
J Math Model Algor (2015) 14:363–392
DOI 10.1007/s10852-014-9269-5

Partial Trade Credit Policy of Retailer in Economic
Order Quantity Models for Deteriorating Items
with Expiration Dates and Price Sensitive Demand

Gour Chandra Mahata

Received: 10 August 2014 / Accepted: 17 November 2014 / Published online: 19 April 2015
© Springer Science+Business Media Dordrecht 2015

Abstract In a supplier-retailer-customer supply chain, a credit-worthy retailer frequently
receives a permissible delay on the entire purchase amount without collateral deposits from
his/her supplier (i.e., an up-stream full trade credit). By contrast, a retailer usually requests
his/her credit-risk customers to pay a fraction of the purchase amount at the time of placing
an order, and then grants a permissible delay on the remaining balance (i.e., a down-stream
partial trade credit). Also, in selecting an item for use, the selling price of that item is one
of the decisive factors to the customers. It is well known that the higher selling price of
item decreases the demand rate of that item where the lesser price has the reverse effect.
Hence, the demand rate of an item is dependent on the selling price of that item. In addition,
many products such as fruits, vegetables, high-tech products, pharmaceuticals, and volatile
liquids not only deteriorate continuously due to evaporation, obsolescence and spoilage but
also have their expiration dates. However, only a few researchers take the expiration date
of a deteriorating item into consideration. This paper proposes an economic order quantity
model to allow for: (a) the strategy that supplier offers retailer a full trade credit policy
whereas the retailer offers their customers a partial trade credit policy, (b) selling price
dependent demand rate, (c) a profit maximization objective and (d) deteriorating items not
only deteriorate continuously but also have their expiration dates. For the objective function
sufficient conditions for the existence and uniqueness of the optimal solution are provided.
An efficient algorithm is designed to determine the optimal pricing and inventory policies
for the retailer. Finally, numerical examples are presented to illustrate the proposed model
and the effect of key parameters on optimal solution is examined.
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1 Introduction

Today’s research is interested in focusing on supply chain models which have real life appli-
cations. In real life business via share marketing, trade credit financing becomes a powerful
tool to improve sales and profits in an industry. Bhigham [5] gave financial management
term “net credit”. “Net credit” means a supplier/retailer offers the retailer/customer a fixed
time period, say 30 days, to settle the total amount against the purchases made without
penalty for his retailer/customer to increase sales and reduce on-hand stock. However, if
the payment is not settled within the allowable trade credit period, the interest is charged
on the unsold stock under the agreed terms and conditions. During the delay period (i.e.
credit period) the retailer can accumulate revenue on sales and earn interest on that revenue
via share market investment or banking business and delay the payment up to the last day
of the delay period offered by the supplier. This permissible delay in payments reduces the
cost of holding stock because it reduces the amount of capital investment in stock for the
duration of the offered trade credit. Teng [42] illustrated two more benefits of trade credit
policy: (1) it attracts new customers who consider trade credit policy to be a type of price
reduction; and (2) it should cause a reduction in sales outstanding, since some established
customer will pay more promptly in order to take advantage of trade credit more frequently.
However, the strategy of granting credit terms adds an additional dimension of default risk
to the supplier [45].

According to Teng et al. [45], the strategy of granting credit terms adds an additional
dimension of default risk to the supplier and/or the retailer. In commercial practice, to reduce
non-payment risks, a retailer frequently offers a partial trade credit to its credit risk customer
who must make partial payment of the purchase amount at the time of placing an order and
settle the unpaid balance at the end of credit period.

In supply chain management, it is too difficult to preserve deteriorating items for all
business sectors. Many products such as fruits, vegetables, medicines, high-tech products,
pharmaceuticals, and volatile liquids not only deteriorate continuously due to evaporation,
obsolescence and spoilage but also have their expiration dates, i.e., the product will have a
maximum lifetime which is time bound. However, only a few researchers take the expira-
tion date of a deteriorating item into consideration. In the present article, we consider the
replenishment policies for inventory which are subject to deteriorate continuously and also
have their expiration dates.

On the other hand, to take the decision about procuring of items, inventory management
is generally influenced by pricing of that item. Again, in selecting an item for use, the selling
price of that item is one of the decisive factors to the customers. It is well known that the
higher selling price of item decreases the demand rate of that item where the lesser price has
the reverse effect. Hence, the demand rate of an item is dependent on the selling price of that
item. Incorporating this effect, we investigate the dependency on pricing for deteriorating
items with their expiration dates.

In this study, we propose an EOQ model for deteriorating items with expiration dates
was developed in a supply chain with up-stream full trade credit and down-stream partial
trade credit financing. As demand for products can evidently be affected by sale price, we
assume that the demand rate is linked to selling price. Under these conditions, we model
the retailer’s inventory system as profit maximization problem to determine the retailer’s
optimal replenishment and pricing policy. We then construct and prove several theoretical
results to characterize the optimal solution. An easy-to-use algorithm is designed to deter-
mine the optimal pricing and inventory policies for the proposed model. Finally, numerical
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examples are presented to illustrate the proposed model and the effect of key parameters on
optimal solution is studied.

2 Literature Review

In practice, the seller usually provides to her/his buyer a permissible delay in payments to
stimulate sales and reduce inventory. During the credit period, the buyer can accumulate
the revenue and earn interest on the accumulative revenue. However, if the buyer cannot
pay off the purchase amount during the credit period then the seller charges to the buyer
interest on the unpaid balance. Due to significant practical relevance of trade credit policy,
numerous inventory models under the condition of delay in payments have been discussed.
The models of Goyal [16], Aggarwal and Jaggi [1], Shinn [38], Liao et al. [28], Teng [42],
Chung and Huang [12], Ouyang et al. [35], Mahata and Goswami [29], Jaber [23], Sana
and Chaudhuri [36], Chang et al. [6], Balkhi [3], Teng et al. [47], Min et al. [34], Zhou and
Zhou [54] are worth mentioning in this direction.

Due to instability of financial market it is crucial for enterprises to receive trade credit
from their suppliers in order to pre-finance production, but it is also important to extend
trade credit in order to sell goods to their constrained customers. This succession of new
credit relationship is usually referred to by the generic term “two-level trade credit”. Two-
level of trade credit refers that the supplier provides the permissible delay period M (i.e.
the supplier trade credit), to the retailer, and the retailer in turn offers the trade credit period
N , to its customers (i.e. the retailer trade credit). Huang [18] and Biskup et al. [4] have
studied an inventory model under two-level trade credit policy assuming that the credit
period offered by the retailer is shorter than the credit period offered by the supplier. Huang
[19, 20] extended Huang [18] by incorporating the limited storage space and finite replen-
ishment rate, respectively. Later, Teng and Goyal [46] proposed a generalized formulation
of Huang, 2003, 2006 Huang’s models [18, 19] and Teng and Chang [44] modified Huang
[20] wherein the assumption that the trade credit offered by the supplier is longer than trade
credit offered by the retailer is relaxed.

In daily life, the deteriorating of goods is a frequent and common phenomenon. Incor-
porating this feature in model formulation, Chung and Huang [11] amended Huang [18]
by developing two-warehouse inventory model for deteriorating items under trade credit
financing. Min et al. [33] formulated an inventory model for deteriorating items under
stock-dependent demand and two-level trade credit to study the retailer’s optimal order-
ing policy. Soni [39] extended the work of Min et al. [33] by incorporating a constraint
on the maximum inventory level. Again, it is usually observed that customers pay reason-
able prices of commodity on the basis of its quality and longevity. Hence, pricing strategy
becomes one of the most important aspect for business organizations to sell deteriorating
inventory and enhance revenues. In this context, Thangam and Uthayakumar [48] pre-
sented two-echelon trade credit financing model for perishable items to derive optimal credit
period, selling price and replenishment time with price and credit linked demand, wherein
the authors extended the work of Jaggi et al. [24] by relaxing the assumption that the
retailer’s trade credit period (M) is not necessarily longer than the customer’s trade credit
period (N). Dye and Ouyang [14] established EOQ model for deteriorating items to deter-
mine optimal selling price, replenishment number and replenishment schedule with time
and price demand under two levels of trade credit policy. Other interesting articles can be
found in Mahata and Goswami [30], Mahata and Mahata [31], Tsao [49], Chang et al. [6],
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Kreng and Tan [26, 27], Ho [17], Chung [13], and their references. All the above mentioned
papers did not consider the fact that deteriorating items have their expiration dates. In fact,
the study of deteriorating items with expiration dates has received a relatively little atten-
tion in the literature. Currently, Bakker et al. [2] provided an excellent review of inventory
systems with deterioration since 2001.

