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Effective mechanical properties of cellular materials depend strongly on the specimen size
to the cell size ratio. Experimental studies performed on aluminium foams show that under
uniaxial compression, the stiffness of these materials falls below the corresponding bulk
value, when the ratio of the specimen size to the cell size is small. Conversely, in the case of
simple shear and indentation, the overall stiffness rises above the bulk value. Classical
continuum theory, lacking a length scale, cannot explain this size dependent mechanical
behaviour. One way to account for these size effects is to explicitly model the discrete
cellular morphology. We performed shear, compression and bending tests using discrete
models, for hexagonal (regular and irregular) microstructures. Even though discrete
models give a very good agreement with the experiments, they are computationally
expensive for complex microstructures, especially in three dimensions. To overcome this,
one can use a generalized continuum theory, such as Cosserat continuum theory, which
incorporates a material length scale. We fit the Cosserat elastic constants of the models by
comparing the discrete calculations with the analytical Cosserat continuum solutions in
terms of macroscopic properties. We critically address the limitations of the Cosserat
continuum theory. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Natural materials such as wood, cork or cancellous
bone, and man-made materials, such as metal honey-
combs and foams, are well-known examples of cellu-
lar solids. Common to all of them is a microstructure
consisting of an interconnected network of struts or
plates. The high specific bending stiffness is an im-
portant property, which, among other multifunctional
features, has made metal foams a competitive engi-
neering material in the last decade. They are often
used in sandwich panels, where they are laminated
between two dense solids to increase the moment of
inertia with a minimum increase in weight. Another
important application of polymer and metal foams is
in energy absorption devices, from simple coffee cups
to energy collection systems on satellites. They are
also widely used in packaging of materials. Neverthe-
less, despite the extensive use of foams in industry, a
better understanding of their mechanical properties is
required.

Compression of aluminum foams shows that the
Young’s modulus is lower for specimens with a lower
ratio of specimen size to cell size [1]. This size effect
is caused by weak boundary layers related to the re-
duced constraint at the free surfaces [2]. Shear tests
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on sandwich panels, on the other hand, show that the
shear strength is higher for lower specimen size, rel-
ative to the cell size [1, 3]. The strengthening under
shear for smaller specimens is explained by the exis-
tence of a constrained layer at the top and at the bot-
tom boundaries, where the foam is bound to the face
sheets.

Classical continuum theory, which does not in-
corporate a length scale, cannot capture these size
effects. One way to overcome this problem is to
take into account the discreteness of the microstruc-
ture by modeling each cell wall as a beam element.
This method correlates well with experiment, but is
computationally expensive for complex microstruc-
tures. Another approach is to use a generalized (en-
hanced) continuum theory. One of the simplest gen-
eralized continuum theories is the Cosserat theory,
where rotations are introduced as independent degrees
of freedom. As a result, the interaction between two
neighboring material points does not occur only via
forces, but also via moments. This requires additional
constants in the constitutive equations, relating cou-
ple stresses (stresses due to moments) to curvatures
(derivatives of rotations), which are hard to determine
experimentally.
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Figure 1 The boundary value problem for simple shear of a specimen with a regular hexagonal microstructure in the default orientation.

In this paper, our aim is to obtain the Cosserat elastic
constants of a two-dimensional cellular solid. We solve
simple shear, uniaxial compression and pure bending
boundary value problems, first by performing finite el-
ement analyses on the discrete models and then analyt-
ically by using the Cosserat continuum theory. We fit
the elastic constants of the material by comparing the
two solutions of the simple shear problem in terms of
the best agreement in the macroscopic shear modulus.
Finally, we check whether these constants give mean-
ingful results for uniaxial compression and bending.

2. Discrete calculations
The primary deformation mechanism of open-cell (and
closed-cell metal) foams is bending of the cell walls.
Since hexagons are isotropic and have bending as prin-
cipal deformation mechanism, they form a good 2D
model material for real foams.

In this section, we will perform simple shear, uniax-
ial compression and pure pending tests. We use both
regular and perturbed hexagons to represent the mi-
crostructure of metal foams.

