Þ, qa

4 ¼ qa
4ð/a

1 ;/
a
2Þ and qa

5 ¼ qa
5ð/a

1 ;/
a
2Þ.

Analytical expressions for configurational mixing con-

tributions to enthalpy, entropy and other thermodynamic

functions of a phase are obtained earlier by McCormack

et al. [18], using T–O approximation of CE–CVM. There are

a total of 14 symmetry-wise distinct subclusters including

the basic cluster (T–O), each of which corresponds to one

cluster function and thus one correlation function /j
a where j

is a serial number. The point correlation function is related to

composition (xB
a) and thus, only 13 correlation functions

remain independent for an alloy of fixed composition. These

constitute the independent set of configurational variables

for the phase a. Because the configurational energy of

mixing Hc
a is a function of configuration, it can be expanded

using CE [7, 8] as in the following.

Ha
c ¼

X14

j¼2

Ca
j ma

j ð/
a
j Þ

mix ð4Þ

where Cj
a are configurational cluster expansion coefficients

(CCECs), mj
a are number of clusters of type j per atomic

site in the structure and (/j
a)mix = /j

a - (1 - xB
a)/j

a,A -

xB
a/j

a,B. Here, /j
a,A and /j

a,B represent the correlation
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functions for pure components A and B, respectively. The

notations for clusters/subclusters for the cph structure and

the corresponding CCECs are given in Table 1 [18].

The configurational entropy of mixing Sc
a can be

expressed using CVM in terms of the cluster variables

qa
k ð/a

j Þ and the (Kikuchi–Barker) overlap correction coef-

ficients cj
a in the usual fashion as given below [7, 18].

Sa
c ¼ �R

X14

j¼1

ca
j
ma

j

X43

k¼1

qa
kð/

a
j Þ ln qa

kð/
a
j Þ ð5Þ

The second sum runs over the number of all the distinct

cluster variables for which the corresponding clusters have

non-vanishing values of cj
a [18].

The procedures outlined above are adopted for the b
phase as well, under the IT approximation [6, 7, 19, 20].

A total of five symmetrywise distinct subclusters includ-

ing the basic cluster (IT) are identified, each of which

gives rise to one correlation function /j
b where j is a

serial number. Again, the point correlation function is

related to composition (xB
b) and thus, only four correlation

functions remain independent for an alloy of fixed com-

position. These constitute the independent set of

configurational variables for the b phase. The notations

for clusters/subclusters for the bcc structure and the cor-

responding CCECs are also given in Table 1. Further,

there are 20 cluster variables qb
k ð/

b
j Þ where k is a serial

number. The configurational energy and entropies of

mixing for b phase are expressed by equations similar to

Eqs. 4 and 5.

Vibrational and electronic contributions

Pure components

Dinsdale [21] has published an evaluation of thermody-

namic quantities for unary systems in terms of the

following expansion

Gve ¼ a þ bT þ cT ln Tð Þ þ RdnTn ð6Þ

in which, a, b, c and d are constants and n represents a set of

integers, typically taking the values of -1 and 2. On the other

hand, the harmonic part of the vibrational contributions to

thermodynamic functions can be represented by the

following high temperature expansion [22]