According to Teng et al. [45], the strategy of granting credit terms adds an additional
dimension of default risk to the supplier and/or the retailer. In commercial practice, to
reduce non-payment risks, a retailer frequently offers a partial trade credit to its credit
risk customer who must make partial payment of the purchase amount at the time of
placing an order and settle the unpaid balance at the end of credit period. Huang and
Hsu [22] developed an economic order quantity (EOQ) model in which retailer gets full
trade credit but offers partial trade credit to the customer. Teng [43] established optimal
ordering policies for a retailer who offers distinct (i.e. full or partial trade credit) trade
credits to its good and bad customers. Jaggi and Verma [25] formulated an EOQ model
under partial trade credit financing for a two level of supply chain i.e. the retailer as
well as the customer must pay a portion of the purchase amount at the time of placing
an order. Soni and Patel [40] developed an integrated inventory system involving vari-
able production and defective items under retailer partial trade credit policy to establish
best policy for retail price, the replenishment cycle and the number of shipment from
the supplier to the retailer. Mahata [32] developed an inventory model within economic
production quantity (EPQ) framework for exponentially deteriorating items under retailer
partial trade credit policy. Feng et al. [15] developed the retailer’s inventory system within
the EPQ framework to determine the retailer’s optimal inventory cycle time and opti-
mal payment time under cash discount and partial trade credit. Chen et al. [9] proposed
an economic production quantity (EPQ) model for deteriorating items in a supply chain
with both up-stream and down-stream trade credit financing. Wu and Chan [50] estab-
lished optimal lot-sizing policies for a retailer who sells a deteriorating item to credit-risk
customers by offering partial trade credit to reduce his/her risk. Chen and Teng [8] pro-
posed an EOQ model for a retailer to obtain its optimal ordering policy when his/her
product not only deteriorates continuously but also has a maximum lifetime and his/her
supplier offers a permissible delay in payments. Wu et al. [51] built an EOQ model for
the retailer to obtain its optimal credit period and cycle time in a supplier-retailer-buyer
supply chain in which the retailer receives an up-stream trade credit from the supplier
while offers a down-stream trade credit to the buyer with deteriorating items not only dete-
riorate continuously but also have their expiration dates and down-stream credit period
increases not only demand but also opportunity cost and default risk. Recently, Seifert et
al. [37] presented an excellent review of trade credit financing. Some relevantly recent
articles in trade credit financing were developed by Chern et al. [10], Taleizadeh [41],
and Yang et al. [53].

3 Notations and Assumptions

The following notations and assumptions are used throughout.

3.1 Notations

A The ordering cost per order in dollars.
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h The inventory holding cost per dollar per unit per year excluding interest
charges.

c The unit purchasing cost in dollars.
s The unit selling price in dollars with (s > c).

M The retailer’s trade credit period offered by the supplier in years.
N The customer’s trade credit period offered by the retailer in years.
α The fraction of the purchase cost in which the customer must pay the retailer at

the time of placing an order with 0 ≤ α ≤ 1.
1 − α The portion of the purchase cost for which the retailer offers its customer a

permissible delay of N periods.
Ie The interest earned per dollar per year.
Ic The interest charged per dollar in stocks per year.
t The time in years.

I (t) Inventory level in units at time t .
θ(t) The time-varying deterioration rate at time t , where 0 ≤ θ(t) < 1.

m The expiration date or maximum lifetime in years of the deteriorating item.
T Replenishment cycle time in years (a decision variable).
Q The order quantity.

T P (s, T ) The annual total profit in dollars of inventory system, which is a function of s

and T .

3.2 Assumptions

Next, the following assumptions are made to establish the mathematical inventory model.

1. The market demand for the item is assumed to be sensitive to the customer’s retail
prices and is defined as D(s) = as−b, which is a decreasing function of the retail price
s; where a(> 0) is a scaling factor and b(> 1) is a price elasticity coefficient. For
notational simplicity, D(s) and D will be used interchangeably in this paper.

2. All deteriorating items have their expiration dates. The physical significance of the
deterioration rate is the rate to be closed to 1 when time is approaching to the maximum
lifetime m. The items deteriorates at a rate θ(t) which depends on time as follow:

θ(t) = 1

1 + m − t
, 0 ≤ t ≤ T ≤ m. (1)

Note that it is clear from Eq. 1 that the replenishment cycle time T must be less than or
equal to m, and the proposed deterioration rate is a general case for non-deteriorating
items, in which m → ∞ and θ(t) → 0.

3. During the credit period offered by the supplier, the retailer uses the sales revenue to
earn interest at a rate Ie. At the end of the permissible delay period, the retailer pays the
purchasing cost to the supplier and pays interest charges at a rate of Ic for the items in
stock or the items already sold but have not been paid for yet.

4. Replenishment rate is instantaneous.
5. In today’s time-based competition, we may assume that shortages are not allowed to

occur.
6. Time horizon is infinite.
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4 Model Formulation

The retailer receives Q units at t = 0. Hence, the inventory starts with Q units at t = 0,
and then gradually depletes to zero at t = T due to the combination effect of demand and
deterioration. Hence, the inventory level is governed by the following differential equation:

dI (t)

dt
+ θ(t)I (t) = −D; 0 ≤ t ≤ T , (2)

with the boundary condition I (T ) = 0. Solving the differential equation (Eq. 2), we obtain
obtain the inventory level at time t as

I (t) = D(1 + m − t) ln

(
1 + m − t

1 + m − T

)
, 0 ≤ t ≤ T . (3)

As a result, the retailer’s order quantity is

Q = I (0) = D(1 + m) ln

(
1 + m

1 + m − T

)
. (4)

The annual total relevant cost consists of the following elements:

1. Annual ordering cost is A
T
.

2. Annual purchase cost per cycle is c
T

I (0) = cD(1+m)
T

ln
(

1+m
1+m−T

)
3. Annual stock holding cost (excluding interest charges)

= h

T

∫ T

0
I (t)dt

= hD

T

[
(1 + m)2

2
ln

(
1 + m

1 + m − T

)
+ T 2

4
− (1 + m)T

2

]
.

4. Based on the values of M (i.e., the time at which the retailer must pay the supplier to
avoid interest charge), T (i.e., the replenishment cycle time), and T + N (i.e., the time
at which the retailer receives the payment from the last customer), we have to examine
following three situations: (1) 0 < T + N ≤ M , (2) T ≤ M ≤ T + N , and (3)
M ≤ T . Note that different approaches are available in existing literature to calculate
the interest earned and interest charged. In this paper, we have employed Teng [43]
approach throughout in this article.

Situation 1 0 < T + N ≤ M (i.e., 0 < T < M − N , see Fig. 1)
In this case, the retailer receives all returns from the customers before paying the pur-

chase amount to the supplier. Consequently, the retailer does not incur interest charges in
this case. On the other hand, interest earned per cycle is

Ie

T

[(∫ T

0
αsDtdt + αsDT (M − T )

)

+
(∫ T +N

N

(1 − α)sD(t − N)dt + (1 − α)sDT (M − T − N)

)]

= sIeD

2
[T + 2α(M − T ) + 2(1 − α)(M − T − N)] .
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Time
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Time
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Interest 
earned 

Interest 
earned 

Fig. 1 N ≤ M and T ≤ T + N ≤ M

Situation 2 T ≤ M ≤ T + N (i.e., M − N ≤ T ≤ M , see Fig. 2)

By the time M , the retailer has two sources to accumulate revenue in an account that
earns Ie per dollar per year: (1) from the portion of partial payment (starting 0 through M)
and (2) from the portion of delayed payment (starting N through M). Therefore, the interest
earned per cycle is

Ie

T

[∫ T

0
αsDtdt + αsDT (M − T ) +

∫ M

N

(1 − α)sD(t − N)dt

]

= sIeD

2T

[
αT 2 + 2αT (M − T ) + (1 − α)(M − N)2

]
.

Since M ≤ T + N , the retailer has to finance all the items sold after M − N at an interest
charged Ic per dollar per year. Consequently, interest charged per cycle is

cIc

sT

[∫ T +N

M

(1 − α)sD(t − M)dt

]
= (1 − α)cIcD

2T
(T + N − M)2.

