
J Math Model Algor (2015) 14:453–467
DOI 10.1007/s10852-015-9279-y

An Adaptive Trust Region Method Based
on Simple Conic Models

Qunyan Zhou1 ·Chun Zhang2

Received: 10 July 2014 / Accepted: 9 March 2015 / Published online: 26 March 2015
© Springer Science+Business Media Dordrecht 2015

Abstract A new adaptive trust region algorithm with simple conic models is proposed. By
use of the simple conic model, the new method needs less memory capacitance and compu-
tational complexity. The nonmonotone and adaptive techniques are introduced to improve
the efficiency of the proposed algorithm. The convergence results of the method are proved
under certain conditions. Numerical tests show that the new algorithm is efficient and robust.

Keywords Trust region method · Adaptive technique · Simple conic model · Global
convergence

Mathematics Subject Classification (2010) 65K05 · 90C30

1 Introduction

Consider the following unconstrained optimization problem

min
x∈Rn

f (x), (1.1)

where f : Rn → R is continuously differentiable function.

� Qunyan Zhou
zhouqunyan@jsut.edu.cn

Chun Zhang
smilingchun@126.com

1 School of Mathematics and Physics, Jiangsu University of Technology,
Changzhou 213001, China

2 Institute of Science, PLA University of Science and Technology,
Nanjing 211101, China

mailto:zhouqunyan@jsut.edu.cn
mailto:smilingchun@126.com

454 J Math Model Algor (2015) 14:453–467

Trust region methods for solving problem (1.1) have very nice global and local conver-
gence properties. A basic trust region algorithm works as follows. At each iterate xk , it
obtains a trial step dk by solving the following quadratic model subproblem

min qk(d) = fk + gT
k d + 1

2
dT Bkd,

s.t. ‖d‖ ≤ �k, (1.2)

where fk = f (xk), gk = ∇f (xk), Bk ∈ Rn×n is a symmetric matrix which is the Hessian
approximation of f (x) at the current point xk , �k > 0 is called the trust region radius
and ‖ · ‖ refers to the Euclidean norm. The ratio ρk between the actual reduction in the
function value f (xk) − f (xk + dk) and the predicted reduction qk(0) − qk(dk) plays a key
role to decide whether the trial step is acceptable or not and how to adjust the trust region
radius.

Conic model methods, a generalization of quadratic model methods, can incorpo-
rate more information in the iterations, and provide an effective means for optimization
problems [5, 9]. A typical conic model subproblem is

min φk(d) = fk + gT
k d

1 + hT
k d

+ 1

2

dT Bkd

(1 + hT
k d)2

,

s.t. ‖d‖ ≤ �k, (1.3)

where hk ∈ Rn is a horizon vector satisfying 1 + hT
k d > 0. If hk = 0, φk(d) is reduced to

be quadratic. Also one can see that φk(d) is quadratic along any direction d ∈ Rn satisfying
hT

k d = 0.
The usual trust region methods generate a sequence {xk} such that {f (xk)} is monoton-

ically decreasing. In fact, the methods requiring monotonically decreasing of the objective
function values at each iteration may slow the rate of convergence in the presence of a nar-
row valley. In [6], Grippo et al. proposed a nonmonotone line search technique, in which
the stepsize αk satisfies

f (xk + αkpk) ≤ fl(k) + γαkg
T
k pk, (1.4)

where fl(k) = max
0≤j≤mk

{fk−j },m0 = 0, 0 ≤ mk ≤ min{mk−1 + 1,M}(k ≥ 1), M ≥ 0

is an integer, 0 < γ < 1 and pk is a descent direction. This nonmonotone technique
was generalized to the trust region method in [4, 16]. However, it has some disadvan-
tages. For example, it follows from Eq. 1.4 that a good function value generated at
any iteration may be thrown away due to the maximum, and the numerical results are
dependent on the choice of parameter M . Zhang and Hager [14] replaced the maximum
function value in Eq. 1.4 with an average of function values, that is, they required decreas-
ing of an average of the successive function values. In detail, their method selects αk

satisfying

f (xk + αkdk) ≤ Ck + γαkg
T
k pk, (1.5)

where

Ck =
{

fk, k = 0,
ηk−1Qk−1Ck−1+fk

Qk
, k ≥ 1,

Qk =
{
1, k = 0,
ηk−1Qk−1 + 1, k ≥ 1,

(1.6)

and ηk−1 ∈ [ηmin, ηmax], ηmin ∈ [0, 1) and ηmax ∈ [ηmin, 1) are two chosen parameters.
Numerical results showed that this nonmonotone technique was superior to Eq. 1.4. Then,
this nonmonotone technique was also applied to the trust region methods [10, 13]. Recently,

J Math Model Algor (2015) 14:453–467 455

Gu and Mo [7] found that updating ηk and Qk at each iteration becomes an encumbrance.
To overcome the limitation, Gu and Mo [7] introduced another nonmonotone strategy. They
replaced Ck in Eq. 1.5 with Rk which is a simple convex combination of the previous Rk−1
and fk , i.e.,

Rk =
{

fk, k = 1,
ηkRk−1 + (1 − ηk)fk, k ≥ 2

(1.7)

for ηk ∈ [ηmin, ηmax]. Numerical experiments showed that this nonmonotone technique was
efficient and robust.