2.1. Simple shear
Fig. 1 shows the boundary conditions corresponding to
a shear test on a sandwich panel having a regular hexag-
onal microstructure as a core. We model each cell wall
by Thimoshenko beam elements, using the commer-
cial finite element package ABAQUS. The cell walls
are assumed to have a uniform thickness, t, throughout
the whole material. To avoid edge effects common to
the shear problem, we take an infinitely long material
in the x1 direction. Consequently, it suffices to analyze
only one column of cells and to apply periodic bound-
ary conditions on both sides of the unit cell (see the
indicated region in Fig. 1).

The macroscopic shear stress is obtained by dividing
the sum of the reaction force(s) at the top node(s), F,
by the surface area of the unit cell,

√
3lb, where b is

the out of plane thickness and l is the cell wall length.
The ratio of the shear stress to the applied shear strain
gives the macroscopic shear stiffness, F/(

√
3lγ ).

The value of the macroscopic shear stiffness depends
not only on the relative specimen height H/d (d is the
cell size), but also on the length and the orientation
of the cell walls at the boundaries, to which we refer

Figure 2 Two different cuts with the same height, for the regular hexag-
onal microstructure in the default orientation.

to as the boundary configuration in the following. We
analyze two different orientations of the hexagonal mi-
crostructure with respect to the loading direction. The
first one is referred to as the default orientation (see
Fig. 1), and the one rotated at 90 degrees as the rotated
orientation. To consistently check the dependence on
the boundary configuration, for each value of H/d we
analyze all possibilities of “cutting” the “specimen”
from the hexagonal structure. Fig. 2 shows two differ-
ent cuts in the default orientation, with the same relative
height, but with different boundary configurations. In
the case of regular hexagons, only a few cuts (6 in the
case of the default orientation and 8 for the rotated
orientation) are enough to cover almost all possible
boundary configurations. To have a common measure
for the cell size d for both orientations we take d ≈
1.82l, equal to the diameter of a circle with the same
area as a regular hexagonal cell with a cell wall length
l.

Fig. 3a and b show the macroscopic shear stiffness,
F/(

√
3lγ ), normalized by the shear modulus, G, plot-

ted against the relative specimen size, H/d, for the
default and the rotated orientations, respectively. The
shear modulus G is the effective shear modulus of an
infinitely large block with the same microstructure. For
regular hexagonal microstructures, irrespective of the
cell orientation, the shear modulus is given by:

G = 1√
3

Es(t/ l)3 1

1 + (3.30 + 1.75νs)(t/ l)2
, (1)

5912



MECHANICAL BEHAVIOR OF CELLULAR SOLIDS

Figure 3 F/(
√

3lGγ ) plotted against H/d for the regular hexagonal
microstructure: (a) In the default orientation (6 cuts per H/d). (b) In the
rotated orientation (8 cuts per H/d).

where Es is the Young’s modulus and νs is the Poisson’s
ratio of the solid material that the specimen is made of
[4]. The density of the specimens is kept constant by
changing the uniform cell wall thickness accordingly.

Fig. 3a shows that there is a large scatter in data,
especially in the small H/d regime, which decreases
with increasing height. The overall shear stiffness in-
creases with decreasing height, and it converges to the
shear modulus with increasing H/d. This strengthen-
ing behavior, F/(

√
3lGγ ) > 1, is associated with the

constrained rotations of the cell walls bound to the
face sheets. It is interesting to see that softening, i.e.
F/(

√
3lGγ ) < 1, is also possible for some boundary

configurations. This is the case for cuts with a smaller
cell wall thickness, related to the fact that we keep the
density constant.

In Fig. 3b, we see that no softening occurs, meaning
that the effect of the constrained boundary layer (lead-
ing to strengthening) is always dominant over the effect
of the lower cell wall thickness (leading to softening).
On average, we observe a strengthening behavior in the
small H/d regime for both orientations. The normalized
macroscopic shear stiffness, F/(

√
3lGγ ), converges to

1 with increasing height, as would be expected.
The two orientations that we study here are two

extreme cases for the regular hexagonal microstruc-
tures, where for the default orientation one of the three
“close-packed crystal” orientations is parallel to the
face sheets, while in the rotated orientation it is perpen-
dicular to it. To cover the complete range of boundary
configurations for the hexagonal structure, one would
have to consistently check all intermediate orientations,
and for each orientation analyze all possible cuts cor-
responding to a single H/d value. For orientations inbe-
tween the default and rotated, a range of boundary con-
figurations is present in each boundary value problem,
giving rise to properties that are likely to lay inbetween
the properties of the two extreme orientations.