Situation 3 M ≤ T (see Fig. 3)

RevenueeRevenuee

Time

Interest 
earned 

MT0 M T + NN0

Credit PaymentInstant Payment

Interest PayableInterest 
earned 

Fig. 2 N ≤ M and T ≤ M ≤ T + N
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Fig. 3 N ≤ M and M ≤ T

Again, the retailer can accumulate revenue from two sources: (1) from the portion of
partial payment (starting 0 throughM) and (2) from the portion of delayed payment (starting
N through M). Therefore, the interest earned per cycle is

Ie

T

[∫ M

0
αsDtdt +

∫ M

N

(1 − α)sD(t − N)dt

]
= sIeD

2T

[
αM2 + (1 − α)(M − N)2

]
.

As M ≤ T , the retailer needs to finance (1) all items sold after M for the portion of instant
payment and (2) all items sold after M − N for the portion of credit payment at an interest
charged Ic per dollar per year. Hence, the interest charged per cycle is

cIc

sT

[∫ T

M

αsD(1 + m − t) ln

(
1 + m − t

1 + m − T

)
dt +

∫ T +N

M

(1 − α)sD(t − N)dt

]

= cIcD

T

[
α

{
(1 + m − M)2

2
ln

(
1 + m − M

1 + m − T

)
+ T 2 − M2

2
− (1 + m)(T − M)

2

}

+ (1 − α)

2
(T + N − M)2

]
.

Therefore, the total profit per unit time for the retailer when N ≤ M is given by,

T P1(s, T ) =
⎧⎨
⎩

T P11(s, T ), if 0 < T ≤ M − N

T P12(s, T ), if M − N < T ≤ M

T P13(s, T ), if T ≥ M

(5)
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Fig. 4 N ≥ M and T ≤ M

where

T P11(s, T ) = sD − cD(1 + m)

T
ln

(
1 + m

1 + m − T

)
− A

T
− hD

T

[
(1 + m)2

2
ln

(
1 + m

1 + m − T

)

+T 2

4
− (1 + m)T

2

]
+ sDIe

2
[T + 2α(M − T ) + 2(1 − α)(M − T − N)] , (6)

T P12(s, T ) = sD − cD(1 + m)

T
ln

(
1 + m

1 + m − T

)
− A

T
− hD

T

[
(1 + m)2

2
ln

(
1 + m

1 + m − T

)

+T 2

4
− (1 + m)T

2

]
+ sDIe

2T

[
αT 2 + 2αT (M − T ) + (1 − α)(M − N)2

]

− (1 − α)cIcD

2T
(T + N − M)2, (7)

T P13(s, T ) = sD − cD(1 + m)

T
ln

(
1 + m

1 + m − T

)
− A

T
− hD

T

[
(1 + m)2

2
ln

(
1 + m

1 + m − T

)

+T 2

4
− (1 + m)T

2

]
+ sIeD

2T

[
αM2 + (1 − α)(M − N)2

]

− cIcD

T

[
α

{
(1 + m − M)2

2
ln

(
1 + m − M

1 + m − T

)
+ T 2 − M2

2

− (1 + m)(T − M)

2

}
+ (1 − α)

2
(T + N − M)2

]
. (8)

Case 2 N ≥ M

Based on the values of M and T , we have to explore following two situations: (a) Situation
1: T ≤ M and (b) Situation 2: T ≥ M .

(a) Situation 1. T ≤ M (see Fig. 4)
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During [0, M], the retailer accumulates his revenue in interest bearing account at the rate
Ie per dollar per year. As a result, the interest earned by the retailer is

Ie

T

[∫ T

0
αsDtdt + αsDT (M − T )

]
= αsIeD

2
[T + 2(M − T )] .

The retailer must arrange the finance for (1) paying the supplier at the end of trade credit M
and (2) the items already sold but not paid for till T +N . The resultant interest charged will
be

cIc

sT

[
(1 − α)sDT (N − M) + (1 − α)sD

∫ T +N

N

(T + N − t)dt

]

= (1 − α)cIcD

2
[T + 2(N − M)] .

(b) Situation 2: T ≥ M (see Fig. 5)

In this case, the retailer can accumulate interest for portion of the partial payment till M
at the rate Ie per dollar per year. Therefore the interest earned per cycle will be

Ie

T

∫ M

0
αsDT dt = αsIeDM2

2T
.

The retailer must finance for (1) the items sold after M , (2) the entire amount of the delayed
payment at the end of the trade credit M , and (3) the items already sold but not yet paid for
till T + N . So, the interest charged per cycle is

cIc

sT

[∫ T

M

αsD(1 + m − t) ln

(
1 + m − t

1 + m − T

)
dt

+(1 − α)sDT (N − M) + (1 − α)sD

∫ T +N

N

((T + N) − t)dt

]

= cIcD

T

[
α

{
(1 + m − M)2

2
ln

(
1 + m − M

1 + m − T

)
+ T 2 − M2

2
− (1 + m)(T − M)

2

}

+(1 − α)

{
T (N − M) + T 2

2

}]
.

Revenue

Interest 
Payable 

T T + NM N
Time

0

Credit Payment 

Interest 
earned 

Interest 
Payable 

Time
TM0

Instant Payment 

Revenue

Fig. 5 N ≥ M and T ≥ M
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Consequently, the total profit per unit time for the retailer when N ≥ M is

T P2(s, T ) =
⎧⎨
⎩

T P21(s, T ), if T ≤ M

T P22(s, T ), if T ≥ M

(9)

where

T P21(s, T ) = sD − cD(1 + m)

T
ln

(
1 + m

1 + m − T

)
− A

T
− hD

T

[
(1 + m)2

2
ln

(
1 + m

1 + m − T

)

+T 2

4
− (1 + m)T

2

]
+ αsIeD

2
[T + 2(M − T )] − (1 − α)cDIc

2
[T + 2(N − M)] ,

(10)

T P22(s, T ) = sD − cD(1 + m)

T
ln

(
1 + m

1 + m − T

)
− A

T
− hD

T

[
(1 + m)2

2
ln

(
1 + m

1 + m − T

)

+T 2

4
− (1 + m)T

2

]
+ αsDIeM

2

2T
− cDIc

T

[
α

{
(1 + m − M)2

2
ln

(
1 + m − M

1 + m − T

)

+T 2 − M2

2
− (1 + m)(T − M)

2

}
+ (1 − α)

{
T (N − M) + T 2

2

}]
. (11)

Hence our problem is,

maximize T P (s, T ) =
{

T P1(s, T ), if N ≤ M

T P2(s, T ), if N ≥ M
(12)

where T Pi(s, T ), for i = 1, 2 is defined in Eqs. 5 and 9 respectively.
It is to be noted that, for fixed s, T P11(s,M − N) = T P12(s,M − N), T P12(s,M) =

T P13(s,M) and T P21(s,M) = T P22(s,M). Hence, for fixed s, T Pi(s, T ) is a continuous
function on T > 0, for i = 1, 2.

5 Theoretical Results and Optimal Solution

In this section, we discuss how to obtain the optimal ordering cycle length T ∗, as well as
the optimal selling price s∗, in the following two cases.

5.1 Optimal Solution for the Case of N ≤ M

For fixed s, the first order partial derivative of T P11(s, T ) with respect to T is

∂T P11(s, T )

∂T
= 1

T 2

[
A+(1+m)D

{
c + h(1 + m)

2

} {
ln

(
1 + m

1 + m − T

)
− T

1 + m − T

}]

−1

4
(h + 2sIe)D. (13)

Motivated by Eq. 13, we assume an auxiliary function, say F11(T ), T ∈ (0,M −N ], where

F11(T ) = A + (1 + m)D

{
c + h(1 + m)

2

} {
ln

(
1 + m

1 + m − T

)
− T

1 + m − T

}]

−1

4
(h + 2sIe)DT 2. (14)
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Differentiating F11(T ) with respect to T ∈ (0,M − N ], we have
dF11(T )

dT
= −

[
(1 + m)DT

(1 + m − T )2

{
c + h(1 + m)

2

}
+ 1

2
(h + 2sIe)DT

]
< 0. (15)

Thus, F11(T ) is strictly decreasing function with respect to T ∈ (0,M − N ]. Moreover,
limT →∞ F11(T ) = −∞, F11(0) = A > 0 and

F11(M − N) = A + (1 + m)D

[
c + h(1 + m)

2

] [
ln

(
1 + m

1 + m − M + N

)
− M − N

1 + m − M + N

]

−1

4
(h + 2sIe)D(M − N)2. (16)

If F11(M − N) ≤ 0 then by Intermediate value Theorem there exists unique value of T

(say T11 ∈ (0,M − N ]) such that F11(T11) = 0.
Conversely, if F11(M − N) > 0, we have F11(T ) > 0, for all T ∈ (0,M − N ] which

implies T P11(s, T ) is strictly increasing function of T ∈ (0,M − N ]. Hence, F11(T ) has a
maximum value at the boundary point T = M − N . For convenience, let

�1 = A + (1 + m)D

[
c + h(1 + m)

2

] [
ln

(
1 + m

1 + m − M + N

)
− M − N

1 + m − M + N

]

−1

4
(h + 2sIe)D(M − N)2. (17)

Based on above arguments, we obtain the following lemma.