The choice of the trust region radius is very important to the efficiency of the trust region
methods. The adjustment strategy, in which the trust region radius is updated only by simply
enlarging or reducing the initial trust region radius at a constant rate, does not make full
use of the information at the current iterate point, such as the first-order and second-order
derivatives. Hence, many authors have studied the self-adaptive trust region method [5, 15].
In [12], a new efficient self-adaptive adjustment strategy for updating the trust region radius
was proposed. That is, at each iteration point k, given 0 ≤ μ1 < μ2 < 1, 0 < c1 < 1 < c2,
set �k+1 = λk+1‖gk+1‖‖B−1

k+1‖, where

λk+1 =
⎧⎨
⎩

c1λk, if ρk < μ1;
λk, if μ1 ≤ ρk ≤ μ2;
c2λk, if ρk > μ2.

Solving problems 1.2 or 1.3 is a key work in the trust region method. Many authors
have studied the problem and proposed a lot of methods [4, 11, 17]. Generally, it is costly,
especially when Bk is large scale and dense. [18] proposed a simple quadratic trust region
subproblem using a scalar approximation of the minimizing function’s Hessian. Based on
the Taylor’s theorem, γ (xk)I is considered as an approximation of Bk in problem (1.2),
where γ (xk) is a positive scalar. As a result, the new subproblem could be also resolved
easily.

In this paper, we will present a new adaptive simple conic trust region method based on
problem (1.3). We use a scalar approximation of the minimizing function’s Hessian in the
conic trust region subproblem (1.3), and then combine the new trust region method with the
nonmonotone technique proposed by Gu and Mo [7] and a new adaptive technique. In the
next section, we present the new algorithm in detail. In Section 3, a convenient method to get
an inexact solution to the subproblem is presented. The convergence results are discussed
in Section 4. Section 5 presents some preliminary numerical results of our new algorithm.
Finally, we present some concluding remarks.

2 New Algorithm

Motivated by the idea in [18], we use a scalar matrix γkI (γk > 0) to approximate the Bk in
the conic model. Construct the new subproblem

min φk(d) = fk + gT
k d

1 + hT
k d

+ 1

2

γkd
T d

(1 + hT
k d)2

,

s.t. 1 + hT
k d > 0, (2.1)

‖d‖ ≤ �k,

456 J Math Model Algor (2015) 14:453–467

which is called as the simple conic trust region subproblem. We can see that the inequality
constraint 1 + hT

k d > 0 enters the subproblem (2.1).
Suppose dk is the solution of the (2.1), then either xk + dk is accepted as a new iteration

point or the trust region is reduced according to a comparison between the actual reduction

Aredk(dk) = Rk − f (xk + dk),

and the predicted reduction of the model

Predk(dk) = φk(0) − φk(dk),

i.e.,

ρk = Aredk(dk)

Predk(dk)
= Rk − f (xk + dk)

φk(0) − φk(dk)
, (2.2)

where Rk is computed by Eq. 1.7. That is, if Aredk(dk) is satisfactory compared with
Predk(dk), then we finish the current iteration by taking xk+1 = xk + dk and adjusting the
trust region radius; otherwise, the iteration is repeated at point xk with a reduced trust region
radius.

After dk is accepted, the scalar γk+1 and the horizon vector hk+1 can be updated for the
next iteration. Consider a conic model of f (x) around xk+1,

φk+1(d) = fk+1 + gT
k+1d

1 + hT
k+1d

+ 1

2

γk+1d
T d

(1 + hT
k+1d)2

. (2.3)

The gradient of φk+1(d) is

∇φk+1(d) = 1

1 + hT
k+1d

(
I − hk+1d

T

1 + hT
k+1d

) (
gk+1 + γk+1d

1 + hT
k+1d

)
.

The conic model (2.3) satisfies

φk+1(0) = fk+1,∇φk+1(0) = gk+1, (2.4)

φk+1(−dk) = fk,∇φk+1(−dk) = gk. (2.5)

Set

β = 1 − hT
k+1dk, (2.6)

then the two interpolation conditions in Eq. 2.5 lead to

2β2(fk − fk+1) = −2βgT
k+1dk + γk+1d

T
k dk, (2.7)

β3gk =
(
βI + hk+1d

T
k

)
(βgk+1 − γk+1dk), (2.8)

respectively. Pre-multiply Eq. 2.8 by dT
k , we can obtain

β3dT
k gk = βdT

k gk+1 − γk+1d
T
k dk. (2.9)

It follows from Eqs. 2.7 and 2.9 that

β2gT
k dk + 2β(fk − fk+1) + gT

k+1dk = 0 (2.10)

J Math Model Algor (2015) 14:453–467 457

which is a quadratic equation with β. Equation 2.10 has real roots if and only if

ρ = (fk − fk+1)
2 −

(
gT

k+1dk

) (
gT

k dk

)
≥ 0,

and we can get the solution

β = fk − fk+1 + √
ρ

−gT
k dk

.