Gv ¼ RT �1 þ 3 ln
hDð0Þ

T

� �
þ 3

40

hDð2Þ
T

� �2
" #

ð7Þ

where, hD(n) corresponds to cut-off frequencies xD(n) in a

Debye model which reproduces correctly the nth moment

of the vibrational frequency x for a given phonon density

of states. A comparison of terms in Eqs. 6 and 7 indicates

Table 1 Cluster expansion coefficients (in J mol-1) for Sc–Zr and Sc–Ti systems

Cluster Symbols Sc–Zr Sc–Ti

Configurational

CEC

Vibrational

CEC

Configurational

CEC

Vibrational

CEC

a phase

In-plane pair C2
a, B2

a -1297 -0.03396 -5777 –

Out-of-plane pair C3
a, B3

a -1297 -0.03396 -5777 –

NNN pair C4
a, B4

a – – – –

Octahedral basal triangle C5
a, B5

a – – 1015 –

Tetrahedral basal triangle C6
a, B6

a – – 1015 –

Triangle inside octahedron C7
a, B7

a – – – –

Out-of-plane triangle C8
a, B8

a – – 1015 –

Tetrahedron C9
a, B9

a – – 6863 –

Rectangle inside octahedron C10
a , B10

a – – – –

Irregular tetrahedron inside octahedron (4-pt2) C11
a , B11

a – – – –

Irregular tetrahedron inside octahedron (4-pt3) C12
a , B12

a – – – –

Rectangular pyramid C13
a , B13

a – – – –

Octahedron C14
a , B14

a – – – –

b phase

I-neighbor pair C2
b, B2

b -2724 -0.009078 -4170 –

II-neighbor pair C3
b, B3

b -1816 -0.006052 -2780 –

Triangle C4
b, B4

b – – 642 –

Irregular tetrahedron C5
b, B5

b – – -540 –
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that b, c and d-1 are equal to -R(1-3 ln hD(0)), -3R and

-3RhD
2 (2) respectively. The term corresponding to d2 in

Eq. 6 is expected to represent the contributions due to

anharmonic effects and electronic excitations.

The representation given by Dinsdale [21] for the unary

system database considers only a linear dependence on T

(i.e., A ? B T) for the differences in cp of different

polymorphs of a metal, which is unrealistic and leads to

problems. Further, a termwise comparison of the fitting

equations of Dinsdale [21] with those in Eq. 7 in the

above gives rise to unrealistic and thus unacceptable

values of hD(n), such as negative temperatures in certain

cases. In view of this, values for hD
a (0) (=hD

a (2)) and hD
b (0)

(=hD
b (2)) have been taken from the assessment of Chen

and Sundman [23] for the elements Hf, Ti and Zr. Then,

the values of d2
a and d2

b are estimated such that experi-

mental values of Sa and Sb are reproduced at the

respective transformation temperatures in the case of Ti

and Zr. For the case of Sc, the value of hD
b (0) (=hD

b (2))

was obtained from hD
a (0) (=hD

a (2)) given by Chen and

Sundman [23] by using the same (average) ratio hD
a (0):

hD
b (0), as that for Hf, Ti and Zr, while the remaining

procedure for the estimation of d2
a and d2

b was retained as

such.

Alloys

Only the configuration-dependent terms in Eq. 6 survive

while considering the mixing contributions for alloys.

These are obtained from

Gmix
ve ¼ bmixT þ

X
dmix

n Tn ð8Þ

Because the mixing quantities in these equations are

dependent on atomic configuration, we shall use the

method of CE to represent them. Accordingly, the mixing

contributions to b and dn for each phase are represented

using equations similar to Eq. 4 having the following form

bmix ¼
XM

j¼2

Bjmjð/jÞmix ð9Þ

where M is equal to 14 and 5, respectively, for the phases a
and b. The parameters Bj and D-1,j represent the small,

albeit crucial, mixing contributions arising from the

vibrational effects. If it is assumed that the nature of the

configurational dependence of (hD(n))mix for different

values of n (0 and 2) is formally the same, then, these

contributions can be represented sufficiently accurately in

terms of a single set of CECs along with appropriate

scaling factors, which can be found in the following

manner. The mixing contribution to ln hD(0) (written as

ln hD in the following paragraph for notational

convenience) can be written as

ðln hDÞmix ¼ ln hD � ð1 � xBÞ ln hA
D � xB ln hB

D

¼ ln hD � ln hD

Let ln hD be denoted by f and accordingly, f ¼ �fþ fmix:

