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Abstract In the present paper, a newGamma cost function is proposed for an optimum allo-
cation in multivariate stratified random sampling with linear regression estimator. Extended
lexicographic goal programming is used for solution of multi-objective non-linear integer
allocation problem. A real data set is used to illustrate the application.
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1 Introduction

A good sampling plan plays a significant role in a statistical study and provides a close
approximation to the population parameters. The selection of appropriate sampling plan and
samples can produce more reliable parameters. The important consideration in a stratified
random sampling design is the sample size allocation. The sample is allocated in each stra-
tum with the criterion either to minimize variance of stratified sample mean for a fixed cost
or to minimize cost for the specified variance.

Stratified random sampling is used to increase precision following some cost mechanism.
Allocation of sample size nh to individual stratum becomes more complicated in a study
or survey while using stratified random sampling scheme. Mostly, the sampling efficiency
depends on how the sample size is allocated. In multivariate stratified sampling, individual
optimum allocation can be used when the characteristics are correlated but in case when the
characteristics are uncorrelated, a suitable criterion is needed for allocation of sample sizes
which should be optimum for all the characteristics in some sense.
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Cochran [6] highlighted that it is difficult to work out an allocation which is optimum for
all characteristics unless the characteristics are highly correlated and the deviation between
strata variances is very small. Compromised allocation may be suitable in such situation.
Holmberg [13] addressed the problem of compromised allocation in multivariate stratified
sampling by taking into consideration the minimization of sum of variances or coefficients
of variation of population parameters and minimization of sum of efficiency loss which may
result due to increase in variance because of using the compromise allocation.

The solution of a problem needs some compromise allocation criteria which makes
the allocation optimum for all characteristics. For example, an allocation which mini-
mizes the trace of variance-covariance matrix of the estimator of population mean or the
weighted average of variances or that maximizes the total relative efficiency of the estima-
tors as compared to corresponding individual optimum allocation is discussed in [28]. Many
authors include [1, 2, 5, 7–10, 14–19] and [29] used different compromise criterion to solve
allocation problem in stratified sampling.

In the existing literature described above, different estimators of population parameters
are used for same purpose but have less efficiency and precision. In the present paper,
regression estimator is used because of its efficiency and precision over other estimators
[24]. The rest of the paper is organized as follows: Section 2 explains the model for the cost
function. Problem formulation is discussed in Section 3. Section 4 explains lexicographic
programming. The results and discussions are presented in Section 5.

2 Gamma Cost Function

The cost of a survey is the major factor of sample allocation to various strata. Tschuprow
[27] and Neyman [21] proposed an allocation procedure that minimizes the variance of
sample mean under a linear cost function n = �L

h=1nh in a stratified random sampling.
Neyman [21] used lagrange multiplier optimization technique to get optimum sample size
for a study of a single variable. The linear cost function used in stratified sampling is given
as follows:

C = c0 +
L∑

h=1

chnh, (1)

where C denotes total budget available for a survey and ch(h = 1, 2, ..., L) represent mea-
surement per unit cost in the hth stratum, c0 represents fixed cost of survey, and nh is number
of sample units selected from the hth stratum.

Considering a quadratic cost function, including unit cost and traveling cost within strata
as Bearwood et al. [3] proposed, the shortest route among k randomly allocated sampling
units in the region is asymptotically proportional to

√
k for a large k. Varshney et al. [29]

used a quadratic cost function for large sample size given as follows:

C = c0 +
L∑

h=1

chnh +
L∑

h=1

τh

√
nh, (2)

where τh is travel cost for a unit within the hth stratum.
It is important to determine a true functional form of the cost function so that the appro-

priate form should be considered. In most of the situations, the per unit measurement
cost,travel cost within strata, reward to respondent, and labor cost are important factors in
a survey. A polynomial cost function accounting per unit measurement cost, traveling cost
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within strata, reward, and labor cost may be a good approximation to actual cost of a sur-
vey. Reward given to a respondent may reflect the preciousness of the respondent’s view
point, availability, approachability, time, etc., where labor cost may be a multiple of time
units consumed to collect the data from the respondents.