If ρ < 0, then set β = 1. That is

β =
{

fk−fk+1+√
ρ

−gT
k dk

, if ρ ≥ 0;
1, otherwise.

As one of the easiest special solution of Eq. 2.6, we take

hk+1 = 1 − β

gT
k dk

gk. (2.11)

From Eq. 2.7 we have that γk+1 satisfies

γk+1d
T
k dk = 2β2(fk − fk+1) + 2βgT

k+1dk.

So,

γk+1 = 2

dT
k dk

[
β2(fk − fk+1) + βgT

k+1dk

]
. (2.12)

By Eq. 2.10, we know that γk+1 defined in Eq. 2.12 can be expressed as

γk+1 = 1

dT
k dk

(
βgT

k+1dk − β3gT
k dk

)
,

which can also be deduced by Eq. 2.9 directly.
In order to make the approximation of the Hessian matrix positive definite, we must

consider the situation when γk+1 ≤ 0. Select a small constant δ > 0 and set

θk+1 = β2δ − β2(fk − fk+1) − βgT
k+1dk,

then γk+1 can be modified as follows

γk+1 = 2

dT
k dk

[
β2(fk − fk+1) + βgT

k+1dk + θk+1

]
= 2β2δ

dT
k dk

,

which is obviously positive. If we set

γ̂k+1 = 2

dT
k dk

[
β2(fk − fk+1) + βgT

k+1dk

]
,

then

γk+1 =
{

γ̂k+1, if γ̂k+1 > 0;
2β2δ

dT
k dk

, otherwise. (2.13)

458 J Math Model Algor (2015) 14:453–467

Nowwe give a description of nonmonotone adaptive trust region method based on simple
conic models.

Algorithm 1 (NASCTR)

Step 0. Given x0 ∈ Rn,�0 > 0,�max > 0, 0 < μ < μ1 < μ2 < 1, 0 < c1 < 1 <

c2, λ0 = 1, ε > 0, δ > 0, θ > 0. Set k = 0, γ0 = 1, h0 = 0. Choose ηmin ∈ [0, 1)
and ηmax ∈ [ηmin, 1), R0 = f0.

Step 1. If test criteria are fulfilled, then stop. Otherwise, goto Step 2.
Step 2. Solve the subproblem (2.1) for dk .
Step 3. Compute Aredk(dk), Predk(dk), ρk .
Step 4. If ρk < μ, set �k = c1�k , goto Step2.
Step 5. Set xk+1 = xk + dk and compute gk+1.
Step 6. Update hk+1 by Eq. 2.11 and compute γk+1 according to Eq. 2.13.
Step 7. If γk+1 ≤ ε or γk+1 ≥ 1

ε
, set γk+1 = θ .

Step 8. Compute � = λk+1 max{ 1
γk+1

, 1
γk+1+hT

k+1gk+1
}‖gk+1‖, where

λk+1 =
⎧⎨
⎩

c1λk, if ρk < μ1;
λk, if μ1 ≤ ρk ≤ μ2;
c2λk, otherwise.

Set �k+1 = min{�,�max}.
Step 9. Update Rk+1 and set k = k + 1, goto Step 1.

Remark 2.1 (1) The procedure of “Step 2-Step 3-Step 4-Step 2” is called as inner cycle.
(2) In order to keep the trust region {d|‖d‖ ≤ �k} in the side of the superplane {d |

1+ hT
k d > 0}, we assume that ‖hk‖�k < 1 and set �k = α/‖hk‖ when ‖hk‖�k ≥ 1,

where 0 < α < 1.
(3) The object of Step 7 is to avoid uphill directions and to keep the sequence {γk}

uniformly bounded. In fact, for all k,

0 < min(ε, θ) ≤ γk ≤ max

(
1

ε
, θ

)
. (2.14)

(4) If hk = 0 for all k ≥ 1, then Algorithm 1 is reduced to the algorithm in [18]. We
denote it as NASQTR.

3 Solution of the Simple Conic Trust Region Subproblem

In this section, we discuss how to solve the subproblem (2.1). If γk + hT
k gk 	= 0, then the

unique minimizer point of the conic function φk(d) in (2.1) is

dN
k = − gk

γk + hT
k gk

. (3.1)

The following theorem is obvious.

Theorem 3.1 Suppose that γk + hT
k gk 	= 0 and dN

k is defined as in Eq. 3.1. If ‖dN
k ‖ ≤ �k ,

then dk = dN
k is the optimal solution of problem (2.1); otherwise the optimal solution dk of

problem (2.1) will locate at the boundary of the trust region.

Proof The proof is similar to that of the theorem in [11, 17].

J Math Model Algor (2015) 14:453–467 459

The algorithm for solving problem (2.1) approximately can be described as follows.

Algorithm 2

Step 1. If γk+hT
k gk 	= 0, compute dN

k . If ‖dN
k ‖ ≤ �k , set dk = dN

k and return; otherwise,
goto Step 2.

Step 2. Set dk = − �k‖gk‖gk and return.

It is obvious that the approximate solution dk obtained by Algorithm 2 is feasible to (2.1).
In the following, we will prove that the dk computed by Algorithm 2 can guarantee enough
decrease of the conic model.