Despite their utility for understanding some of the
key aspects in the mechanical behavior of cellular solids
(especially analytically), regular hexagons do not rep-
resent realistically the stochastic nature of foams. The
regular hexagonal microstructure has a very elongated
yield surface, indicating a high hydrostatic strength.
Real foams, however, have an approximately circular
yield surface, with a hydrostatic yield strength almost
equal to their compressive yield strength [5, 6]. The pri-
mary deformation mechanism for the regular hexago-
nal microstructure under uniaxial loading is bending of
the cell walls, where it is stretching under biaxial load-
ing. Chen and coworkers [7] showed that imperfections
such as cell wall misalignments change the deformation
mechanism under biaxial loading to bending, causing
a knockdown in the hydrostatic properties, leading to a
circular yield surface. We introduce cell wall misalign-
ments into the regular hexagonal structures by displac-
ing all junctions in the structure in a random direction
and a random distance chosen from a uniform distribu-
tion (0, 0.4l). Due to the stochastic imperfections, the
unit cell is enlarged to L = 150d, still featuring peri-
odic boundary conditions (see Fig. 4). Even though the
perturbed hexagons are produced in a random manner,
the structure still features the “close-packed crystal”
orientations of the regular hexagonal structures.

To capture all boundary configurations for a single
H/d value for the perturbed microstructures, we take
100 different cuts of a big block for each H/d. By per-
forming convergence tests for H/d =1, 2, 3 and 5 we
found that for more then 100 cuts, the average and the
standard deviation of the macroscopic shear stiffness
did not change anymore. Fig. 5a and b show F/(LGγ )
plotted against H/d, for the default and the rotated ori-
entations, respectively. Note that here G is the shear
modulus of an infinitely large block with the same mi-
crostructure. We see that there is no softening behavior
for any boundary configuration, in either case. We de-
tect a strengthening in the small H/d regime in both
cases, being slightly more pronounced in the default
orientation. The scatter in data for small H/d is larger in
the default orientation and tends to zero with increasing
height, while the value of the macroscopic shear stiff-
ness converges to the classical value. The strengthening
effect is larger than for the regular hexagons (compare
with Fig. 3).
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Figure 4 Simple shear of the perturbed hexagonal microstructure: (a)
In the default orientation. (b) In the rotated orientation.

2.2. Uniaxial compression
Fig. 6 shows the boundary conditions for a uniaxial
compression test in the x1 direction (rotated orienta-
tion) of an aluminum foam with a perturbed hexagonal
microstructure. We apply periodic boundary conditions
on the left and the right boundaries of the structure, to
imitate an infinitely long material in the x1 direction:
u J

α − uI
α = εαβ(x J

β − x I
β) and φJ−φI = 0, (α, β = 1,2),

where φ is the rotation of the cell walls in the x1− x2

plane. I and J are pairs of nodes on opposite edges of
the mesh (see Fig. 6) and ε12 = ε22 = 0. The com-
pressive stress is calculated by dividing the sum of the
reaction forces on the boundary nodes by the area under
compression, Hb. The uniaxial compressive stiffness is
calculated from the ratio of the compressive stress and
the compressive strain, and is given by F/(Hε11). The
length of the specimens relative to the cell size is taken
to be large enough (L/d = 150) to ensure that the uni-
axial compressive stiffness is independent of L/d. We
increase the height of the block, taking 100 different
cuts per a single H/d value.

Fig. 7a and b show the calculated uniaxial com-
pressive stiffness, F/(Hε11), normalized by the Young’s
modulus E, plotted against H/d, for the default and the
rotated orientations, respectively. The Young’s mod-
ulus E is the Young’s modulus of an infinitely large
block with the same microstructure. We detect a se-
vere softening in the small H/d regime, for both of the
orientations, with the scatter being much larger for the
rotated orientation. In Fig. 6, we see clearly that the cell
walls located at the boundaries perpendicular to the di-
rection of compression are stress free. In addition, the

Figure 5 F/(LGγ ) plotted against H/d (100 cuts per H/d) for the per-
turbed hexagonal microstructure: (a) In the default orientation. (b) In the
rotated orientation.