Now, if time taken to collect the data from a sampling unit follows an exponential distri-
bution ([12, 23], and [20]) with rate λ then probability distribution function for time used is
approximately f (x) = λ exp−λx ∀x > 0 and integer where λ = 1/(averge time). Sum
of independently identically exponentially distributed random variables follows a Gamma
distribution with parameters nh and λ [12, 23]. Moreover, this idea can be extended to the
whole sample from all strata, and the Gamma function will have the parameters

∑L
h=1 nh

and λ. Considering this, we propose the following cost function:

Ć =
L∑

h=1

ćhnh +
L∑

h=1

τhn
δ
h + ω

∫ ∞

0
λexp−λt (λt)

∑L
h=1 nh−1

(
∑L

h=1 nh − 1)!dt , (3)

where Ć = C − c0, ćh unit cost along with reward paid to respondents in strata h, t is time
taken by the interviewer, δ represents the effect of travel within strata, and Gamma function
represents the effect of labor cost. ćh = ch + rh, where rh is reward paid within the strata
h, equally to all nh units. If different rewards are paid to nh units within strata, we can
use average reward paid rh. Here, ω is the cost of unit time. The value of δ is determined
by solving problems using methods discussed by Winston [30], Taha [25], and Hiller and
Lieberman [11].

Cost occurs on labor time is replaced by aggregate expected cost using function

ω
∑L

h=1 E(Th) = ω
∑L

h=1

(∫ ∞
0 λexp−λt (λt)

∑L
h=1 nh−1

(nh−1)! dt

)
= ω

∑L
h=1

nh

λ
for different

choices of λ estimated from methods discussed in [23] and [12].

3 Extended Lexicographic Goal Programming

Mathematically speaking, we allow our generic goal program to have Q goals, which may
be j = 1, ..., Q. We also define njh decision variables. These are the factors over which
the decision maker(s) have control and define the decision to be made. Each goal has an
achieved value, Zj , on its underlying criterion. Zj is a function of the decision variables.
The whole situation may be expressed below:

Minimize Zj = f (njh)

Subject to

L∑

h=1

ćhnjh +
L∑

h=1

τhn
δ
jh + ω

∫ ∞

0
λexp−λt (λt)

∑L
h=1 njh−1

(
∑L

h=1 njh − 1)!dt ≤ Ć

2 ≤ njh ≤ Nh

njh are integers ∀ h = 1, 2, ..., L and j = 1, 2, ..., Q.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

Note that in this generic form, no assumptions have yet been made about the nature of
the decision variables of goals. The decision maker(s) sets a real target level for each goal
which is denoted by Z∗

j (generally an individual optimal of the j th objective). This then
leads to the basic formulation of the j th goal:

Ẑj + d−
j − d+

j = Z∗
j ,
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where d−
j and d+

j are negative and positive deviational variables. They are also called goal

variables. Ẑ compromised value of j th goal.
Sometimes, the set of goals are termed as soft constraints. That is, the decision maker(s)

desires to optimize each goal but if the goal is not achieved, then this does not imply that the
solution is infeasible. Goal programming also allows for an addition of a set of linear pro-
gramming style hard constraints whose violation will make the problem infeasible. These
are modeled by adding the condition

n̂j εF ,

where F is feasible region established by points in decision space and n̂j =
[nj1, nj2, ..., njL].

Finally, the unwanted deviational variables are put into an achievement function whose
purpose is to minimize them and ensure that solution is “as close as possible” to the set of
desired goals.

Lexicographic goal programming is termed as preemptive goal programming. The dis-
tinct feature of lexicographic goal programming is the existence of priority levels for
objectives. The objectives are prioritized in order of their importance. All unwanted devia-
tions are minimized at each priority level. The generic form the programme of compromise
allocation can be written as follows:

Minimize [f1(d−
j , d+

j ), f2(d
−
j , d+

j ), · · · , fQ(d−
j , d+

j )]
Subject to

Ẑj + d−
j − d+

j (≤ or ≥)Z∗
j

n̂j εF ,

njh are integers ∀ h = 1, 2, ..., L and j = 1, 2, ..., Q.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(5)

where f1, f2, · · · , fQ represent priority-wise functions and d−
j , d+

j are vectors of unwanted
deviations in the respective priority.

The other techniques are weighted goal programming (WGP), which formulate to min-
imize a composite objective function formed by a weighted sum of unwanted deviational
variables. The third is MINMAX (Chebyshev ) goal programming, which attempts to
minimize the maximum deviation from the desired goals.