Then,hD ¼ exp(�f þ fmixÞ and

h2
D ¼ exp 1 þ fmix

�f

� �� �2�f

¼ exp(2 �fÞ � exp
fmix

�f

� �� �2�f

Note that the ratio ðfmix=�fÞ is expected to be a small

fraction. Hence, by expanding its exponential function in

powers of this ratio and neglecting higher order terms and

also taking a binomial expansion up to the first term, hD
2

can be approximated as,

h2
D ¼ expð2�fÞð1 þ 2fmixÞ ¼ expð2�fÞ þ 2expð2�fÞfmix

Thus, mixing contributions to hD
2 can be written as

ðh2
DÞ

mix ¼ expð2�fÞ � ð1 � xBÞðhA
DÞ

2 � xBðhB
DÞ

2

þ 2 expð2�fÞfmix

This can be re-expressed as

ðh2
DÞ

mix ¼ ðhA
DÞ

2 ð1�xBÞðhB
DÞ

2 xB � ð1� xBÞðhA
DÞ

2

� xBðhB
DÞ

2 þ 2ðhA
DÞ

2 ð1�xBÞðhB
DÞ

2 xBðln hDÞmix

The terms ðhA
DÞ

2 ð1�xBÞðhB
DÞ

2 xB � ð1� xBÞðhA
DÞ

2 � xBðhB
DÞ

2

are clearly configuration independent. These terms along

with their respective coefficients in the Gv expression in

Eq. 7 are very small compared to the leading term in the

same. Neglecting these, the configuration-dependent mixing

contributions are thus given by

ðh2
DÞ

mix ¼ 2ðhA
DÞ

2 ð1�xBÞðhB
DÞ

2 xB (ln hDÞmix ð10Þ

This equation is valid for (hD
2 (0))mix, but we assume that

it is also applicable to (hD
2 (2))mix. As mentioned earlier, this

assumption avoids the requirement of an additional set of

parameters to express d-1
mix in the form of a CE as used for

bmix in Eq. 9. This procedure also retains the bilinear nature

of the expansion in all the terms. It is, however, worth

mentioning that if hD is expanded as a bilinear sum [24], the

configuration-independent mixing terms are as large as 25%

of the total mixing terms while they are minimal when ln hD

is expanded as given above. Accordingly, the latter has been

used in this investigation and configuration-independent

mixing contributions to (hD
2 (2))mix terms have been

neglected. Mixing contributions to d2 can be included in

the same manner as that for b in Eq. 9. These are, however,

still smaller and have been neglected in this investigation. It

may be noted that setting Bj = 0 (in Eq. 9) and Dn,j = 0

implies neglect of the vibrational and electronic mixing

contributions. This, in fact, corresponds to the familiar

Kopp–Neumann rule [22] according to which the alloy

specific heat is equal to the weighted average of those of the

J Mater Sci (2009) 44:2334–2342 2337
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components. This choice thus accounts for the so-called

linear contributions which does not involve any additional

parameters and forms the reference state of the present

formulation. The above procedures have been utilized to

obtain vibrational and electronic mixing contributions for

both the phases, for which, the equations are formally

similar. Thus, the total mixing contributions to the

thermodynamic functions can be evaluated.

Determination of internal and phase equilibria

The mixing contributions to the Gibbs function, say, Ga

of a phase are obtained by adding the configurational,

vibrational and electronic contributions from Eqs. 4, 5, 8, 9

and 10.

Ga ¼
X

j

Ca
j þ RT 3þ 6

40T2
ha;A

D

� �2ð1�xa
BÞ

ha;B
D

� �2xa
B

	 
�

� Ba
j �

T2

2
Da

2;j

�
ma

j ð/
a
j Þ

mix � TSa
c

ð11Þ

The Gibbs function is a hierarchical function of CECs (Cj
a,

Bj
a and D2,j

a ) of this phase, the macroscopic thermodynamic

variables (xB
a and T) as well as the microscopic variables /j

a.

The CECs constitute the set of model parameters, which

characterize the system under consideration. Therefore, the

CECs have to be determined through a simultaneous

optimization of all types of available data for the system.

The details of this procedure are presented in section

‘‘Simultaneous optimization’’.

For a specific set of CECs, when the state of the system

corresponds to two-phase equilibrium between, say, a and b
phases, the macroscopic variables of these phases (namely,

any pair among the triplet of variables xB
a , xB

b and T for a

chosen value of the third one) are determined such that

equality of chemical potentials of each of the two compo-

nents in the two phases is ensured (lA
a = lA

b and lB
a = lB

b).

