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Abstract In this paper, we introduced modified Mann iterative algorithms by the new
hybrid projection method for finding a common element of the set of fixed points of a count-
able family of nonexpansive mappings, the set of the split generalized equilibrium problem
and the set of solutions of the general system of the variational inequality problem for two-
inverse strongly monotone mappings in real Hilbert spaces. The strong convergence theorem
of the iterative algorithm in Hilbert spaces under certain mild conditions are provided.
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1 Introduction

The split feasibility problem (SFP) in Hilbert spaces for modeling inverse problems which
arise from phase retrievals and in medical image reconstruction was first introduced by
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Censor and Elfving [11, 12]. It has been found that the SFP can also used to mode the
intensity modulate radiation therapy [13, 14].
The SFP is formulated as finding a point X with the property

X eC, AR €0, (D

where C and Q are the nonempty closed convex subsets of the infinite-dimensional real
Hilbert spaces H; and H,, respectively, and A € B(Hj, H») (i.e., A is a bounded linear
operator from Hj to Hp).

A special case of the SFP is called the convex constrained linear inverse problem [15],
that is, the problem to finding an element X such that

xeC, Ax=be Q. 2)

In fact, it has been extensively investigated in the literature using the projected Landweber
iterative method [15, 16].

Recently, Moudafi [17] introduced the following split equilibrium problem (SEP):

Let F;1 : C x C — Rand F> : Q x O — R be nonlinear bifunctions and A : H; — H»
be a bounded linear operator, then the splir equilibrium problem (SEP) is to find x € C such
that

Fi(x,x) >0, Vx e C, 3)
and such that
y=Ax € Q solves F»(y,y) >0, Vye Q. (€))

When looked separately, (3) is the classical equilibrium problem (EP) and we denoted
its solution set by E P (Fy). The SEP Equations (3) and (4) constitutes a pair of equilibrium
problems which have to be solved so that the image y = AX, under a given bounded linear
operator A, of the solution X of the EP (3) in H| is the solution of another EP (4) by E P (F3).

The solution set SEP Equations (3) and (4) is denoted by E = {p € EP(F)) : Ap €
EP(F)}.

In 2013, Kazmi and Rivi [18] consider a split generalized equilibrium problem (SGEP):
Find x € C such that

Fi(X,x)+h1(x,x) >0, Vx e C, (5)
and such that

y=Ax € Q solves Fo(y,y) +hy(3,y) >0, Vye Q, (6)

where Fi,h; : C x C — Rand F;,hy : Q x Q — R are nonlinear bifunctions and
A : Hy — H; is a bounded linear operator.

They denoted the solution set of generalized equilibrium problem (GEP) Equations (5)
and GEP (6) by GEP(F1, h1) and GE P(F3, h»), respectively. The solution set of SGEP
Equations (5)-(6) is denoted by I' = {p € GEP(F,hy) : Ap € GEP(F,, hy)}.

If hy = 0 and hy = 0, then SGEP Equations (5)-(6) reduces to SEP Equations (3)-(4).
If hp = 0 and F, = 0, then SGEP Equations (5)-(6) reduces to the equilibrium problem
considered by Cianciaruso et al. [3].

Recall, a mapping S : C — C is said to be nonexpansive if

[Sx = Syll = llx = yll, )

forall x, y € C. We denote the set of fixed point of S by Fix(S). If C is bounded closed con-
vex and S is a nonexpansive mapping of C into itself, then Fix(S) is nonempty (see [19]).
We denote weak convergence and strong convergence by notations — and —, respectively.
A mapping A of C into Hj is called monotone if

(Au — Av,u —v) >0, Yu,veC. )
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A mapping A of C into H is called «-inverse-strongly monotone mapping if there exists a
positive real number o such that

(Au— Av,u —v) > al|Au — Av||?>, Yu,v e C. 9

It is obvious that any «-inverse-strongly monotone mappings A is monotone and Lipschitz
continuous.
In 1953, Mann [27] introduced the iteration as follows: a sequence {x,} defined by