Figure 6 Boundary conditions for a uniaxial compression test of an
aluminum foam with a perturbed hexagonal microstructure in the rotated
orientation.

cells next to these stress free surface layers are also less
constrained than those in the bulk. The area fraction of
this weak boundary layer, consisting of both the stress
free cell walls and the less-constrained cells, is large
when the height of the specimen is small, resulting
in a decrease in the macroscopic stiffness [2]. While
the specimen size increases, the contribution of this
weak boundary layer to the macroscopic stiffness di-
minishes and the compressive stiffness converges to the
classical value. The number of load carrying cell wall
members differs from one cut to another for the same
height, which is the reason for the scatter in data. The
largest possible distance between two subsequent load
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Figure 7 F/(HEε11) plotted against H/d (100 cuts per H/d) for the
perturbed hexagonal microstructure: (a) In the default orientation. (b) In
the rotated orientation.

carrying cell edges is larger for the rotated orientation,
and therefore the scatter in data is larger as well.

2.3. Pure bending
The final boundary value problem that we solve is
pure bending of a foam with a perturbed hexagonal
microstructure (as in Fig. 6). The displacement and the
rotation boundary conditions corresponding to the pure
bending boundary value problem are u1(x1 = 0) = 0,
φ(x1 = 0) = 0, u2 = 0 for one node at x1 = 0 and u1(x1 =
L) = −kLx2. Here, x2 is measured from the midsection
of the structure and k is the curvature. The macroscopic
moment is calculated from the normal forces f1(k) in the
n cell walls at x1 = L through

M =
n∑

k=1

f (k)
1 x (k)

2 . (2)

Again, L is taken large enough (L/d = 150) to ensure
that M is independent of L/d. The bending stiffness B is
calculated from M/k. Fig. 8a and b show the normalized
macroscopic bending stiffness, B/Bclass, plotted against
H/d, for the default and the rotated orientation respec-

Figure 8 B/Bclass plotted against H/d (100 cuts per H/d) for the perturbed
hexagonal microstructure: (a) In the default orientation. (b) In the rotated
orientation.

tively. The classical bending stiffness is the bending
stiffness of a dense sample with Young’s modulus E
and height H, defined as Bclass = 1/12EbH3. Similar
to what we observed in the uniaxial compression test,
there is a severe softening in the small H/d regime,
and the value of the macroscopic bending rigidity con-
verges to the classical value with increasing height.
For a classical material, the material points located at
the largest distance from the neutral axis would have
the main contribution to the macroscopic bending stiff-
ness. For the cellular microstructure, however, there are
stress free boundaries and this causes a softening in the
bending rigidity, which is almost entirely due to the
softening in the Young’s modulus (see Fig. 7). Indeed,
the appearance of Fig. 8 is very similar to Fig. 7.

3. Cosserat continuum models
Cosserat continuum theory incorporates rotations as in-
dependent degrees of freedom. Therefore, interaction
between two neighboring material points can occur via
moments as well as via forces. This requires new elas-
tic constants in the constitutive equations of Cosserat
materials, relating couple stresses (stresses due to
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moments) to curvatures (derivatives of rotations). The
coefficients of the elasticity matrix in terms of symmet-
ric (sij, εij) and antisymmetric (τ ij, αij) components of
the stresses and strains for a two dimensional isotropic
centrosymmetric Cosserat material reduces to

s11 = C1111ε11 + C1122ε22,

s22 = C1122ε11 + C1111ε22,

s12 = A1212ε12,

τ12 = A2121α12, m13 = D1313κ13,

m23 = D1313κ23.