The chemical potentials can be found from the Gibbs

function given in Eq. 11 by using standard thermodynamic

expressions. The thermodynamic functions must be evalu-

ated using the equilibrium values of microscopic variables

/j
a which should be determined by minimizing the Gibbs

function Ga with respect to /j
a for chosen values of xB

a and T

as well as the CECs. Minimization of the Gibbs function Ga

requires that the following conditions be satisfied:

oGa

o/a
j

 !

xa
B;T

¼ 0 for j ¼ 2 to M ð12Þ

It is, however, worth recognizing that /j
a vary with

macroscopic variables, which, in turn, vary with the

parameters. These arguments are useful for finding

analytical derivatives of the thermodynamic functions as

illustrated below.

A variation in xB
a alters Ga directly because of the

change in xB
a itself and indirectly through a change in the

microscopic variables (/j
a) of the system since their values

are altered due to a change in the conditions of internal

equilibrium at the changed composition. Accordingly, for

fixed values of CECs at a constant temperature T, the

differential dGa/dxB
a can be written as

dGa

dxa
B

¼ oGa

oxa
B

� �

/a
j ;T

þ
X

j

oGa

o/a
j

 !

xa
B;T

d/a
j

dxa
B

� �
¼ oGa

oxa
B

� �

/a
j

ð13Þ

since, for internal equilibrium of the corresponding phase,

the terms corresponding to partial derivatives of Ga with

respect to /j
a should vanish owing to Eq. 12. Similar

simplifying arguments have been used for obtaining vari-

ous differentials required for computing phase equilibria as

well as for performing simultaneous optimization of data to

determine the CECs of the system.

Internal equilibrium of a given phase as well as coex-

istence of two- or three-phases can be obtained using the

Newton–Raphson (NR) method. The corrections to the

variables during the iteration are selected such that all the

constraints on the variables (if there are any) are satisfied.

Initial values of the correlation functions are required for

the implementation of the NR method for internal equi-

librium. The point or random approximation is used for this

purpose. For computation of phase equilibria, the experi-

mental values of the composition or temperature can be

used as initial values.

From Eq. 11 for the Gibbs function and corresponding

equations for the enthalpy and entropy, it follows that these

thermodynamic variables depend on the entire set of con-

figurational, vibrational and electronic CECs (Cj
a, Bj

a and

D2,j
a ). As the chemical potentials are in turn found from the

Gibbs function, the phase diagram data also depend on the

entire set of configurational, vibrational and electronic

CECs. Conversely, the determination of the entire param-

eter set of CECs depends on all thermodynamic and phase

diagram data. On the other hand, it follows from Eq. 9 that

the Debye temperatures depend only on the vibrational

CECs (Bj
a). Conversely, the determination of only the

vibrational CECs depends on thermophysical property data

typified by Debye temperatures.

Simultaneous optimization

The v2-merit function required for simultaneous optimi-

zation of various types of data is defined as the sum (over

2338 J Mater Sci (2009) 44:2334–2342
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all data points i = 1 to N) of squares of the ratios of the

errors �i and the respective standard deviations ri. Thus,

v2 ¼
XN

i¼1

�i

ri

� �2

ð14Þ

The CECs which are the model parameters have to be

chosen to minimize the merit function. In general, �i

corresponds to the differences between the observed

quantities and those calculated using the model under the

conditions of experimentation. Data corresponding to three

different types of variables have been considered for

simultaneous optimization in the present investigation. In

the case of phase equilibria data, when a transformation

temperature is measured for an alloy of fixed composition

(as in the case of dynamic Differential Thermal Analysis

(DTA) type of measurements), the error definition will be

�i ¼ Tobs � Tcalc ð15Þ

On the other hand, when the composition of a particular

phase, which is in equilibrium with a second phase is

determined at a fixed temperature (as in the case of static

optical microscopy type of measurements), the error

definition will become

�i ¼ xB;obs � xB;calc ð16Þ

Note that the measured composition corresponding to

each of the two-phase boundaries at a given temperature is

treated as an independent observation for optimization. The

calculated values of the composition or temperature can be

found from the equality of chemical potentials as mentioned

in section ‘‘Determination of internal and phase equilibria’’.