Lemma 3.2 Suppose that hk and �k are all bounded above, i.e., there exist constants
�max > 0 and Mh > 0 such that �k ≤ �max and ‖hk‖ ≤ Mh for all k. Then

Predk(dk) ≥ ψ‖gk‖min

{
�k,

‖gk‖
γk

}
, (3.2)

where ψ = 1
2(1+�maxMh)

.

Proof Case 1. dk = dN
k = − gk

γk+hT
k gk

.

Predk(dk) = φk(0) − φk(dk) = gT
k gk

γk

− 1

2

γkg
T
k gk

γ 2
k

= 1

2

‖gk‖2
γk

. (3.3)

Case 2. dk = − �k‖gk‖gk .

(a) If 0 ≤ γk + hT
k gk <

‖gk‖
�k

, then 0 < γk <
‖gk‖
�k

− hT
k gk .

Predk(dk) = φk(0) − φk(dk) = �k‖gk‖2
‖gk‖ − �kh

T
k gk

− γk�
2
kg

T
k gk

2(‖gk‖ − �kh
T
k gk)2

≥ �k‖gk‖2
‖gk‖ − �kh

T
k gk

− �k‖gk‖2(‖gk‖ − �kh
T
k gk)

2(‖gk‖ − �kh
T
k gk)2

= �k‖gk‖2
2(‖gk‖ − �kh

T
k gk)

≥ �k‖gk‖2
2(‖gk‖ + �k‖hk‖‖gk‖)

≥ �k‖gk‖
2(1 + �maxMh)

. (3.4)

(b) If −‖gk‖
�k

< γk + hT
k gk < 0, it follows from γk > 0 that hT

k gk < 0.

Predk(dk) = φk(0) − φk(d
C
k) = �k‖gk‖2

‖gk‖ − �kh
T
k gk

− γk�
2
kg

T
k gk

2(‖gk‖ − �kh
T
k gk)2

= 2�k‖gk‖2(‖gk‖ − �kh
T
k gk) − γk�

2
kg

T
k gk

2(‖gk‖ − �kh
T
k gk)2

= �k‖gk‖2‖gk‖ + �k‖gk‖2(‖gk‖ − �kh
T
k gk) − �2

k(‖gk‖2hT
k gk + γkg

T
k gk)

2(‖gk‖ − �kh
T
k gk)2

≥ �k‖gk‖2
2(‖gk‖ − �kh

T
k gk)

≥ �k‖gk‖
2(1 + �maxMh)

. (3.5)

460 J Math Model Algor (2015) 14:453–467

It follows from Eqs. 3.3, 3.4 and 3.5 that

Predk(dk) ≥ ‖gk‖min

{‖gk‖
2γk

,
�k

2(1 + �maxMh)

}
≥ ψ‖gk‖min

{‖gk‖
γk

,�k

}
(3.6)

where ψ = min
{
1
2 ,

1
2(1+�maxMh)

}
= 1

2(1+�maxMh)
.

4 Convergence Analysis

In this section, the global convergence of Algorithm 1 is established under the following
reasonable assumptions.

Assumption 4.1 (i) The level set L(x0) = {x ∈ Rn|f (x) ≤ f (x0)} is bounded and f (x) is
twice continuously differentiable in L(x0).

(ii) There exists Mh > 0 such that ‖hk‖ ≤ Mh for all k.

Lemma 4.2 Let {xk} be the sequence generated by Algorithm 1, then we have

fk+1 ≤ Rk+1 ≤ Rk, ∀k = 1, 2, · · · . (4.1)

Proof By ρk ≥ μ, Eq. 2.2 and Lemma 3.2, we have for ∀k,

Rk − fk+1 ≥ μ(φk(0) − φk(dk)) = μPredk(dk)

≥ μψ‖gk‖min

{
�k,

‖gk‖
γk

}
> 0, (4.2)

from which we have

Rk ≥ fk+1, for∀k. (4.3)

By the definition of Rk and Eq. 4.3, we can obtain that

Rk = ηkRk−1 + (1 − ηk)fk ≥ ηkfk + (1 − ηk)fk = fk, for k ≥ 1

and R0 = f0. So

Rk ≥ fk, for ∀k. (4.4)

On the other hand, from Eq. 4.3, we have

Rk+1 = ηk+1Rk + (1 − ηk+1)fk+1 ≤ ηk+1Rk + (1 − ηk+1)Rk = Rk,∀k. (4.5)

It follows from Eqs. 4.4 and 4.5 that Eq. 4.1 holds.

Lemma 4.3 Suppose that Assumption 4.1 holds, the sequence {xk} generated by Algo-
rithm 1 is contained in the level set L(x0).

Proof It follows from Lemma 4.2, Assumption 4.1 and R0 = f0.

The following lemma guarantees that Algorithm 1 does not cycle infinitely in the inner
cycle.

Lemma 4.4 Suppose that Assumption 4.1 holds, then the inner cycle in Algorithm 1 is well
defined.