Xnt1 = opxy + (1 — o) Sxy, (10)

where the initial guess element xg € C is arbitrary and {«,} is a real sequence in [0, 1]. The
Mann iteration has been extensively investigated for nonexpansive mappings. One of the
fundamental convergence results is proved by Riech [28]. In an infinite-dimensional Hilbert
space, the Mann iteration can conclude only weak convergence [29]. Attempts to modify
the Mann iteration method (10) so that strong convergence is guaranteed have recently been
made. Generally speaking, the algorithm suggested by Takahashi and Toyoda [20] is based
on two well-known types of methods, namely, on the projection-type methods for solv-
ing variational inequality problems and so-called hybrid or outer-approximation methods
for solving fixed point problems. The idea of “hybrid” or “outer-approximation” types of
methods was originally introduced by Haugazeau in 1968 ( see [30]).

On the other hand, for finding an element of Fix(S) N VI(C, A) under the assumption
that a set C C H is closed and convex, a mapping S of C into itself is nonexpansive and a
mapping A of C into H; is a a-inverse-strongly monotone mapping. Takahashi and Toyoda
[20] introduced the following iterative scheme:

Xp1 = Xy + (1 — ) SPc(xy — AyAxy), n >0, (11)

where xo = x € C, {«,} is a sequence in (0,1) and {X,} is a sequence in (0, 2«). They
shown that if Fix(S) N VI(C, A) # ¢, then the sequence {x,} converges weakly to some
z = Prix(9)nvi(c,A)X0-

Let C be a closed convex subset of real Hilbert space Hy. Let A, B : C — Hj be two
mappings. We consider the following problem of finding (x*, y*) € C x C such that

AAY* +x* —y*  x —x*) > 0, Vx € C,
(UBx* +y* —x*,x—y") >0, Vx € C, (12)

which is called a general system of variational inequalities, where A > 0 and p > 0 are two
constants. This problems has been studied by Kumam [21] and Kumam and Kumam [22].
The solution set of (12) is denoted by GV I (C, A, B). In particular, if A = B, then problem
(12) reduced to finding (x*, y*) € C x C such that

(AAY* +x* —y*, x —x*) > 0, Vx € C,
(MAX* +y* —x*,x —y*) > 0, Vx € C, (13)

which is defined by Verma [23, 24], and is called the new system of variational inequalities.
Further, if we add up the requirement that x* = y*, then problem (13) reduces to the
classical variational inequality (VI (C, A)) which was originally introduced and studied by
Stampacchina [25] in 1964.

Very recently, Ceng et al. [26] introduce and study a relaxed extragradient method
for finding a common of the solution set of (12) for « and S-inverse-strongly monotone
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mappings and the set of fixed points of a nonexpansive mapping in a real Hilbert space. Let
x1 =u € C and {x,} are given by

yn = Pc(xp — uBxy)
Xn+1 :anu+,3nxn+VnSPC(yn _)\Ayn), neN. (14)

Then, they proved that the iterative sequence {x,} converges strongly to a solution of the
problem (12).

In this paper, we motivated and inspired by above results, we introduce the following
modified Mann iterative scheme defined in Theorem 1 for finding a common element of the
set of fixed points of a countable family of nonexpansive mappings, the set of split gener-
alized equilibrium problem and the set of solutions of the general system of the variational
inequality for B1, fB2-inverse strongly monotone mappings in Hilbert spaces. Consequently,
we prove a strong convergence theorem by modify Mann hybrid iterative algorithm which
solves some fixed point problems, a split generalized equilibrium problem and a general
system of the variational inequality.

2 Preliminaries

Let H; be a real Hilber space. Then

lx = yI% = X1 = IylI* = 2(x — y, y), (15)
lx + vl < x4 20y, x + y), (16)

and
I2x 4+ (1= 2)yl? = Alx >+ A = Dlyl? =20 =2 lx — yl?, (17)

forall x, y € Hy and y € [0, 1]. It is also known that H; satisfies the Opial’s condition [6],
i.e., for any sequence {x,} C H; with x, — x, the inequality

liminf ||x, — x| < liminf ||x, — y]| (18)
n—o0 n—oo

holds for every y € H; with x # y. Hilbert space H; satisfies the Kadee-Klee property [8]
that is, for any sequence {x,} with x, — x and ||x,|| — ||x|| together imply |[x, — x| — O.