The error definitions for thermodynamic measurements are

typified by

�i ¼ Ha
obs � Ha

calc ð17Þ

where Ha is the enthalpy of mixing at known values of xB
a

and T for the a phase. The calculated value of the enthalpy

can be found from an equation corresponding to Eq. 11 for

the Gibbs function. A similar error definition is used for

(ln hD
a (0))mix, where hD

a (0) is the Debye temperature at

known values of xB
a and T for the a phase. The calculated

values of hD
a (0) can be found from the model parameters

using equations such as Eq. 9 and the equivalences given in

section ‘‘Vibrational and electronic contributions’’. Ther-

modynamic measurements were not available for the

systems considered in this study.

An appropriate choice of the error equation between

(15) and (16) for phase diagram data is vital for obtaining

good fits to the data. This choice depends on the slope of

the measured phase boundary [25]. Data corresponding to

nearly vertical phase boundaries in the T–x diagram should

be treated as static type and the error definition in (16)

should be used, irrespective of the actual method of

measurement. Similarly, data corresponding to nearly

horizontal phase boundaries should be treated as dynamic

type and the error definition in (15) should be used for

optimization.

The standard deviation is taken to be 10 K on temper-

ature measurements and 0.01 on composition

measurements since the actual standard deviations calcu-

lated from multiple runs of experiments are not available in

literature. Smaller values of standard deviation are used for

accurate and reliable data such as invariant temperatures

(0.1 K) so as to reflect the higher accuracy and also to

ensure correct reproduction of the same. Standard devia-

tions for thermochemical property data such as enthalpy

are usually available along with the data and are of the

order of 200 J mol-1. The standard deviations for ther-

mophysical property data such as those related to Debye

temperatures, namely (ln hD(0))mix are taken to correspond

to the errors reported on the experimental measurements.

The v2-merit function is minimized with respect to a

chosen set of CECs to determine their values using the

Levenberg–Marquardt algorithm [26]. This elegant algo-

rithm makes it possible to continuously switch from the

steepest descent method (which ensures decrement in v2)

when the system is far from the minimum in v2, to the NR

method to exploit the super linear (quadratic) convergence

as the system comes closer to the minimum. This is

achieved by making the Hessian matrix (consisting of

second-order differentials of v2 with respect to CECs)

diagonally dominant initially for obtaining the steepest

descent-like step. As the diagonal dominance for this

matrix is reduced, one obtains the NR-like step.

Among those sets of CECs which correspond to a

minimum in v2, it is important to be able to identify the

statistically significant set of parameters for a simultaneous

optimization of data so as to adequately represent the

system. This set is known as the maximal set and can be

identified by utilizing the F-test [27, 28]. The sequence of

inclusion of these parameters in optimization is determined

based on the following considerations. The configurational

effects are generally dominant compared to the other

effects. The minimal set consists of the first neighbor pair

interactions (with the CECs corresponding to the in-plane

and out-of-plane first neighbors being equal, C2
a = C3

a, that

is the interactions are assumed to be isotropic) for the a
phase. However, for the b phase, the second neighbor pair

CEC is chosen to be equal to two-thirds of the first

neighbor pair CEC (C3
b = 2/3C2

b). This choice is partially

justified by the fact that the second neighbor distance in the

bcc case is only 15% greater than the first neighbor dis-

tance. Further, this choice makes the average multiplicity

of the pairs in the b phase equal to that for first neighbor

pairs in the a phase. Thus, the minimal set for each phase

usually consists of one independent parameter. For systems
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displaying a high degree of asymmetry, it may be neces-

sary to include triangle CECs in the minimal set for

optimization to account for the same and obtain the correct

topology of the phase diagram. Again assuming isotropic

interactions for the a phase, we get one additional param-

eter corresponding to triangle interactions (C5
a = C6

a =

C8
a). Similarly, we have one additional parameter corre-

sponding to triangle interactions (C4
b) for the b phase. The

F-test is utilized for including the CECs corresponding to

any other interactions. At any stage, the CEC leading to the

maximum reduction in v2 (corresponding to the largest

F-value) among the competing parameters is included in

preference to others. This procedure is repeated for suc-

cessive inclusion of other parameters. The maximal set of

optimized parameters thus obtained is used for calculating

the values corresponding to each of the experimental

observations. The optimized phase diagram is obtained by

calculating the sets of macroscopic variables corresponding

to phase equilibria at various temperatures.