Lemma 1 Let T ∗
11 denotes the optimal value of T ∈ (0,M − N ]. For fixed s, the profit

function T P11(s, T ) is concave and reaches its global maximum at point T = T ∗
11.

Proof From above discussion, T ∗
11 which maximizes profit function T P11(s, T ) for fixed

s, is given by

T ∗
11 =

{
T11, if �1 ≤ 0

M − N, if �1 > 0
(18)

At point T = T ∗
11

[
∂2T P11(s, T )

∂T 2

]
T =T ∗

11

=− 1

T ∗
11

[
(1 + m)D

(1 + m − T ∗
11)

2

{
c+ h(1 + m)

2

}
+ 1

2
(h+2sIe)D

]
< 0.

Thus, T ∗
11 gives global maximum for the profit function T P11(s, T ). This completes the

proof.

On the other hand, for fixed T ∗
11 defined in Eq. 6 consider the first order partial derivative

of T P11(s, T
∗
11) with respect to s which gives

∂T P11(s, T
∗
11)

∂s
= − (b − 1)a

sb
+ bδ1

sb+1
+ bδ2

sb+1
− (b − 1)δ3

sb
, (19)
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where

δ1 = ca(1 + m)

T ∗
11

ln

(
1 + m

1 + m − T ∗
11

)
,

δ2 = ha

T ∗
11

[
(1 + m)2

2
ln

(
1 + m

1 + m − T ∗
11

)
+ (T ∗

11)
2

4
− (1 + m)T ∗

11

2

]

δ3 = aIe

2

[
T ∗
11 + 2α(M − T ∗

11) + 2(1 − α)(M − T ∗
11 − N)

]
.

Equating Eq. 19 with zero and solving for s (denoted by s∗
11) we obtain

s∗
11 = b

b − 1

(
δ1 + δ2

a + δ3

)
. (20)

Furthermore, at point s = s∗
11,[

∂2T P11(s, T
∗
11)

∂s2

]
s=s∗

11

= 1 − b

(s∗
11)

b+1
(a + δ3) < 0. (21)

Thus, s∗
11 is the global optimal which maximizes profit function T P11(s, T

∗
11) for fixed T ∗

11.
That is, we have following result.

Lemma 2 For fixed T ∗
11 ∈ (0,M − N ] the profit per unit time T P11(s, T

∗
11) has a unique

global maximum value at the point s = s∗
11, which is shown as in Eq. 20.

Next for fixed s, the first order partial derivative of T P12(s, T ) with respect to T is

∂T P12(s, T )

∂T
= 1

T 2

[
A + (1 + m)D

{
c + h(1 + m)

2

} {
ln

(
1 + m

1 + m − T

)
− T

1 + m − T

}
− hDT 2

4

− sDIe

2

{
αT 2 + (1 − α)(M − N)2

}
− (1 − α)cDIc

2

{
T 2 − (M − N)2

} ]
. (22)

Motivated by Eq. 22, we assume an auxiliary function, say F12(T ), T ∈ [M − N,M], we
have

F12(T ) = A + (1 + m)D

{
c + h(1 + m)

2

}{
ln

(
1 + m

1 + m − T

)
− T

1 + m − T

}
− hDT 2

4

− sDIe

2

{
αT 2 + (1 − α)(M − N)2

}
− (1 − α)cDIc

2

{
T 2 − (M − N)2

}
. (23)

Differentiating F12(T ) with respect to T ∈ [M − N,M], we have
dF12(T )

dT
=−

[
(1 + m)DT

(1 + m − T )2

{
c+ h(1 + m)

2

}
+ 1

2
{h + 2αsIe + 2(1 − α)cIc} DT

]
< 0.

(24)
Thus, F12(T ) is strictly decreasing function with respect to T ∈ [M − N,M]. Moreover,
limT →∞ F12(T ) = −∞,

F12(M − N) = A + (1 + m)D

[
c + h(1 + m)

2

] [
ln

(
1 + m

1 + m − M + N

)
− M − N

1 + m − M + N

]

−1

4
(h + 2sIe)D(M − N)2. (25)
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and

F12(M) = A + (1 + m)D

[
c + h(1 + m)

2

] [
ln

(
1 + m

1 + m − M

)
− M

1 + m − M

]
− 1

4
hDM2

− sDIe

2

{
αM2 + (1 − α)(M − N)2

}
− (1 − α)cDIc

2

{
M2 − (N − M)2

}
. (26)

If

(1 + m)D

[
c + h(1 + m)

2

] [
M − N

1 + m − M + N
−ln

(
1 + m

1 + m − M + N

)]
+ 1

4
(h+2sIe)D(M−N)2

≤ A ≤ (1 + m)D

[
c + h(1 + m)

2

] [
M

1 + m − M
− ln

(
1 + m

1 + m − M

)]
+ 1

4
hDM2

+ sDIe

2

{
αM2 + (1 − α)(M − N)2

}
+ (1 − α)cDIc

2

{
M2 − (N − M)2

}
,

then by Intermediate Value Theorem there exists unique value of T (say T12 ∈ [M−N, M])
such that F12(T12) = 0. Conversely, if

A<(1+m)D

[
c+ h(1 + m)

2

][
M − N

1 + m − M + N
−ln

(
1 + m

1 + m − M + N

)]
+ 1

4
(h+2sIe)D(M − N)2,

we have F12(T ) < 0, for all T ∈ [M − N,M] which implies that T P12(s, T ) is strictly
decreasing function of T ∈ [M − N,M]. Hence, T P12(s, T ) has a maximum value at the
boundary point T = M − N . Again, if

A > (1 + m)D

[
c + h(1 + m)

2

] [
M

1 + m − M
− ln

(
1 + m

1 + m − M

)]
+ 1

4
hDM2

+ sDIe

2

{
αM2 + (1 − α)(M − N)2

}
+ (1 − α)cDIc

2

{
M2 − (N − M)2

}
,

we have F12(T ) > 0, for all T ∈ [M − N,M] which implies T P12(s, T ) is strictly increas-
ing function of T ∈ [M −N,M]. Hence, T P12(s, T ) has a maximum value at the boundary
point T = M .

For convenience, let �1 be defined as in Eq. 17, and

�2 = A + (1 + m)D

[
c + h(1 + m)

2

] [
ln

(
1 + m

1 + m − M

)
− M

1 + m − M

]
− 1

4
hDM2

− sDIe

2

{
αM2 + (1 − α)(M − N)2

}
− (1 − α)cDIc

2

{
M2 − (N − M)2

}
. (27)

Based on above arguments and fact that �1 > �2, we obtain the following lemma.

Lemma 3 Let T ∗
12 denotes the optimal value of T ∈ [M − N,M]. For fixed s, the profit

function T P12(s, T ) is concave and reaches its global maximum at point T = T ∗
12.

Proof It follows from above discussion that T ∗
12 which maximizes profit function

T P12(s, T ) for fixed s, is given by

T ∗
12 =

⎧⎨
⎩

M − N, if �1 < 0
T12, if �2 ≤ 0 ≤ �1
M, if �2 > 0

(28)

At point T = T ∗
12[

∂2T P12(s, T )

∂T 2

]
T =T ∗

12

=− 1

T ∗
12

[
(1 + m)D

(1 + m−T ∗
12)

2

{
c+ h(1+m)

2

}
+ 1

2
{h+2αsIe+2(1−α)cIc}D

]
<0.
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Thus, T ∗
12 gives global maximum for the profit function T P12(s, T ). This completes the

proof.

On the other hand, for fixed T ∗
12 defined in Eq. 7 consider the first order partial derivative

of T P12(s, T
∗
12) with respect to s which gives

∂T P12(s, T
∗
12)

∂s
= − (b − 1)a

sb
+ bξ1

sb+1
+ bξ2

sb+1
− (b − 1)ξ3

sb
+ bξ4

sb+1
. (29)

where

ξ1 = ca(1 + m)

T ∗
12

ln

(
1 + m

1 + m − T ∗
12

)
,

ξ2 = ha

T ∗
12

[
(1 + m)2

2
ln

(
1 + m

1 + m − T ∗
12

)
+ (T ∗

12)
2

4
− (1 + m)T ∗

12

2

]

ξ3 = aIe

2T ∗
12

[
α(T ∗

12)
2 + 2αT ∗

12(M − T ∗
12) + (1 − α)(M − N)2

]
.