In most of the cases, the goal programming variant is chosen without justifying the reason
for the selection. It then appears as the choice of the goal programming variant is related
to the analyst’s taste or to the capability of getting solution. However, the selection of the
right goal programming variant or mix of variants is a crucial matter if we want the goal
programming model to capture the essential features of the reality modeled [22].

Goal programming can be analyzed in terms of utility theory which always maximize
the utility. The utility function described from the given situation may be of any form, i.e.,
linear, non-linear, etc., and a certain satisfaction level of aspiration for a particular goal
can be set within a feasible space [22]. Using the programming techniques discussed in [4]
and [22], a goal program becomes equivalent to minimize the weighted discrepancy for a
certain aspiration level ∀ j = 1, 2, ..., Q goals within a feasible space. Now, if we consider
that negative deviational variable and positive deviational variable have different impact on
achievement function is a particular preference sequence. Let W1j and W2j represent the
weights of normalizing parameter and preferential of negative deviation variable (d−

j ) and
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positive deviation variable (d+
j ) on the j th goal, respectively, then following formulation is

discussed in [22]:

Minimize
Q∑

j=1

[fj (W1j d
−
j , W2j d

+
j )]

Subject to

Ẑj + d−
j − d+

j (≤ or ≥)Z∗
j

n̂j εF ,

njh are integers ∀ h = 1, 2, ..., L and j = 1, 2, ..., Q.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

The maximum utility function may subject to deviate from its desired aspiration level.
An Archimedean goal programming model has a clear utility interpretation, “it implies the
maximization of a separable and additive utility function in the Q attributes considered”
[22]. The MINMAX (Chebyshev ) structure corresponds to a utility function where the
maximum deviation is minimized. This structure is discussed in [26] and [22] as follows:

Minimize D

Subject to

[d−
j , d+

j ] ≤ D

Ẑj + d−
j − d+

j (≤ or ≥)Z∗
j

n̂j εF ,

njh are integers ∀ h = 1, 2, ..., L and j = 1, 2, ..., Q

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

where D is maximum deviation from utility.
The concept of extended goal programming, the utility maximization of the Archimedean

and MINMAX (Chebyshev) goal programming models, can be generalized as follows:

Minimize (1 − ρ)D + ρ

Q∑

j=1

[fj (W1j d
−
j , W2j d

+
j )]

Subject to

[W1j d
−
j , W2j d

+
j )] ≤ D

Ẑj + d−
j − d+

j (≤ or ≥)Z∗
j

n̂j εF ,

njh are integers ∀ h = 1, 2, ..., L and j = 1, 2, ..., Q

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

Parameter ρ assigns the importance attached to the minimization of the weighted sum of
unwanted deviation variables. Above formulation increase the feasible region by relaxing
the constraint (1 − ρ)[W1j d

−
j ,W2j d

+
j )] ≤ D imposed in [22] into [W1j d

−
j ,W2j d

+
j )] ≤ D

as 0 ≤ ρ ≤ 1. Integer nonlinear programming problems have a small feasible solution
grid and we are already compromising on allocating sample size. This will help us to find
feasible and optimal solution considering larger grid using this relaxation.
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4 Application in Stratified Random Sampling

Consider a finite population of size N which is divided into L mutually exclusive strata
such that N = ∑L

h=1 Nh. We draw a simple random sample of size nh independently from
each stratum such that

∑L
h=1 nh = n.

Let, we have a data Yjhi for j = 1, 2, ..., Q characteristics, h = 1, 2, ..., L strata with
i = 1, 2, 3, ...Nh sampling units in the hth stratum. Let ȳjh and x̄jh are the sample means,
Ȳjh and X̄jh are the strata mean of the study variable Yjhi and the auxiliary variable Xjhi ,
respectively, of the j th characteristics in the hth stratum. Let S2

yjh and S2
xjh are strata vari-

ances and Syxjh is strata covariance between the study and the auxiliary variables for the
j th characteristic in the hth stratum.

Let bjh = syxjh

s2xih

and βjh = Syxjh

S2
xjh

are sample and strata regression coefficients, respec-

tively, and Wh = Nh

N
is the known stratum weight. The traditional regression estimator is

ȳj,lr = ∑L
h=1 Whȳj,lrh, where ȳj,lrh = ȳjh + bjh(X̄jh − x̄jh).