The scandium–zirconium system

Beaudry and Daane [29] have determined the Sc–Zr phase

diagram, based essentially on which, Palenzona and Cira-

fici [30] have contributed the latest evaluation, which may

be consulted for details and other references. Low-tem-

perature specific heat data were utilized by Betterton and

Scarbrough [31] to evaluate hD(-3). These data have also

been utilized in this optimization.

As indicated in section ‘‘Simultaneous optimization’’,

the choice of error equation between (15) and (16) should

be made based on the slope of the phase boundary,

irrespective of the actual method of experimental deter-

mination. The entire data of Beaudry and Daane were

determined by DTA measurements. If the data are treated

as such and the corresponding error equation given in (15)

is used, the resulting phase boundaries do not fit properly to

the data, irrespective of the number of parameters used for

optimization.

The hD(-3) data have been converted to the high-tem-

perature entropy Debye temperatures hD(0) using the

scaling factor of 0.86 as given by Chen and Sundman [23]

for cph metals. These have then been utilized to find the

observed (ln hD(0))mix values. These data have also been

used for simultaneous optimization with a standard devia-

tion of 0.025, which approximately corresponds to the error

limits as reported by Betterton and Scarbrough [31].

The complete dataset consists of 31 points including

Debye temperatures. The minimal set of two parameters

consisting of first neighbor pairs in each phase yields a

value of 209 for v2. When two pair vibrational parameters

were included in the optimization along with their

configurational counterparts, the value of v2 became 40.

This value of v2 is the lowest among those obtained for all

other combinations of parameters. The maximal set of

parameters is given in Table 1. The optimized phase dia-

gram computed using this set along with the observed data

is presented in Fig. 1, which is in good agreement with the

observed data. The calculated congruent extremum is

compared with the experimental data below.

Calculated: 27.3 at.% Zr, 1410 �C

Experimental: 30.0 at.%Zr, 1415 �C

The calculated values of (ln hD(0))mix were converted to

hD(-3) values and are compared with the observed data of

Betterton and Scarbrough [31] in Table 2. The agreement

between the two sets is nearly within the error limits except

for points at the Zr-rich end.

Fig. 1 The scandium–zirconium phase diagram. The curves are

computed from optimized parameters. The open circles represent

thermal analysis data from Beaudry and Daane [32]

Table 2 Observed and calculated Debye temperatures for Sc–Zr

alloys

xZr ha
D(-3) (obs) K ha

D(-3) (calc) K

0.00 306.0a –

0.11 360.0 ± 4.2 358.5

0.28 356.5 ± 10.2 352.0

0.49 344.1 ± 5.6 339.2

0.69 333.4 ± 2.3 323.3

0.80 333.1 ± 2.4 313.0

0.82 329.7 ± 3.4 311.0

0.89 310.6 ± 1.8 303.6

1.00 261.0a –

a Chen and Sundman [23]
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The scandium–titanium system

Murray [32] has assessed this system, essentially based on

the work of Beaudry and Daane [33], who performed a

comprehensive metallographic study as well as thermal

analysis. The phase diagram in the solid-state region fea-

tures a monotectoid reaction b1 = a1 ? b2 at 1323 ±

10 K. At relatively low temperatures, the phase diagram

exhibits a eutectoid reaction b2 = a1 ? a2 at 1148 ± 8 K.

While the compositions of the solvus curves seem to be

accurate up to ±1 at.%, the compositions of the phases in

equilibrium at the monotectoid temperature are less accu-

rate, because they are based on extrapolations of curves

with low slopes to the invariant horizontal line.