J Math Model Algor (2015) 14:453–467 461

Proof Suppose that Algorithm 1 cycles infinitely between Step 2 and Step 4 at iteration k.
We define the cycling index at iteration k by k(i), then we have

ρk(i) < μ, i = 1, 2, · · · (4.6)

and �k(i) → 0 as i → ∞. Besides, when �k(i) → 0, we have dk(i) → 0.
When ‖dk‖ is sufficiently close to zero, since {‖hk‖} is bounded, we have 1/(1+hT

k dk) =
1 + O(‖dk‖). By the boundedness of ‖gk‖ and γk , we have

gT
k dk

1 + hT
k dk

= gT
k dk + O

(
‖dk‖2

)
,

γkd
T
k dk

(1 + hT
k dk)2

= γkd
T
k dk + o

(
‖dk‖2

)
. (4.7)

Since f (x) is twice continuously differentiable in L(x0), then there exists KH > 0 such
that ‖∇2f (x)‖ ≤ KH holds for all x ∈ L(x0).

|fk − f (xk + dk) + gT
k dk

1 + hT
k dk

+ 1

2

γkd
T
k dk

(1 + hT
k dk)2

|

= | − gT
k dk − 1

2
dT
k ∇2f (xk + θkdk)dk + gT

k dk + 1

2
γkd

T
k dk + O

(
‖dk‖2

)
|

≤ 1

2

(
MH + max

(
1

ε
, θ

))
‖dk‖2 + O

(
‖dk‖2

)
= O

(
‖dk‖2

)
. (4.8)

Then by Eq. 4.8 and Lemma 3.2, we have

|fk − f (xk + dk(i))

Predk(dk(i))
− 1| =

|fk − f (xk + dk(i)) + gT
k dk(i)

1+hT
k dk(i)

+ 1
2

γkd
T
k(i)

dk(i)

(1+hT
k dk(i))

2 |
|Predk(dk(i))|

≤ O(‖dk(i)‖2)
ψ‖gk‖min

{
�k(i),

‖gk‖
γk

} . (4.9)

Since ‖dk(i)‖ → 0 as i → ∞, then from Eq. 4.9 we have

lim
i→∞

fk − f (xk + dk(i))

Predk(dk(i))
= 1. (4.10)

By Eq. 2.2 and Lemma 4.2 we have

ρk(i) = Rk − f (xk + dk(i))

Predk(dk(i))
≥ fk − f (xk + dk(i))

Predk(dk(i))
. (4.11)

From Eqs. 4.10 and 4.11 we know that ρk(i) ≥ μ for sufficiently large i. This is a
contradiction to Eq. 4.6.

Theorem 4.5 Suppose that Assumption 4.1 holds. Let {xk} be the sequence generated by
Algorithm 1, then we have

lim inf
k→∞ ‖gk‖ = 0. (4.12)

Proof We will show that ‖gk‖ is not bounded away from zero by contradiction. Suppose
that there exists a constant τ such that

‖gk‖ ≥ τ, for∀k. (4.13)

It follows Eq. 2.2 and Lemma 3.2 that

fk+1 ≤ Rk − μPredk(dk) ≤ Rk − μψ‖gk‖min

{
�k,

‖gk‖
γk

}
. (4.14)

462 J Math Model Algor (2015) 14:453–467

From the definition of Rk , Eqs. 4.13, 4.14 and 2.14 we can obtain that

Rk+1 = ηk+1Rk + (1 − ηk+1)fk+1

≤ ηk+1Rk + (1 − ηk+1)

(
Rk − μψ‖gk‖min

{
�k,

‖gk‖
γk

})

= Rk − (1 − ηk+1)μψ‖gk‖min

{
�k,

‖gk‖
γk

}
,

≤ Rk − (1 − ηk+1)μψ‖gk‖min

⎧⎨
⎩�k,

τ

max
(
1
ε
, θ

)
⎫⎬
⎭ , (4.15)

which implies

Rk − Rk+1 ≥ (1 − ηk+1)μψ‖gk‖min

⎧⎨
⎩�k,

τ

max
(
1
ε
, θ

)
⎫⎬
⎭ . (4.16)

By Assumption 4.1 we have that {fk} is bounded below in L(x0). From Lemma 4.2 and
Lemma 4.3, we know that fk ≤ Rk for all k ≥ 0 and {Rk} is nonincreasing, so {Rk} is
convergent. It follows from Eq. 4.16 that

lim
k→∞min

⎧⎨
⎩�k,

τ

max
(
1
ε
, θ

)
⎫⎬
⎭ = 0, (4.17)

which implies that

lim
k→∞ �k = 0. (4.18)

It follows from the proof of Lemma 4.4 and Eq. 4.18 that ρk ≥ μ2 for k large enough. By
the description of Algorithm 1, it implies that there exists a positive constant λ∗ such that

λk ≥ λ∗ (4.19)

for all sufficiently large k. On the other hand,

lim
k→∞ λk+1 max

{
1

γk+1
,

1

γk+1 + hT
k+1gk+1

}
‖gk+1‖ = 0. (4.20)

By Eqs. 2.14 and 4.13, we have

max

{
1

γk+1
,

1

γk+1 + hT
k+1gk+1

}
‖gk+1‖ ≥ ‖gk+1‖

γk+1
≥ τ

max
(
1
ε
, θ

) .