The (MSE) of ȳj,lr is given by

MSE(ȳj,lr ) =
L∑

h=1

W 2
h

(
1

nh

− 1

Nh

)(
S2

yjh − 2βjhSyxjh + β2
jhS

2
xjh

)
, (9)

Ignoring the finite population correction, we have

MSE
(
ȳj,lr

) =
L∑

h=1

W 2
h 
́jh

nh

,

where


́jh = S2
yjh − 2βjhSyxjh + β2

jhS
2
xjh.

We use coefficient of variation instead of mean square error as it is free from units:

C.V
(
ȳj,lr

) =
√√√√MSE

(
ȳj,lr

)

Ȳ 2
j

or

C.V
(
ȳj,lr

) = Zj =
√√√√

L∑

h=1

´δjh

nh

, (10)

where

´δjh = W 2
h 
́jh

Ȳ 2
j

.

A sample size n = ∑L
h=1 nh(∀h = 1, 2, ..., L) is determined by using proposed Gamma

cost function in Eq. 3 as constraint by minimizing vector of coefficients of variation of the
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estimators of population mean for each characteristic Yj (j = 1, 2, ..., Q). This problem is
formulated in multi-objective multivariate integer non-linear programming as discussed by
many authors, e.g., [5, 9, 10, 16, 17, 19] and [28].

Minimize
(
Z1, Z2, ..., ZQ

)

Subject to

L∑

h=1

ćhnh +
L∑

h=1

τhn
δ
h + ω

∫ ∞

0
λexp−λt (λt)

∑L
h=1 nh−1

(
∑L

h=1 nh − 1)!dt ≤ Ć

2 ≤ nh ≤ Nh

nh are integers and nh ∈ F ∀ h = 1, 2, ..., L.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

5 Numerical Illustration

For numerical illustration, the data from agricultural census in Iowa state 1997 and 2002
conducted by the National Agricultural Statistics Service, USDA, Washington D.C. as
reported by [19] is used. Let we assume

Y1 denote the quantity of corn harvested in 2002,

Y2 denote the quantity of oats harvested in 2002,

X1 denote the quantity of corn harvested in 1997,

X1 denote the quantity of oats harvested in 1997.

The data summary is given as: Ȳ1 = 474973.90, X̄1 = 405654.19, Ȳ2 = 1576.25,
X̄2 = 2116.70

A complete formulation of the problem is shown in Appendix.

6 Results and Discussion

GAMS optimization software is used to solve these programs. The ´δjh = W 2
h

´
jh

Ȳ 2
j

is re-scaled

to

´δjh = 1000 × W 2
h 
́jh

Ȳ 2
j

to make possible optimum allocation; otherwise, program (GAMS) does not consider
changes in decision variables njh due to a very small fractional optimal solution.

The optimum allocation in four strata for first characteristic are 8, 28, 13, and 12, respec-
tively, with an aggregate cost of 19934 when an upper limit of 20,000 is fixed. Optimum
value of coefficient of variation (CV) is 0.271 which devalues (marginal value, i.e., ∂Z/∂x)
−0.002 for a unit rise in sample size from strata one and two, −0.001 and −0.004 for a
unit in strata three and four, respectively. Higher devaluation in CV was observed in stra-
tum four which indicates its preference of increased sample size if it is to be increased.
But strata one and two are fully part of our sample so stratum two is most favorable
at the current status. However, situation may be different if we change the cost of the
survey.
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When we run optimum allocation model for second characteristic, it allocates 4, 32,
45, and 10 units in four strata, respectively. Now, stratum three is fully part of our sample
so devaluation of −0.006 related to this stratum get no attention. The priority sequence
considering marginal values is established, which is strata one, two, and four with marginal
values −0.006, −0.005, and −0.003, respectively. The optimum values of CV is 0.959 with
cost level at 35472. These optimal results are obtained at cost less then 35500.

These nonlinear integer programming problems have limited feasible solution points. If
we discuss arbitrary cost structure, it is observed that optimal solution with reasonable allo-
cation in all strata starts from arbitrary cost between 19489 and 39056 for first characteristic
and 35044 to 39056 for second characteristics. Below these limits, programs return lower
bound solutions of decision variables and above these limits, a complete selection of strata.
Obviously, a lowest cost is needed for minimum integer allocation.