ξ4 = (1 − α)caIc

2T ∗
12

(T ∗
12 + N − M)2 (30)

Equating Eq. 29 with zero and solving for s (denoted by s∗
12) we obtain

s∗
12 = b

b − 1

(
ξ1 + ξ2 + ξ4

a + ξ3

)
. (31)

Furthermore, at point s = s∗
12,[

∂2T P12(s, T
∗
12)

∂s2

]
s=s∗

12

= 1 − b

(s∗
12)

b+1
(a + G1) < 0. (32)

Thus, s∗
12 is the global optimal which maximizes profit function T P12(s, T

∗
12) for fixed T ∗

12.
That is, we have following result.

Lemma 4 For fixed T ∗
12 ∈ [M − N,M] the profit per unit time T P12(s, T

∗
12) has a unique

global maximum value at the point s = s∗
12, which is shown as in Eq. 31.

Likewise, for fixed s, the first order partial derivative of T P13(s, T ) with respect to T is

∂T P13(s, T )

∂T
= 1

T 2

[
A + (1 + m)D

{
c + h(1 + m)

2

} {
ln

(
1 + m

1 + m − T

)
− T

1 + m − T

}
− hDT 2

4

− sDIe

2

{
αM2 + (1 − α)(M − N)2

}
− cDIc

[
α

{
(1 + m − M)2

2

(
T

1 + m − T

− ln

(
1 + m − M

1 + m − T

))
+ T 2 + M2

2
− (1 + m)M

2

}
+ (1 − α)

2

{
T 2 − (M − N)2

}]
.

(33)

Using the arguments similar to those above, there exists unique value of T (say T13 ∈
[M, ∞)) such that ∂T P13(s,T )

∂T
= 0. Hence, we can easily obtain the following lemma.

Lemma 5 Let T ∗
13 denotes the optimal value of T ∈ [M, ∞). For fixed s, the profit function

T P13(s, T ) is concave and reaches its global maximum at point T = T ∗
13.
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Proof The optimal value T ∗
13 which maximizes profit function T P13(s, T ) for fixed s, is

given by

T ∗
13 =

⎧⎨
⎩

T13, if �2 ≥ 0

M, if �2 < 0
(34)

At point T = T ∗
13[

∂2T P13(s, T )

∂T 2

]
T =T ∗

13

= − 1

T ∗
13

[
(1 + m)D

(1 + m − T ∗
13)

2

{
c + h(1 + m)

2

+hD

2
+ αcDIc

{
(1 + m − M)2

2(1 + m − T )2
+ 1

}]
< 0.

Thus, T ∗
13 gives global maximum for the profit function T P13(s, T ). This completes the

proof.

On the other hand, for fixed T ∗
13 defined in (34) the first order partial derivative of

T P13(s, T
∗
13) with respect to s is

∂T P13(s, T
∗
13)

∂s
= − (b − 1)a

sb
+ bζ1

sb+1
+ bζ2

sb+1
− (b − 1)ζ3

sb
+ bζ4

sb+1
. (35)

where

ζ1 = ca(1 + m)

T ∗
13

ln

(
1 + m

1 + m − T ∗
13

)
,

ζ2 = ha

T ∗
13

[
(1 + m)2

2
ln

(
1 + m

1 + m − T ∗
13

)
+ (T ∗

13)
2

4
− (1 + m)T ∗

13

2

]

ζ3 = aIe

2T ∗
13

[
αM2 + (1 − α)(M − N)2

]

ζ4 = caIc

T ∗
13

[
α

{
(1 + m − M)2

2
ln

(
1 + m − M

1 + m − T ∗
13

)
+ (T ∗

13)
2 − M2

2
− (1 + m)(T ∗

13 − M)

2

}

+ (1 − α)

2
(T ∗

13 + N − M)2
]

.

Equating Eq. 35 with zero and solving for s (denoted by s∗
13) we obtain

s∗
13 = b

b − 1

(
ζ1 + ζ2 + ζ4

a + ζ3

)
. (36)

Furthermore, at point s = s∗
13,[

∂2T P12(s, T
∗
13)

∂s2

]
s=s∗

13

= 1 − b

(s∗
13)

b+1
(a + ζ3) < 0. (37)

Thus, s∗
13 is the global optimal which maximizes profit function T P13(s, T

∗
12) for fixed T ∗

13.
That is, we have following result.

Lemma 6 For fixed T ∗
13 ∈ [M, ∞) the profit per unit time T P13(s, T

∗
12) has a unique global

maximum value at the point s = s∗
13, which is shown as in Eq. 36.
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Combining the above Lemmas 1, 3 and 5, we obtain the following result.

Theorem 1 For any s,

(a) If �1 ≤ 0, the retailer’s optimal replenishment cycle length is T = T11.
(b) If �2 ≤ 0 ≤ �1, the retailer’s optimal replenishment cycle length is T = T12.
(c) (a) If �2 ≥ 0, the retailer’s optimal replenishment cycle length is T = T13.

Proof It immediately follows from the facts that T P11(s,M − N) = T P12(s,M − N),
T P12(s,M) = T P13(s,M), Lemma 1, 3 and 5.

5.2 Optimal Solution for the Case of N ≥ M

For fixed s, the first order partial derivative of T P21(s, T ) with respect to T is

∂T P21(s, T )

∂T
= 1

T 2

[
A + (1 + m)D

{
c + h(1 + m)

2

}{
ln

(
1 + m

1 + m − T
− T

1 + m − T

}

−1

4
{h + 2αsIe + 2(1 − α)cIc}DT 2

]
. (38)

Using the similar arguments as in Case 1, there exists unique value of T (say T21 ∈ (0,M]
such that ∂T P21(s,T )

∂T
= 0. Hence, we can easily obtain the following lemma.

For convenience let

�3 = A + (1 + m)D

{
c + h(1 + m)

2

}{
ln

(
1 + m

1 + m − M

)
− M

1 + m − M

}

−1

4
{h + 2αsIe + 2(1 − α)cIc}DM2. (39)

Lemma 7 Let T ∗
21 denotes the optimal value of T ∈ (0,M]. For fixed s, the profit function

T P21(s, T ) is concave and reaches its global maximum at point T = T ∗
21.

Proof The optimal value T ∗
21 which maximizes profit function T P21(s, T ) for fixed s, is

given by

T ∗
21 =

{
T21, if �3 ≤ 0

M, if �3 > 0
(40)

At point T = T ∗
21[

∂2T P21(s, T )

∂T 2

]
T =T ∗

21

= − 1

T ∗
21

[
(1 + m)D

(1 + m − T ∗
21)

2

{
c + h(1 + m)

2

}

+1

2
{h + 2αsIe + 2(1 − α)cIc}

]
< 0.

Thus, T ∗
21 gives global maximum for the profit function T P21(s, T ). This completes the

proof.
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On the other hand, for fixed T ∗
21 defined in Eq. 40 the first order partial derivative of

T P21(s, T
∗
21) with respect to s is

∂T P21(s, T
∗
21)

∂s
= − (b − 1)a

sb
+ bη1

sb+1
+ bη2

sb+1
− (b − 1)η3

sb
+ bη4

sb+1
(41)

where

η1 = ca(1 + m)

T ∗
21

ln

(
1 + m

1 + m − T ∗
21

)
,

η2 = ha

T ∗
21

[
(1 + m)2

2
ln

(
1 + m

1 + m − T ∗
21

)
+ (T ∗

21)
2

4
− (1 + m)T ∗

21

2

]

η3 = αaIe

2

[
T ∗
21 + 2(M − T ∗

21)
]

η4 = (1 − α)caIc

2

[
T ∗
21 + 2(N − M)

]
.

Equating Eq. 41 with zero and solving for s (denoted by s∗
21) we obtain

s∗
21 = b

b − 1

(
η1 + η2 + η4

a + η3

)
. (42)

Furthermore, at point s = s∗
21,[

∂2T P21(s, T
∗
21)

∂s2

]
s=s∗

21

= 1 − b

(s∗
21)

b+1
(a + η3) < 0. (43)

Thus, s∗
21 is the global optimal which maximizes profit function T P21(s, T

∗
11) for fixed T ∗

21.
That is, we have following result.

Lemma 8 For fixed T ∗
21 ∈ (0,M] the profit per unit time T P21(s, T

∗
21) has a unique global

maximum value at the point s = s∗
21, which is shown as in Eq. 42.