Because the observed diagram exhibits considerable

asymmetry, the minimal set chosen for this system consists

of the triangle configurational CECs along with the pair

CECs selected for the Sc–Zr system. The data set consists

of 28 points and the value of v2 for this minimal set is 116.

Inclusion of two tetrahedral CECs leads to the largest

decrement in v2, to a value of 54. The maximal set of

parameters is given in Table 1. The optimized phase dia-

gram computed using the above set of parameters along

with the selected data is presented in Fig. 2. It can be seen

that the optimized phase diagram agrees well with the

observed data. The invariant reactions are also reproduced

very well in which, the deviations on compositions are

usually about 1 at.% and those on temperatures are less

than 1 K. The calculated and experimental compositions

(refer to the figure given by Beaudry and Daane) and

temperatures for the two invariant reactions are compared

below.

Monotectoid reaction:

Calculated: 13.2, 47.5, 74.4 at.%Ti, 1,050 �C

Experimental: 12.8 ± 1, 47.4 ± 3, 74.2 ± 3 at.%Ti,

1,050 ± 10 �C

Eutectoid reaction:

Calculated: 8.6, 92.6, 93.1 at.%Ti, 875 �C

Experimental: 8.5 ± 1, 92.1 ± 1, 93.1 ± 1 at.%Ti,

875 ± 8 �C

Discussion

CE–CVM procedures have been adopted for simultaneous

optimization of phase equilibria and thermophysical Debye

temperature data. Vibrational mixing contributions have

been included in a configuration-dependent manner, for the

first time. This formulation is consistent with those of its

subsystems, which is a natural requirement as pointed out

by Hillert [13]. This is not possible in traditional CALP-

HAD methods. Further, they can be extended for

multicomponent systems in a straightforward manner.

These procedures have been successfully utilized for

obtaining optimized phase diagrams of Sc–Zr and Sc–Ti

systems. In both the cases, the computed phase diagrams

are in close conformity with the observed data. In the case

of Sc–Ti system, the invariant reactions are reproduced

very well, within 1 K and 1 at.%. The thermodynamic

assessment due to Murray [32] reproduces the phase dia-

gram equally well but cannot be used for the calculation of

sro parameters as discussed below.

Because CVM treats local order accurately, sro param-

eters can be calculated using this approach, which is not

possible in the standard CALPHAD approach. The Cow-

ley–Warren [7] sro parameters (this is a variable in the

present context) are given by

rij ¼ 1�
hPA

i PB
j i

xAxB
ð18Þ

The cluster variables in Eq. 18 can be computed from

the corresponding pair correlation function at a chosen

temperature and phase composition as discussed in section

‘‘Configurational thermodynamics of a and b phases’’. The

pair correlation function can be determined by using the

conditions for internal equilibrium as discussed in

section ‘‘Determination of internal and phase equilibria’’.

As an example, the first neighbor sro parameters for the b
phase have been calculated at three temperatures as a

function of composition as shown in Fig. 3. It may be

noted that at a temperature of 1000 K, the b phase is either

metastable or unstable for all compositions. The alloys are

Fig. 2 The scandium–titanium phase diagram. The curves are

computed from optimized parameters. The open and filled squares

represent thermal analysis and optical pyrometry data, respectively,

from Beaudry and Daane [32]
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unstable within the range of spinodal compositions

indicated by vertical lines in the figure and sro

parameters cannot be calculated within this range. Such

predictions of a structural parameter like the sro parameter

for the stable/metastable regions of any phase are not

possible in the standard CALPHAD framework. In

addition, values of sro parameters can also be included in

the optimization if such measurements are available.

Conclusions

We have shown that binary systems exhibiting disordered

phases can be optimized using data of different types such

as phase diagram data, thermochemical data, thermophys-

ical data (for example, Debye temperatures) and structural

data (sro parameters) in the CE–CVM framework. Con-

versely, predictions can be made for each of these

properties after optimization. This broad range of coverage

is not possible using conventional CALPHAD methods.