We recall some concepts and results which are needed in sequel. A mapping Pc is said
to be metric projection of Hy onto C if for every point x € Hj, there exists a unique nearest
point in C denoted by Pcx such that

lx = Pex| < llx = yll, VyeC. 19)

It is well known that Pc is a nonexpansive mapping and is characterized by the following
property:
IPcx — Peyl® < (x =y, Pex = Pcy), Vx,y € Hy. (20)

Moreover, Pcx is characterized by the following properties:

(x = Pcx,y — Pcx) <0, (21)
Ix = ylI* > llx — Pex|* + Ily — Pex||?, Vx € Hi,y € C, (22)

and
(x = y) = (Pcx — Pcy)|I* = llx — ylI* = | Pcx — Pceyll?, Vx,y € Hi. (23)
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It is known that every nonexpansive operator T : H; — H satisfies, for all (x, y) €
H; x Hj, the inequality

1
(F=TE) =G =T TG) =T) = SITx) —x) = (TH) - NI e

and therefore, we get, for all (x, y) € H| x Fix(T),
1
(=T ),y = T() < SITC) = x|, (25)

(see, e.g., Theorem 3 in [4] and Theorem 1 in [5]).
Let A be a monotone mapping of C into Hj, it is easy to observe that,

ueVI(C,A) < u= Pc(u—rAu), VA > 0. (26)
We also have that, for all u, v € C and A > 0,

I = 2A)u — (I = 2A)w]?
= [l(u — v) — M(Au — Av)|)?
((u — v) — A(Au — Av), (u — v) — A(Au — Av))
(u—v,u—v) —Alu—v, Au — Av) — A{(Au — Av,u — v)
+2%(Au — Av, Au — Av)
lu —v||> = 27 {(u — v, Au — Av) + A2||Au — Av||?
lu — v||> = 2a)|Au — Av||> + 22| Au — Av|?
llu = vl|I* + A(h — 20) || Au — Av]*.

IA

IA

So, if A < 2a, then I — AA is a nonexpansive mapping from C to H.

Lemma 1 [1] Let F : C x C — R be a bifunction satisfying the following assumptions:

(i) F(x,x)>O0forallx € C;
(ii) F is monotone, i.e., F(x,y)+ F(y,x) <O0forallx € C;
(iii)  F is upper hemicontinuous, i.e., for each x, y,z € C,

limsup F(tz + (1 — t)x,y) < F(x, y); 27

t—0

(iv)  Foreachx € C fixed, the function y — F(x, y) is convex and lower semicontinuous;

leth : C x C — R such that

(i) h(x,x)>0forallx €C,
(i) Foreach y e C fixed, the function x — h(x, y) is upper semicontinuous,
(iii) Foreach x € C fixed, the function y — h(x, y) is convex and lower semicontinuous,

and assume that for fixed r > 0 and z € C, there exists a nonempty compact convex subset
K of Hy and x € C N K such that

1
F(y,x)—l—h(y,x)—i—;(y—x,x—z)<0, Vye C\K. (28)

The proof of the following lemma is similar to the proof of Lemma 2.13 in [1] and hence
omitted.
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Lemma 2 Assume that Fi, hy : C x C — R satisfying Lemma 1. Let r > 0 and x € H.
Then, there exists z € C such that

1
Fl(Z,y)—Fhl(Z,y)—F;(y—z,z—x)20, Vy e C. (29)

Lemma 3 Assume that the bifunctions Fy, hy : C x C — R satisfying Lemma I and h is
monotone. For r > 0 and for all x € Hy, define a mapping T,(Fl’hl) : Hy — C as follows:

1
T () = {z €C:RGEM+hEN+ {y—22-x) 20, Vye C}- (30)

Then, the following hold:

(1) T g single-valued.
2) T firmly nonexpansive, i.e.,

||Tr(F1’h1)x _ Tr(Flvhl)y”z < (Tr(Fl;hl)x _ Tr(Flvhl)y’ x—y), Vx,yeH. (@3l

(3) Fix(t/F"")y = GEP(Fy, hy).
(4) GEP(Fy, hy) is compact and convex.