Analogously, for fixed s, the first order partial derivative of T P22(s, T ) with respect to
T is

∂T P22(s, T )

∂T
= 1

T 2

[
A + (1 + m)D

{
c + h(1 + m)

2

} {
ln

(
1 + m

1 + m − T

)
− T

1 + m − T

}
− hDT 2

4

−αsDIeM
2

2
− cDIc

[
α

{
(1 + m − M)2

2

(
T

1 + m − T
− ln

(
1 + m − M

1 + m − T

))

+T 2 + M2

2
− (1 + m)M

2

}
+ (1 − α)

T 2

2

]]
. (44)

Using the similar arguments as in Case 1, there exists unique value of T (say T ∗
22 ∈ [M, ∞))

such that ∂T P22(s,T )
∂T

= 0. Hence, we can easily obtain the following lemma.

Lemma 9 Let T ∗
22 denotes the optimal value of T ∈ [M, ∞). For fixed s, the profit function

T P22(s, T ) is concave and reaches its global maximum at point T = T ∗
22.
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Proof The optimal value T ∗
22 which maximizes profit function T P22(s, T ) for fixed s, is

given by

T ∗
22 =

{
T22, if �3 ≥ 0

M, if �3 < 0
(45)

At point T = T ∗
22[

∂2T P22(s, T )

∂T 2

]
T =T ∗

22

= − 1

T ∗
22

[
(1 + m)D

(1 + m − T ∗
22)

2

{
c + h(1 + m)

2

}
hD

2

+cDIc

{
α(1 + m − M)2

2(1 + m − T )2
+ 1

}]
< 0.

Thus, T ∗
22 gives global maximum for the profit function T P22(s, T ). This completes the

proof.

On the other hand, for fixed T ∗
22 defined in Eq. 45 the first order partial derivative of

T P22(s, T
∗
22) with respect to s is

∂T P22(s, T
∗
22)

∂s
= − (b − 1)a

sb
+ bλ1

sb+1
+ bλ2

sb+1
− (b − 1)λ3

sb
+ bλ4

sb+1
(46)

where

λ1 = ca(1 + m)

T ∗
22

ln

(
1 + m

1 + m − T ∗
22

)
,

λ2 = ha

T ∗
22

[
(1 + m)2

2
ln

(
1 + m

1 + m − T ∗
22

)
+ (T ∗

22)
2

4
− (1 + m)T ∗

22

2

]

λ3 = αaIeM
2

2T ∗
22

λ4 = caIc

T ∗
22

[
α

{
(1 + m − M)2

2
ln

(
1 + m − M

1 + m − T ∗
22

)

+ (T ∗
22)

2 − M2

2
− (1 + m)(T ∗

22 − M)

2

}
+(1− α)

{
T ∗
22(N − M)+ (T ∗

22)
2

2

}]
.

Equating Eq. 46 with zero and solving for s (denoted by s∗
22) we obtain

s∗
22 = b

b − 1

(
λ1 + λ2 + λ4

a + λ3

)
. (47)

Furthermore, at point s = s∗
22,[

∂2T P21(s, T
∗
22)

∂s2

]
s=s∗

22

= 1 − b

(s∗
22)

b+1
(a + λ3) < 0. (48)

Thus, s∗
22 is the global optimal which maximizes profit function T P21(s, T

∗
22) for fixed T ∗

22.
That is, we have following result.

Lemma 10 For fixed T ∗
22 ∈ [M,∞) the profit per unit time T P22(s, T

∗
22) has a unique

global maximum value at the point s = s∗
22, which is shown as in Eq. 47.
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Combining the above Lemmas 7 and 9, we obtain the following result.

Theorem 2 For any s

(a) If �3 ≤ 0, the retailer’s optimal replenishment cycle length is T = T21.
(b) If �3 ≥ 0, the retailer’s optimal replenishment cycle length is T = T22.

Proof It immediately follows from the facts that T P21(s,M) = T P22(s,M), Lemmas 7
and 9.

Based on the concavity behavior of the objective function with respect to the decision
variables the following algorithmic procedure was developed to identify global optimal
solution for (s, T ).

6 Numerical Examples

In this section, we use above algorithm to run several numerical examples in order to
illustrate theoretical results as well as to gain some managerial insights.

Example 1 An inventory system with the following data is considered.

D = as−b units/year where a = 5×106 and b = 2.3, A = $120/order, h = $/7/unit/year,
c = $15/unit, Ic = $0.15/$/year, Ie = $0.12/$/ year, m = 1 year.

Applying the procedure of the proposed algorithm for α = 0, 0.5 and 0.9, we summarize
the computational results for different values of M (in year) by varying N (in year) in
Tables 1, 2 and 3 respectively.

Based on the computational results, we can obtain the following managerial insights:

(a) It is observed that, for fixed α and M , when customer credit period N increases, the
optimal retail price (s∗) and the optimal cycle time (T ∗) increases, whereas the optimal
total profit per unit time T P (s∗, T ∗) decreases. These results imply that a longer delay
payment period provided by the retailer leads to lower demand rate and a higher retail
price. It may be interesting to observe that when α = 0.9, the optimal replenishment
cycle time (T ∗) increases as long as M ≤ N and then decreases subsequently.

(b) For fixed values of N and α, it can be noted that the optimal retail price (s∗) and
the optimal length of replenishment cycle (T ∗) decreases, whereas retailer’s profit per
unit time T P (s∗, T ∗) increases with an increase in retailer’s credit period M . These
results imply that a longer credit period provided by the supplier may ultimately cause
the retailer to shorten the replenishment cycle length to take advantage of trade credit
frequently.

(c) With an increase in the value of the parameter α, the optimal retail price (s∗) and
the optimal length of replenishment cycle (T ∗) decreases, whereas retailer’s profit per
unit time T P (s∗, T ∗) increases. These results indicate that if the amount of the part
payment of purchase cost is more, then the demand can be stimulated by reducing the
retail price and thereby the retailer can raise the profit.

Example 2 In this example, we study the effect of expiration date of the deteriorating item,
m. All the parameters are identical to those in Example 1 except α = 0.5, M = 45/365



J Math Model Algor (2015) 14:363–392 383

Algorithm 1

Step 1: Set j = 1, s(j) = c.
Step 2: Compare the values of M and N . If N ≤ M , then go to Step 3 otherwise, go to

Step 4.
Step 3: Determine �1 and �2 from Eqs. 17 and 27 respectively. Execute any one of the

following cases (3.1), (3.2), (3.3), (3.4), (3.5).

(3.1) If �1 < 0, then determine the value T
(j)

11 by solving Eq. 13. Then, sub-

stitute T
(j)

11 into Eq. 20 to obtain the corresponding value s
(j+1)
11 . Let

s(j+1) = s
(j+1)
11 and T (j) = T

(j)

11 , go to Step 5.

(3.2) If �2 < 0 < �1, then determine the value T
(j)

12 by solving Eq. 22. Then,

substitute T
(j)

12 into Eq. 31 to obtain the corresponding value s
(j+1)
12 . Let

s(j+1) = s
(j+1)
12 and T (j) = T

(j)

12 , go to Step 5.

(3.3) If �2 > 0, then determine the value T
(j)

13 by solving Eq. 33. Then, sub-

stitute T
(j)

13 into Eq. 36 to obtain the corresponding value s
(j+1)
13 . Let

s(j+1) = s
(j+1)
13 and T (j) = T

(j)

13 , go to Step 5.

(3.4) If �1 = 0, then set T
(j)

11 (or T
(j)

12 )= M − N and then, substitute T
(j)

11 (or

T
(j)

12 ) into Eq. 20 or 31 to obtain the corresponding value s
(j+1)
11 (or s

(j+1)
12 ).

Let s(j+1) = s
(j+1)
11 and T (j) = T

(j)

11 , go to Step 5.

(3.5) If �2 = 0, then set T
(j)

12 (or T
(j)

13 )= M and then, substitute T
(j)

12 (or T
(j)

13 )

into Eq. 31 or 36 to obtain the corresponding value s
(j+1)
12 (or s

(j+1)
13 ). Let

s(j+1) = s
(j+1)
12 and T (j) = T

(j)

12 , go to Step 5.

Step 4: Determine �3 from Eq. 39. Execute any one of the following cases (4.1), (4.2),
(4.3).

(4.1) If �3 < 0, then determine the value T
(j)

21 by solving Eq. 38. Then, sub-

stitute T
(j)

21 into Eq. 42 to obtain the corresponding value s
(j+1)
21 . Let

s(j+1) = s
(j+1)
21 and T (j) = T

(j)

21 , go to Step 5.