It follow form Eq. 4.20 that lim
k→∞ λk+1 = 0, which contradicts (4.19).

Theorem 4.6 Suppose that Assumption 4.1 holds and {xk} converges to x∗ where ∇2f (x∗)

is positive definite. If lim
k→∞

‖(γkI − ∇2f (x∗))dk‖
‖dk‖ = 0, then the sequence {xk} converges

to x∗ superlinearly.

Proof See [11].

J Math Model Algor (2015) 14:453–467 463

5 Numerical Results

To examine the precision for the approximation of the original function by our simple conic
model, we compare Algorithm 1 without the adaptive technique (NSCTR) with the cor-
responding algorithm in which Bk is dense and updated by BFGS formula (NBCTR). In
NBCTR, the conic model subproblem is solved by the modified dogleg path method[5, 17].
The programs are written in MATLAB. The test problems are selected from [1]. For each
test function we have considered the situation with the number of variables n = 10.

The parameters are as follows: �0 = ‖g0‖, μ = 0.1, μ1 = 0.25, μ2 = 0.75, c1 =
0.5, c2 = 1.5, ε = 10−6, α = 1 − 10−5, δ = 0.0001, ηk = 0.99,�max = 100. While in
Step 7, if γk ≤ ε, the parameter θ = ε; if γk ≥ 1

ε
, θ = 1

ε
. The termination rule is

‖gk‖∞ ≤ 10−5(1 + |f (xk)|).
The numerical results are listed in Table 1. This table contains the name of the problem

(Problem), the number of function evaluations (Func), the number of iterations (Iter), the