In multi-objective non-linear integer program, we set two additional constraints which
bound CVs below to their individual optimum values. Using ρ = 0.4 for unwanted sum of
deviations from individual optimum values and 1 − ρ = 0.6 for maximum deviation from
utility, we minimize the goal objective or achievement function under originally defined cost
and decision space (decision variables) constraints. The compromise optimum allocation for
four strata are 5, 33, 45, and 12, respectively. CVs are further reduced to 0.261 and 0.957 for
characteristics one and two, respectively, with a cost of 35902 (higher from both individual
optimum levels). This is because we have applied an upper bound on CVs. Changing the ρ,
different results are expected.
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Appendix

From the data given in numerical illustration and the method discussed in application in
stratified random sampling, we formulate the following model.

Individual Model for each Characteristic (j=1, 2, . . . , Q).

Our decision variables are nh (∀ h = 1, 2, ..., L). Values of ćh and τh are replaced from
Table 1 ∀ h = 1, 2, ..., L. δ replaced with arbitrary values 0.5 and 2.0 (i.e., square-root
and square, as both the references in literature), ω is the cost for a unit time of labor
(say 100, 150, etc. per hour per individual only for solution purpose. One can change
all these values with their actual values in his/her study). Estimates of Gamma func-

tion
∫ ∞
0 λexp−λt (λt)

∑L
h=1 njh−1

(
∑L

h=1 njh−1)! dt replaced with its expected time used
∑L

h=1 E(Th) =
∑L

h=1

(∫ ∞
0 λexp−λt (λt)

∑L
h=1 njh−1

(njh−1)! dt

)
= ∑L

h=1
njh

λ
for different choices of λ where λ =

1
avg time

taken to collect data for response Yjhi (say 15 min, 20 min, etc. on the average
from an individual). In the above formulation, cost constraint becomes,

L∑

h=1

ćhnjh +
L∑

h=1

τhn
δ
jh + ω

L∑

h=1

njh

λ
≤ Ć
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Min
(
Zj

) = C.V
(
ȳj,lrs

) =
√√√√MSE

(
ȳj,lrs

)

Ȳ 2
j

=
√√√√

L∑

h=1

W 2
h 
́jh

Ȳ 2
j njh

=
√√√√

L∑

h=1

´δjh

njh

Min (Z1) =
√

[0.000066 0.000809 0.001212 0.000332] ∗ [1/n11 1/n12 1/n13 1/n14]T

Min (Z2) =
√

[0.000181 0.009411 0.02339 0.000610] ∗ [1/n21 1/n22 1/n23 1/n24]T
Subject to

[120 68 56 95] ∗ [n11 n12 n13 n14]T + [8 6 5 7] ∗
[
n0.511 n0.512 n0.513 n0.514

]T + 100
L∑

h=1

njh

4
≤ Ć

2 ≤ njh ≤ Nh

njh are integers ∀ h = 1, 2, ..., L and j = 1, 2, ...,Q

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Multi-Objective Model for Characteristics (j = 1, 2, ..., Q).

From the above models, we obtain optimal values Z∗
1 and Z∗

2 for two characteristics j = 1
and j = 2. Selecting an arbitrary value(s) of ρ (say 0.1,0.2, 0.3,.....,1.0), we establish the
following model (ρ = 0.4),

Minimize 0.6D + 0.4(d+
1 + d+

2 )

Subject to

d+
1 ≤ D

d+
2 ≤ D

√
[0.000066 0.000809 0.001212 0.000332] ∗ [1/n11 1/n12 1/n13 1/n14]T − d+

1 + d+
2 ≤ Z∗

1
√

[0.000181 0.009411 0.02339 0.000610] ∗ [1/n11 1/n12 1/n13 1/n14]T − d+
1 + d+

2 ≤ Z∗
2

[120 68 56 95] ∗ [n11 n12 n13 n14]T + [8 6 5 7] ∗
[
n0.511 n0.512 n0.513 n0.514

]T + 100
L∑

h=1

njh

4
≤ Ć

njh are integers ∀ h = 1, 2, ..., L and j = 1, 2, ...,Q.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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