(4.2) If �3 > 0, then determine the value T
(j)

22 by solving Eq. 44. Then, sub-

stitute T
(j)

22 into Eq. 47 to obtain the corresponding value s
(j+1)
22 . Let

s(j+1) = s
(j+1)
22 and T (j) = T

(j)

22 , go to Step 5.

(4.3) If �3 = 0, then set T
(j)

21 (or T
(j)

22 )= M and then, substitute T
(j)

21 (or T
(j)

22 )

into Eq. 42 or 47 to obtain the corresponding value s
(j+1)
21 (or s

(j+1)
22 ). Let

s(j+1) = s
(j+1)
21 and T (j) = T

(j)

21 , go to Step 5.

Step 5: If the difference between s(j) and s(j+1) is small enough (i.e. |s(j) − s(j+1)| <

ε), then set s∗ = s(j) and T ∗ = T (j). Thus, (s∗, T ∗) is the optimal solution.
Otherwise go back to Step 2.

Step 6: Compute corresponding T P (s, T ) and Q∗ from Eq. 4.

year and N = 30/365 year. Computational results are summarized in Table 4 for m ∈
{0.6, 0.8, 1.0, 1.2, 1.4}.
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Table 1 Computational results for different values of M and N when α = 0.0

M N s∗ T ∗ Q∗ T P ∗(s∗, T ∗)

10/365 10/365 32.7299 0.1046 232.89 27354.12

15/365 32.8001 0.1048 232.31 27281.21

30/365 32.9811 0.1056 230.82 27071.79

45/365 33.1611 0.1063 229.15 26860.12

60/365 33.3299 0.1071 281.61 26647.41

15/365 10/365 32.6811 0.1043 233.30 27431.07

15/365 32.7339 0.1046 230.89 27354.11

30/365 32.9150 0.1053 231.31 27138.23

45/365 33.0899 0.1061 229.71 26930.31

60/365 33.2759 0.1068 228.15 26719.98

30/365 10/365 32.5001 0.1022 231.89 27679.13

15/365 32.5499 0.1031 232.81 27601.12

30/365 32.7401 0.1046 232.98 27353.31

45/365 32.8999 0.1053 231.31 27138.11

60/365 33.1001 0.1061 229.71 26928.21

45/365 10/365 32.3063 0.0985 226.79 27979.98

15/365 32.3674 0.0999 228.97 27875.43

30/365 32.5519 0.1031 232.81 27592.14

45/365 32.7339 0.1046 232.98 27353.31

60/365 32.9151 0.1053 231.31 27138.23

60/365 10/365 32.1619 0.0980 228.27 28304.49

15/365 32.2099 0.0982 227.78 28196.19

30/365 32.3673 0.0999 228.97 27875.39

45/365 32.5515 0.1031 232.79 27591.89

60/365 32.7339 0.1046 232.92 27353.28

Based on the computational results we can obtain the following managerial insights:
From Table 4, it can be observed that as m increases the optimal length of replenishment
cycle (T ∗), the retailer’s profit per unit time T P ∗(s∗, T ∗) as well as the optimal order
quantity Q∗ increases whereas the optimal price s∗ decreases. This observation reveals that
if the expiration date of the deteriorating item m is longer, then it is worth to increase the
length of replenishment cycle T in order to increase the sales and the annual total profit
T P ∗(s∗, T ∗).

Example 3 In this example we shall assess the impact of the systems parameters over
the decision variables. For this, let us consider the inventory model with the following
parametric values.

D = as−b units/year where a = 5 × 106 and b = 2.3, A = $130/order, h =
$7/unit/year, c = $15/unit, Ic = 0.15/$/year, Ie = 0.12/$/year, m = 1 year and α = 0.5.

For the above input data, the model gives the optimal result as T P ∗ = $28526.19,
s∗ = $27.1489, T ∗ = 0.0951 year and Q∗ = 240.84 units.
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Table 2 Computational results for different values of M and N when α = 0.5

M N s∗ T ∗ Q∗ T P ∗(s∗, T ∗)

10/365 10/365 32.6733 0.1041 233.04 27430.02

15/365 32.7516 0.1040 231.43 27330.89

30/365 32.8419 0.1050 230.63 27223.12

45/365 32.9322 0.1048 229.83 27115.79

60/365 33.0227 0.1052 227.02 27009.51

15/365 10/365 32.6122 0.1036 233.01 27510.13

15/365 32.6425 0.1038 232.84 27472.11

30/365 32.7961 0.1035 229.42 27276.71

45/365 32.8864 0.1039 228.65 27169.12

60/365 32.9767 0.1043 227.84 27062.41

30/365 10/365 32.4287 0.1010 230.48 27778.11

15/365 32.4589 0.1015 230.91 27733.11

30/365 32.5499 0.1022 230.97 27612.36

45/365 32.4637 0.0847 192.56 27455.21

60/365 32.5512 0.0847 191.21 27344.71

45/365 10/365 32.2581 0.0983 227.32 28088.12

15/365 32.2878 0.0990 228.27 28035.51

30/365 32.3784 0.1005 230.11 27892.21

45/365 32.4681 0.1012 230.10 27770.53

60/365 32.5579 0.1015 229.26 27660.24

60/365 10/365 32.1141 0.0978 228.76 28413.02

15/365 32.1379 0.0979 228.53 28358.68

30/365 32.2157 0.0987 229.01 28197.41

45/365 32.3056 0.1002 230.81 28053.12

60/365 32.3949 0.1009 230.78 27932.27

The sensitivity analysis of the model is carried out by changing the each parameter at a
time and keeping other parameters as fixed whose values are defined in above model. Effects
of these changes on the optimal solution are examined using the measurement of �s/s∗%,
�T/T ∗%, �Q/Q∗%, and �T P/T P ∗%. The measurement can be explained as follows.
For the measure of �s/s∗%, where �s = s∗∗ − s∗, s∗∗ is the optimal value of selling price
for the model when one of the parameters increases or decreases by 20% and 40% while
all other parameters remain unchanged. Hence, �s/s∗% denotes the change in selling price
and can be used to measure this parameter’s sensitivity on the selling price. Analogously, the
measures of �T/T ∗%, �Q/Q∗% and �T P/T P ∗% indicate each parameter’s sensitivity
on cycle time T , ordering quantity Q and average profit T P , respectively. The sensitivity
analysis results are presented in Table 5.

Based on the computational results shown in Table 5, the following features can be
observed.

(1) The optimal cycle time and the optimal order quantity is more sensitive whereas the
optimal selling price and average profit is less sensitive with respect to change of
parameters A and h. The reasons for these phenomena are apparent.
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Table 3 Computational results for different values of M and N when α = 0.9

M N s∗ T ∗ Q∗ T P ∗(s∗, T ∗)

10/365 10/365 32.6247 0.1038 233.11 27491.72

15/365 32.7171 0.1034 230.63 27371.12

30/365 32.7354 0.1035 230.47 27349.15

45/365 32.7533 0.1036 230.31 27327.52

60/365 32.7721 0.1037 230.15 27305.86

15/365 10/365 32.5635 0.1031 232.78 27575.29

15/365 32.5696 0.1032 232.74 27567.79

30/365 32.7001 0.1001 227.89 27388.91

45/365 32.7183 0.1021 227.73 27367.18

60/365 32.7365 0.1022 227.59 27345.46

30/365 10/365 32.3796 0.1001 229.27 27855.89

15/365 32.3857 0.1002 229.36 27846.86

30/365 32.4037 0.1004 229.37 27822.39

45/365 32.2697 0.0847 214.48 27762.69

60/365 32.2871 0.0846 215.21 27740.23

45/365 10/365 32.2193 0.0982 227.69 28174.59

15/365 32.2251 0.0983 227.88 28164.11

30/365 32.2432 0.0986 228.23 28135.12

45/365 32.2610 0.0988 228.24 28110.43

60/365 32.2788 0.0988 228.03 28087.91

60/365 10/365 32.0761 0.0977 229.15 28500.05

15/365 32.0803 0.0978 229.09 28489.14

30/365 32.0961 0.0979 226.17 28456.73

45/365 32.1137 0.0982 229.53 28427.61

60/365 32.1315 0.0983 229.54 28402.72

(2) As the purchasing cost varies, the optimal selling price, the optimal cycle time, the
optimal ordering quantity and the average profit change significantly. It may be inter-
esting to observe that the percentage changes in �s/s∗% and �T/T ∗% are nearly
equal to the percentage changes in the purchase cost at various level. It is rational