Table 1 Numerical results of NBCTR and NSCTR

NBCTR NSCTR

Problem Func/Iter/Fval/Time Func/Iter/Fval/Time

Variably dimensioned 30/9/0.00000/0.0099 30/9/0.00000/0.0051

Penalty I —– 97/87/0.00007/0.0124

Ex. trigonometric 21/21/0.00003/0.0091 52/52/0.00003/0.0088

Ex. rosenbrock 15/12/ 0.00000/0.0059 17/14/0.00000/0.0032

Convex1 4/4/10.00000/0.0370 4/4/10.00000/0.0014

Convex2 18/18/5.50000/0.0069 16/16/5.50000/0.0032

Almost line 20/12/0.00000/0.0066 34/22/0.00000/0.0052

Broyden tridiagnal 5498/3452/244.92127/1.4189 57/35/244.92127/0.0095

Dixon 209/140/0.00000/0.0426 125/119/0.00000/0.0161

Perturbed quadratic 34/25/0.00000/0.0092 30/26/0.00000/0.0044

Ex. tridigonal-1 28/19/0.00000/0.0082 11/9/0.00000/0.0041

Ex. Beal 17/12/0.00000/0.0059 49/39/0.00000/0.0065

Digonal 1 34/27/-47.08283/0.0095 22/20/-47.08283/0.0039

Digonal 2 20/20/5.62115/0.0067 16/16/5.62115/0.0036

Digonal 3 30/23/-21.20431/0.0095 22/19/-21.20431/0.0034

Digonal 4 11/5/0.00000/0.0047 14/8/0.00000/0.0024

Digonal 5 5/5/6.93147/0.0034 5/5/6.93147/0.0030

Quadrtic diagonal perturbed 19/15/0.00000/0.0068 17/13/0.00000/0.0033

Almost perturbed quadratic 34/25/0.00000/0.0099 31/27/0.00000/0.0045

Hager 18/18/3.19506/0.0065 17/13/3.19506/0.0029

Generalized PSCI 114/108/9.00000/0.0263 17/11/9.00000/0.0030

Quadratic QF1 28/22/-0.05000/0.0081 29/26/-0.05000/0.0055

Quadratic QF2 9/4/-1.01220/0.0045 9/4/-1.01220/0.0036

Ex. tridiagonal-2 13/11/3.50756/0.0057 24/22/3.50756/0.0040

Ex. three exponential terms 9/6/12.79633/0.0040 11/8/12.79633/0.0035

464 J Math Model Algor (2015) 14:453–467

Table 2 Numerical results of PR+, NASQTR and NASCTR

PR+ NASQTR NASCTR

Problem n Func/Iter/Fval Func/Iter/Fval Func/Iter/Fval

ARGLINA 200 5/5/2.00e+02 3/3/2.00e+02 3/3/2.00e+02

ARWHEAD 5000 15/15/0.00e+00 26/11/0.00e+00 25/10/5.55e-13

BDQRTIC 5000 123/123/2.00e+04 170/110/2.00e+04 148/102/2.00e+04

BOX 10000 19/19/-1.86e+03 57/20/-1.86e+03 54/20/-1.86e+03

BROWNAL 200 35/35/1.47e-09 25/9/1.47e-09 25/9/1.47e-09

BRYBND 5000 62/62/6.73e-12 44/32/1.48e-10 42/28/2.95e-11

CHNROSNB 50 562/562/3.79e-12 1234/1197/2.794e-11 1083/1055/5.09e-13

COSINE 10000 16/16/-1.00e+04 6/6/-1.00e+04 6/6/-1.00e+04

CRAGGLVY 5000 121/121/1.69e+03 447/282/1.69e+03 210/178/1.69e+03

DIXMAANA 3000 16/16/1.00e+00 10/7/1.00e+00 10/7/1.00e+00

DIXMAANB 3000 21/21/1.00e+00 11/7/1.00e+00 11/7/1.00e+00

DIXMAANC 3000 22/22/1.00e+00 13/8/1.00e+00 13/8/1.00e+00

DIXMAAND 3000 25/25/1.00e+00 15/9/1.00e+00 15/9/1.00e+00

DIXMAANE 3000 342/342/1.00e+00 209/206/1.00e+00 231/228/1.00e+00

DIXMAANF 3000 270/270/1.00e+00 320/316/1.00e+00 272/268/1.00e+00

DIXMAANG 3000 253/253/1.00e+00 264/259/1.00e+00 252/247/1.00e+00

DIXMAANH 3000 323/323/1.00e+00 250/244/1.00e+00 210/204/1.00e+00

DIXMAANI 3000 1074/1074/1.00e+00 580/573/1.00e+00 413/400/1.00e+00

DIXMAANJ 3000 242/242/1.00e+00 125/121/1.00e+00 155/151/1.00e+00

DIXMAANK 3000 219/219/1.00e+00 136/131/1.00e+00 174/169/1.00e+00

DIXMAANL 3000 203/203/1.00e+00 105/99/1.00e+00 108/102/1.00e+00

DIXON3DQ 100 203/203/2.27e-23 2818/2258/4.42e-06 1308/1118/2.91e-06

DQDRTIC 5000 15/15/1.24e-15 48/40/2.14e-15 48/40/2.14e-15

EDENSCH 2000 42/42/1.20e+04 23/15/1.20e+04 22/14/1.20e+04

ENGVAL1 5000 24/24/5.55e+03 18/12/5.55e+03 18/12/5.55e+03

EXTROSNB 10000 6643/6643/3.00e-06 105/89/4.15e-13 232/215/5.55e-03

FMINSRF2 5625 543/543/1.00e+00 1005/901/1.00e+00 850/793/1.00e+00

FMINSURF 1024 395/395/1.00e+00 628/592/1.00e+00 583/565/1.00e+00

GENHUMPS 100 3047/3047/4.72e-10 15971/9226/1.7307e-10 12625/8489/3.08e-11

GENROSE 100 595/595/1.00E+00 1053/880/1.00e+00 1207/1039/1.00e+00

MOREBV 5000 73/73/8.18e-10 36/36/2.55e-09 36/26/2.55e-09

NONDIA 5000 26/26/1.16e-09 41/20/9.21e-09 42/22/5.81e-10

NONDQUAR 5000 6686/6686/1.76e-06 2593/2316/6.21e-05 1924/1815/6.82e-05

POWELLSG 5000 342/342/9.10e-07 106/97/4.38e-05 97/88/2.66e-05

POWER 10000 669/669/3.08e-08 14261/3413/1.44e-08 1087/815/7.53e-09

SCHMVETT 5000 26/26/-1.50e+04 15/13/-1.50e+04 14/12/-1.49e+04

SENSORS 100 42/42/-2.11e+03 32/25/-2.11e+03 34/24/-2.11e+03

SINQUAD 5000 30/30/-6.76e+06 27/17/-6.76e+06 31/22/-6.76e+06

SPARSINE 100 483/483/4.80e-12 628/601/3.39e-12 595/585/3.02e-12

SPARSQUR 10000 122/122/5.93e-09 47/27/1.69e-07 35/18/4.43e-07

SPMSRTLS 4999 370/370/1.70e-09 370/369/2.65e-09 287/286/1.67e-09

SROSENBR 5000 27/27/2.16e-11 33/20/8.70e-12 32/20/2.19e-12

J Math Model Algor (2015) 14:453–467 465

Table 2 (continued)

PR+ NASQTR NASCTR

Problem n Func/Iter/Fval Func/Iter/Fval Func/Iter/Fval

TOINTGSS 5000 7/7/1.00e+01 3/2/1.00e+01 3/2/1.00e+01

WOODS 4000 343/343/6.69e-09 370/356/3.17e-09 409/395/4.26e-09

final objective function value (Fval), and the CPU time required in seconds (Time). The sign
“ − ” means that when the number of iterations reaches 10000, the algorithm fails to stop.

From Table 1, we can see that the performance of NSCTR is competitive with NBCTR,
and NSCTR spends less CPU time for most test problems. What’s more, when the scale of
a problem is more larger, NBCTR is quite costly and slowly, even fails. So, it is not suitable
for large scale problems.

To analyze the feasibility and effectiveness of our simple conic trust region method for
large scale problems, in the second experiment, our experiments are performed on a set
of nonlinear unconstrained optimization problems from the CUTEr collection [2] with dif-
ferent dimensions ranging from 50 to 10000. The codes are written in Fortran 95 and in
double precision arithmetic. All tests are performed on ASUS laptop (Intel Core2 Duo,
2.93GHz, 2GRAM) under Fedora 8 Linux and the gfortran compiler(version 4.1.2) with
default options. The following three algorithms are implemented:

PR+: The conjugate gradient method in [8]. The Fortran codes (version 1.1) are
obtained from J. Nocedal’s web page at
http://www.ece.northwestern.edu/\simnocedal/software.html.