Further, assume that F>, h; : O x Q — R satisfying Lemma 1. For s > 0 and for all

h2)

w € Hp, define a mapping TX(F2’ : Hy — Q as follows:

T2 () = {d € Q:Fad,e)+had, e)+ %(e —d,d—w) >0, Vee Q} . (32)
Then, we easily observe that TS(FZ’M) is single-valued and firmly nonexpansive,
GEP(F,, hy, Q) is compact and convex, and Fix(TS(FZ’hZ)) = GEP(F, ha, Q), where
GEP(F;, hy, Q) is the solution set of the following generalized equilibrium problem:
Find y* € Q such that F>(y*, y) + ha(y*, y) = 0,Vy € Q.
We observe that GE P(F3, hy) C GE P(F>, hy, Q). Further, it is easy to prove that I" is
a closed and convex set.

Remark I Lemmas 2 and 3 are slight generalizations of Lemma 3.5 in [3] where the equilib-
rium condition F; (X, x) = hj(x, x) = 0 has been relaxed to Fj(x,x) > Oand i (X, x) >0
for all x € C. Further, the monotonicity of /#; in Lemma 2 is not required.

Lemma 4 [7] (Demiclosedness principle) Let C be a closed convex subset of a real Hilbert
space Hy and let T : C — C be a nonexpansive mapping. Then I — T is demiclosed at
zero, that is, x, — x, x, — Tx, — 0 implies x = T x.

Lemma 5 [9] Let C be a nonempty bounded closed and convex subset of Hilbert space Hi
and {T,} a sequence of mappings of C into itself. Suppose that
lim f =0,
k,l— 00

where w;‘ = sup{||Txz — Tiz|| : z € C} < oo, for all k,l € N. Then for each x € C,

{T,,x} converges strongly to some point of C. Moreover, let T be a mapping from C into itself
defined by
Tx = lim T,x, Yx € C.
n— 00

Then, lim,,_, oo sup{||Tz — Tpz| : z € C} = 0.
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Lemma 6 [10] For given x*, y* € C, (x*, y*) is a solution of a general system of varia-
tional inequality problems if and only if x* is a fixed point of the mapping G : C — C
defined by

G(x) = Pc[Pc(x — MBax) — A Bi Pc(x — MBax)], Vx € C,

where y* = Pc(x — ApBax), A1, Ay are positive constants and By, By : C — Hj are two
mappings.

Lemma 7 Let G : C — C be defined in Lemma 6. If B;, By : C — H) be B1. Ba-
inverse-strongly monotones, and A1 € (0,281), A2 € (0,282), respectively, then G is a
nonexpansive mapping.

Proof For any x, y € C, we have
IG(x) = GWII* = IPc[Pc(x — 2aBax) — A1 By Pe(x — A2 Box)]

—Pc[Pc(y — 22Bay) — 21 Bi Pc(y — AaBay)]|I?
I[Pc(x — A2B2x) — A1 B1 Pc(x — A2 Byx)]
—[Pc(y — A2B2y) — M By Pc(y — MaBoy)]|I?
= |[[Pc(x —A2B2x) — Pc(y — A2B2y)]

—M[B1Pc(x — AaBax) — By Pe(y — haBay)l|?
= |IPc(x — 22Bax) — Pc(y — 22B2y) |12
=201 (Pc(x — A2Box) — Pc(y — A2BaYy),
By Pc(x — A2Byx) — B1 Pc(y — A2B2Yy))
+A1|B1 Pc(x — A2Box) — B1 Pc(y — A Bay)lI?
| Pc(x — A2Bax) — Pc(y — 22Bay)|)?
—2x1B111Bi Pc(x — A2 Bax) — By Pc(y — aBay) |2
+a}[|B1 Pc(x — A2Box) — Bi Pc(y — A Byl
| Pc(x — A2Bax) — Pc(y — 22B2y) |2
+A1(h1 — 2B B1 Pc(x — 2aBax) — By Pc(y — M Boy) |