Table 4 Computational results
for m m s∗ T ∗ Q∗ T P ∗(s∗, T ∗)

0.6 32.3932 0.0992 227.11 27856.71

0.8 32.3783 0.1005 230.09 27892.17

1.0 32.3632 0.1018 233.18 27928.10

1.2 32.3552 0.1028 235.85 27954.38

1.4 32.3401 0.1039 238.07 27982.96
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Table 5 Sensitivity analysis

Parameter % change �s/s∗(%) �T/T ∗(%) �Q/Q∗(%) �T P/T P ∗(%)

A 78 −40 −0.75 −23.32 −22.05 2.18

104 −20 −0.37 −10.98 −10.31 1.03

130 0 0 0 0 0

156 +20 0.35 9.97 9.22 −0.92

182 +40 0.64 19.23 17.62 −1.76

h 4.2 −40 −0.53 14.76 16.21 1.28

5.6 −20 −0.26 6.59 7.24 0.63

7 0 0 0 0 0

8.4 +20 0.24 −5.47 −5.99 −0.59

9.8 +40 0.47 −10.09 −11.05 −1.12

c 9 −40 −40.26 −40.15 95.37 97.05

12 −20 −20.17 −19.8 34.52 34.56

15 0 0 0 0 0

18 +20 20.24 19.23 −21.89 −21.6

21 +40 40.55 38.39 −36.64 −36.23

a 3 × 106 1 30.66 −23.27 −41.66

4 × 106 −20 0.4 12.35 −10.9 −20.9

5 × 106 0 0 0 0 0

6 × 106 +20 −0.29 −9.06 9.83 21

7 × 106 +40 −0.52 −16.07 18.84 42.08

Ie 0.072 −40 0.33 3.92 3.17 −0.48

0.096 −20 0.16 1.92 1.55 −0.24

0.120 0 0 0 0 0

0.144 +20 −0.16 −1.84 −1.48 0.25

0.168 +40 −0.32 −3.61 −2.9 0.51

Ic 0.09 −40 0.01 1.68 1.67 0.07

0.12 −20 0.004 0.82 0.82 0.04

0.15 0 0 0 0 0

0.18 +20 −0.004 −0.80 −0.79 −0.04

0.21 +40 −0.01 −1.57 −1.56 −0.07

that higher purchasing cost of a product decreases the average profit and increase the
selling price and order cycle time such that the average profit is maximized.

(3) The variations in parameters Ie and Ic show minor deviation in decision variables and
associated average profit. This shows that in estimating Ie and Ic may not result in
much more deviation from the optimal results.

(4) The percentage changes in the demand rate parameter (a) causes significant changes
in the optimal cycle time, the optimal ordering quantity and the average profit whereas
the selling price is comparatively insensitive to changes with increasing percentage
changes in the level of fuzziness of scaling factor (a). This indicates that the retailer



388 J Math Model Algor (2015) 14:363–392

should carefully estimate the value of demand rate parameter (a) and then make
ordering decisions.

7 Some Special Cases for Non-deteriorating Items

Firstly, if there is no expiration date i.e., if the maximum lifetime of items is approaching
to infinity, then our proposed model is a generalized model for non-deteriorating items, in
which m is approaching infinity. Using Calculus, L’Hospital’s Rule, and simplifying terms,
we can simplify the problem for non-deteriorating items as shown below.

lim
m→∞(1 + m) ln

(
1 + m

1 + m − T

)
= lim

m→∞

d
dm

ln
(

1+m
1+m−T

)
d

dm
1

1+m

= lim
m→∞

−T
(1+m)(1+m−T )

−1
(1+m)2

= lim
m→∞

T (1 + m)

1 + m − T
= T .

(49)

Consequently, the retailer’s order quantity per cycle in Eq. 4 becomes

Q = I (0) = D(1 + m) ln

(
1 + m

1 + m − T

)
= DT when m → ∞. (50)

Similarly, we can get the following results:

lim
m→∞

[
(1 + m)2

2
ln

(
1 + m

1 + m − T

)
− (1 + m)T

2

]
= 1

2
lim

m→∞

⎡
⎣ ln

(
1+m

1+m−T

)
− T

1+m

1
(1+m)2

⎤
⎦

= lim
m→∞

[ −T
(1+m−T )(1+m)

+ 1
(1+m)2

−2
(1+m)2

]
= 1

2
lim

m→∞

[
T 2(1 + m)

2(1 + m − T )

]
= 1

4
lim

m→∞ T 2 = T 2

4
.

(51)

As a result, we know that the retailer’s holding cost excluding interest charge per cycle is
simplified to

lim
m→∞ hD

[
(1 + m)2

2
ln

(
1 + m

1 + m − T

)
+ T 2

4
− (1 + m)T

2

]
= hDT 2

2
. (52)
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Likewise, we have the following results:

lim
m→∞

[
(1 + m − M)2

2
ln

(
1 + m − M

1 + m − T

)
− (1 + m)(T − M)

2

]

= 1

2
lim

m→∞

⎡
⎣ ln

(
1+m−M
1+m−T

)
− (1+m)(T −M)

(1+m−M)2

1
(1+m−M)2

⎤
⎦

= 1

2
lim

m→∞

⎡
⎣

−(T −M)
(1+m−M)(1+m−T )

+ (T −M)(1+m+M)

(1+m−M)2

−2
(1+m−M)2

⎤
⎦

= 1

2
lim

m→∞

[
(T −M)−3(1+m)M+M2+(1+m+M)T

2(1 + m − T )

]
= 1

4
(T −M)(T −3M). (53)

Therefore, for non-deteriorating items, the retailer’s annual total profit in Eq. 6 is reduced to

T P11(s, T ) = (s−c)D− A

T
− hDT

2
+ sDIe

2
[T + 2α(M − T ) + 2(1 − α)(M − T − N)] .

(54)
Similarly, if there is no expiration date, then we get

T P12(s, T ) = (s−c)D− A

T
− hDT

2
+ sDIe

2T

[
αT 2+2αT (M−T )+(1−α)(M−N)2

]

− (1 − α)cIcD

2T
(T + N − M)2, (55)

T P13(s, T ) = (s − c)D − A

T
− hDT

2
+ sIeD

2T

[
αM2 + (1 − α)(M − N)2

]

−cIcD

T

[
α

{
1

4
(T −M)(T −3M)+ T 2−M2

2

}
+ (1−α)

2
(T +N−M)2

]
.

(56)

This simplified problem with b = 0 and α = 0 has been solved by Teng and Goyal [46].
In fact, several previous models are indeed special cases of the proposed inventory model

here.

(i) When m → ∞, α = 0, b = 0, then the proposed model is simplified to that in Teng
and Goyal [46].

(ii) When m → ∞, α = 0, N = 0, b = 0, then the proposed model is similar to that in
Teng [42].

(iii) When m → ∞, α = 0, N = 0, s = c, b = 0, then the proposed model is reduced to
that in Goyal [16].

8 Conclusion

The use of a down-stream partial trade credit to reduce default risks with credit-risk
customers has received a very little attention by the researchers. In this paper, we have for-
mulated an EOQ model to allow for: (1) selling price dependent demand rate, (2) a profit
maximization objective, and (3) deteriorating items with maximum life time in a supply
chain in which the retailer receives an up-stream full trade credit from his/her supplier
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while offers a down-stream partial trade credit to his/her credit-risk customers. By analyz-
ing the profit function, we developed theoretical results and algorithm to obtain optimal
solutions. Moreover, we have shown that the proposed model is a generalized case for
non-deteriorating items and several previous EOQ models. Finally, we provided numerical
examples to illustrate the proposed model, and examined the effect of key parameters on the
optimal solution. The results in numerical examples suggest that the retailer should encour-
age the customer to raise the amount of part payment which in turn reduces the selling price
and generate more profit to the retailer. The results also indicate that the retailer should
grant the credit period to its customer by taking into account the credit period offered from
the supplier and initial payment made by the customer to earn more profit.

In practice, the contributions of this paper and the approach we considered to solve the
problem are significant because the retailer has to decide whether it is worthwhile to alter
the regular ordering pattern to exploit other opportunities and assess their monetary impact
to find the optimal ordering policy under realistic conditions linking marketing as well as
operations management concerns. Finally, this paper brings attention into the trade credit
that is of major importance in the operations of enterprises in many economics. In future
research, one can extend this model for two-part trade credit term i.e., supplier offers two
payment options: trade credit and early-payments with discount price to the retailer. One can
also extend this model for more general supply chain networks, for example, multi-echelon
or assembly supply chains.
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