NAQTR: The nonmonotone adaptive trust region method based on simple quadratic
models proposed in [18].

NACTR: Our nonmonotone adaptive trust region method based on simple conic models,
i.e., Algorithm 1.

Table 2 presents the numerical results. We consider the number of function evaluations
and the number of iterations to compare the algorithms. Efficiency comparisons are made
using the performance profile introduced by Dolan and Moré[3]. It is obvious that NASCTR
seems to be more effective than PR+ and NASQTR in general (see Figs. 1 and 2).

0 1 2 3 4 5 6 7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Number of function evaluations

τ

P
(τ

)

PR+
NASCTR

0 1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Number of iterations

τ

P
(τ

)

PR+
NASCTR

Fig. 1 Comparison of PR+ and NASCTR

http://www.ece.northwestern.edu/sim nocedal/software.html.

466 J Math Model Algor (2015) 14:453–467

0 1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Number of function evaluations

τ

P
(τ

)

NASQTR
NASCTR

0 0.5 1 1.5 2 2.5 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Number of iterations

τ

P
(τ

)

NASQTR
NASCTR

Fig. 2 Comparison of NASQTR and NASCTR

6 Conclusions

In this paper, we propose an adaptive trust region method based on simple conic models for
unconstrained optimization and investigate its convergence. It only requires storage of first-
order information during the process. Initial numerical results show that our new method is
an improvement of the existing method and it is very suitable for large scale problems.

Acknowledgments The authors wish to thank two anonymous referees for their valuable comments and
suggestions. This work is supported by National Natural Science Foundation of China(11471145), Natu-
ral Science Fund For Colleges and Universities in Jiangsu Province(13KJB110007) and the Foundation of
Jiangsu University of Technology(KYY13012).

References

1. Andrei, N.: An unconstrained optimization test functions collection. Adv. Model. Optim. 10, 147–161
(2008)

2. Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, Ph.L.: CUTE: Constrained and Unconstrained Testing
Environment. ACM T. Math. Software 21, 123–160 (1995)

3. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program.
91, 201–213 (2002)

4. Deng, N.Y., Xiao, Y., Zhou, F.J.: Nonmontonic trust region algorithm. J. Optim. Theory Appl. 26, 259–
285 (1993)

5. Fu, J., Sun, W., Sampaio, D.: An adaptive approach of conic trust-region method for unconstrained
optimization problems. J. Appl. Math. Comput. 19, 165–177 (2005)

6. Grippo, L., Lamparillo, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM
J. Numer. Anal. 23, 707–716 (1986)

7. Gu, N., Mo, J.: Incorporating nonmonotone strategies into the trust region method for unconstrained
optimization. Comput. Math. Appl. 55, 2158–2172 (2008)

8. Gilbert, J.C., Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization.
SIAM J. Optim. 2, 21–42 (1992)

9. Liu, P., Jiao, B., Chen, L.: A nonmonotonic trust region method based on the conic model. Adv. Math.
38, 503–511 (2009)

10. Mo, J., Liu, C., Yan, S.: A nonmonotone trust region method based on nonincreasing technique of
weighted average of the successive function values. J. Comput. Appl. Math. 209, 97–108 (2007)

11. Qu, S., Jiang, S., Zhu, Y.: A conic trust-region method and its convergence properties. Comput. Math.
Appl. 57, 513–528 (2009)

J Math Model Algor (2015) 14:453–467 467

12. Sang, Z., Sun, Q.: A self-adaptive trust region method with line search based on a simple subproblem
model. J. Comput. Appl. Math. 232, 514–522 (2009)

13. Wu, Q.: Nonmonotone trust region algorithm for unconstrained optimization problems. Appl. Math.
Comput. 217, 4274–4281 (2010)

14. Zhang, H.C., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained
optimization. SIAM J. Optim. 14, 1043–1056 (2004)

15. Zhang, X., Zhang, J., Liao, L.: An adaptive trust region method and its convergence. Sci. China(Ser. A)
45, 620–631 (2002)

16. Zhou, Q., Sun, W.: An adaptive nonmonotonic trust region method with curvilinear searches. J. Comput.
Math. 24, 761–770 (2006)

17. Zhu, M., Xue, Y., Zhang, F.: A quasi-Newton type trust region method based on the conic model. Numer.
Math.: J. Chin. Univ. 17, 36–47 (1995)

18. Zhou, Q., Zhang, C.: A new nonmonotone adaptive trust region method based on simple quadratic
models. J. Appl. Math. Comput. 40, 111–123 (2012)

	An Adaptive Trust Region Method Based on Simple Conic Models
	Abstract
	Introduction
	New Algorithm
	Solution of the Simple Conic Trust Region Subproblem
	Convergence Analysis
	Numerical Results
	Conclusions
	Acknowledgments
	References