(3)

For the simple shear problem solved in Section 2.1,
the kinematic and equilibrium equations of the Cosserat
theory read

ε11 = 0, ε22 = 0, ε12 = 1

2
u1,2,

α12 = −1

2
(u1,2 + 2φ), k13 = 0, k23 = φ,2,

(4)

s12,2 − τ12,2 = 0, m23,2 + 2τ12 = 0. (5)

Inserting (4) into (5) via the constitutive Equations 3
yields

(m + 1)u1,2 + 2mφ,2 = 0 (6)

l2
c φ,22 − 2mφ − mu1,2 = 0, (7)

with

m = A2121

A1212
, l2

c = D1313

A1212
(8)

The parameter lc is a material length, and it is of-
ten called the characteristic length in the literature. The
constant m, on the other hand, is a dimensionless term
that can be seen as a coupling factor: the solution con-
verges to the classical solution for m → 0, and to the
couple stress solution for m →∞. Couple stress theory,
also known as restricted Cosserat theory, is a special
case of the Cosserat continuum where the microrota-
tions are equal to the macrorotations, making α12 = 0
in Equation 4. The complete solution of the differential
Equations 6 and 7 is given in [8, 9], from which lc was
identified to set the thickness of the boundary layer as
a result of constrained rotations.

Gauthier and Jahsman [10] have previously solved
a pure bending problem of a curved beam made of
Cosserat material. Huang and coworkers [11] analyzed
a pure bending problem of a straight Cosserat beam.
Both studies detect a strengthening in the bending
rigidity when the characteristic length lc is comparable
to the beam height. The solution of Huang and
coworkers [11], give the bending stiffness of a beam
with a height H as

B = Bclass(1 + 12A1212/C1111(lc/H )2). (9)

Equation 9 shows that, for large heights, the bending
rigidity converges to the classical value, but for heights

Figure 9 F/(
√

3lGγ ) plotted against H/d for the continuum and discrete
solution for the regular hexagonal microstructure: (a) In the default
orientation. (b) In the rotated orientation.

of the same order of magnitude as lc, the bending rigid-
ity is higher than the classical value. Our results for the
discrete model, on the other hand, indicate the oppo-
site behavior, giving a lower bending rigidity for small
heights.

For uniaxial compression, Cosserat continuum the-
ory does not predict any size effect, due to the absence
of rotations and rotation gradients. Therefore, Cosserat
solution gives the same result as classical continuum
throughout the whole range of length scales.

4. Discussion
In this section, we fit the elastic Cosserat constants of
the regular and irregular hexagonal microstructures by
comparing the discrete solution for the shear problem
with the Cosserat solution, in terms of the best agree-
ment in the macroscopic response. Figs. 9a (10a) and
9b (10b) show the best fit of the Cosserat solution to
the average value of the discrete results for the regular
(irregular) hexagonal microstructures in the default and
the rotated orientations, respectively. To also reflect the
scatter, we plot the upper and lower bounds as well.
For all cases, the couple stress solution, with m → ∞,
gives the best agreement. We see that the characteristic
length lc depends strongly on the cell orientation in
the case of the regular microstructure (lc = 0.15d for
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Figure 10 F/(LGγ ) plotted against H/d for the continuum and discrete
solution for the perturbed hexagonal microstructure: (a) In the default
orientation. (b) In the rotated orientation.

the default and lc = 0.28d for the rotated orientations),
whereas the difference is very small for the irregular
case (lc = 0.55d versus lc = 0.47d). The strengthening
behavior for the irregular hexagonal structure is larger
than for the regular structure, which is reflected in a
larger value for the characteristic length lc. Clearly, the
characteristic length not only scales with the cell size,
it also depends on the cellular morphology.

Hexagonal materials have six-fold symmetry in the
x1-x2 plane, which makes them transversely isotropic
both in classical and Cosserat continuum theory [12].
This means there is only one lc value for the regu-

lar hexagonal structure, irrespective of its orientation.
This is clearly in contradiction with Fig. 9, yielding two
different values for lc for the default and the rotated ori-
entation. Details with respect to the specific boundary
configurations can only be captured in a smeared out,
average sense by Cosserat continuum theory. Imper-
fections in the microstructure already smear out these
details, yielding values for lc that are much closer for
the default and the rotated orientations (see Fig. 10).
The best that one can do for the hexagonal structures
is to take the average of the two extreme orientations
analyzed here, yielding lc = 0.22d for the regular and
lc = 0.51d for the irregular hexagonal microstructures.

For pure bending, the discrete analyses show soften-
ing while Cosserat theory shows stiffening. For uniax-
ial compression, the discrete analyses show softening
while Cosserat theory predicts a size independent re-
sponse. Clearly, free edge effects leading to softening
cannot be captured by Cosserat theory. One has to re-
sort to higher order theories that feature additional free
surface behavior, as for instance in [13].
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