Vibrational and electronic mixing contributions have also

been included using the CE method. These procedures have

been successfully illustrated for the Sc–Zr and Sc–Ti sys-

tems. All the phase boundaries, invariant points, invariant

reactions as well as thermophysical properties are repro-

duced very well. In addition, the model has enabled the

calculation of a structural variable, namely, the sro

parameter.

References

1. Kikuchi R (1951) Phys Rev 81:988

2. van Baal CM (1973) Physica 64:571

3. Kikuchi R, de Fontaine D (1978) In: Applications of phase dia-

grams in metallurgy and ceramics. NBS Publication SP-496,

p 967

4. Kikuchi R, Sato H (1974) Acta Metall 22:1099

5. Mohri T, Sanchez JM, de Fontaine D (1985) Acta Metall 33:1171

6. Ackermann H, Inden G, Kikuchi R (1989) Acta Metall 37:1

7. Inden G (2001) In: Kostorz G (ed) Phase transformations in

materials. Wiley-VCH, Weinheim, p 519

8. Sanchez JM, Ducastelle F, Gratias D (1984) Physica 128A:334

9. Sarma BN (2000) Computation of optimized binary phase dia-

grams exhibiting CPH and BCC phases using cluster variation

method. Ph.D. thesis, Banaras Hindu University, Varanasi

10. de Fontaine D (1994) Solid State Phys 47:33

11. Saunders N, Miodownik AP (1998) CALPHAD: a comprehensive

guide. Pergamon, Oxford

12. Lukas HL, Fries SG, Sundman, B (2007) Computational ther-

modynamics––the calphad method. Cambridge

13. Hillert M (1997) Calphad 21:143

14. Lukas HL, Henig ETh, Zimmermann B (1977) Calphad 1:25

15. Bale CW, Pelton AD (1983) Metall Trans 14B:77

16. de Fontaine D (1979) Solid State Phys 34:73

17. Finel A (1994) In: Turchi PEA, Gonis A (eds) Statics and

dynamics of alloy phase transformations, NATO ASI Series,

Series B, Physics, vol 319. Plenum Press, New York, p 495

18. McCormack R, Asta M, de Fontaine D, Garbulsky G, Ceder G

(1993) Phys Rev B 48:6767

19. Kikuchi R, van Baal CM (1974) Scr Metall 8:425

20. Kikuchi R (1987) Physica 142A:321

21. Dinsdale AT (1991) Calphad 15:317

22. Grimvall G (1986) Thermophysical properties of materials.

North-Holland, Amsterdam

23. Chen Q, Sundman B (2001) Acta Metall 49:947

24. Asta M, McCormack R, de Fontaine D (1993) Phys Rev B 48:748

25. Lukas HL, Fries SG (1992) J Phase Equilib 13:532

26. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1993)

Numerical recipes in C: The art of scientific computing. Cam-

bridge University Press, Cambridge

27. Federer WT (1963) Experimental design. Oxford & IBH, New

Delhi

28. Daniel C, Wood FS (1971) Fitting Equations to Data. Wiley-

Interscience, New York

29. Beaudry BJ, Daane AH (1963) Trans TMS-AIME 227:865

30. Palenzona A, Cirafici S (1991) J Phase Equilib 12:53

31. Betterton JO Jr, Scarbrough JO (1968) Phys Rev 168:715

32. Murray JL (1987) Phase diagrams of binary titanium alloys. ASM

International, Ohio, p 284

33. Beaudry BJ, Daane AH (1962) Trans TMS-AIME 224:770

Fig. 3 The Cowley–Warren first neighbor sro parameter for the b
phase as a function of composition at different temperatures

calculated from the optimized parameters. The vertical lines represent

spinodal compositions at 1000 K within which the b phase is unstable

2342 J Mater Sci (2009) 44:2334–2342

123


	Computational thermodynamics of Sc-Zr and Sc-Ti alloys using cluster variation method
	Abstract
	Introduction
	Configurational thermodynamics of &agr; and &bgr; phases
	Vibrational and electronic contributions
	Pure components
	Alloys

	Determination of internal and phase equilibria
	Simultaneous optimization
	The scandium-zirconium system
	The scandium-titanium system
	Discussion
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