IA

IA

< |IPc(x — A2Bax) — Pc(y — A Bay)|?
< l(x = A2Bax) — (v — A2 Bay) |12
= [[(x — y) — A2(Box — Boy)|?
= |lx — yI* = 2x2(x — y, Box — Baoy) + A3[|Bax — Boy|?
< Ilx — ylI> = 28222l Box — Boy|* + 23| Box — Boy|?
= llx — yI* + 22002 — 282) | Boax — Bayl|?
< Ilx = yl*
This show that G is nonexpansive on C. O

3 Strong Convergence Theorem

Theorem 1 Let Hy and H, be two real Hilbert spaces and C C Hy and Q C Hj be
nonempty closed convex subsets of Hy and H», respectively. Let By, By be B1, B2-inverse
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strongly monotone mappings from C into Hi, respectively. Let A : Hi — Hj be a bounded
linear operator. Let Fi,h1 : C x C — Rand F>,hy : Q x Q — R satisfying Lemma
1; hy, hy are monotone and F, is upper semicontinuous and S,, be a sequence of non-
expansive mappings from C into itself and let S be a mapping of C into itself defined by
Sx =1lim,, 00 Spx, Vx € C such that

Q=N Fix(S,) NTNGVI(C, By, By) # 8. (33)

For a given xo € H;,C; = C,x1 = Pcxo,u, € C, let the iterative sequences
{un}, {zn}, {yn} and {x,} be generated by

un = T (o + AT — D Axy),

zn = Pc(up — A2 Bauy),

Yo =opx, + (1 —ay)Sp Pc(zn — M1 Bizy), (34)
Cor1={z€Cp:llyn—2zll < lxn —zl},

Xn+1 = Pc, X0, Vn €N,

where {ay} € (0,1), A1 € [a1,b1] C (0,2B1), A2 € [az, b2] C (0,28), {ra} C (0, 00)
and & € (0, %), L is the spectral radius of the operator A*A and A* is the adjoint of A
satisfying the following conditions:

(CI) 0<a; <t <by <2y,
(C2) O<ax <X <by <2y
(C3) liminf, .o r, > 0.

Then, the sequence {x,} converges strongly to Pg, xo and (x*, y*) is a solution of a general
system of variational inequalities problems, where y* = Pc(x™ — A Box™).

Proof We will divide the proof into six steps.

Step 1. We will show that {x,} is well-defined and C,, is closed and convex for any
n € N. From the assumption, we see that C; = C is closed and convex. Suppose that Cy is
closed and convex for some k > 1. Now, we will show that Cy is closed and convex for
some k. For any x* € Cj, we obtain

lye —x*I < llxx — x|
& llye = x* 17 < [l — x*|1?
& llye = xk +xx — x*)17 < g — x|
& vk = X7 + 200 — xe, x% — x%) + e — x| < [l — x*)12

This implies that || yx —x*|| < ||xx —x*|| is equivalent to || yx —xx 1242 (yk —x, xk —x2) <0.
Thus, Ci41 is closed and convex. Then, C,, is closed and convex for any n € N. This implies
that {x,} is well-defined.

Step 2. We will show that 2; C Cp,, for all n € N by mathematical induction. Since x* €
Q). we get x* = Syx* = Pc[Pe(x* — AaBox®) — A By Pe(x* — Ay Box*)] = TF1m) p
and Ax* = T,(nF2’h2)Ax*. From the assumption, we see that Q; C C = Cj. Suppose that
Q1 C Cg, for some k > 1.
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Put y* = Pc(x* — ApByx™) and vy = Pc(zx — A1B1zx). Then x* = Po(y* — A1 B1y™)
and

vk — x*|| = llPc(zk — M Bizk) — Pc(y* — A1 Biy")|l
< lzx = M1 Biz) — (V" — 2Byl
= ||(I =21 Bz — (I — A1 B)y™||
< llzx = ™Il
= ||Pc(ux — A Boug) — Pc(x™ — A Bax™)||
< (ux — A2Boug) — (x* — A2 Box™)||
= [[(I = A2B)ug — (I — X2 B2)x™||
< llug — x| (35)

Since x* € Q1,1i.e., x* € ', and we have x* = T,Ecpl’h')x* and Ax* = T,(,(Fz’hZ)Ax*.
We estimate

||l/tk _ x*llz — | Trchlghl)(xk + %—A*(TrS(FzghQ) _ I)AXk) _ x*”z
= T3 (o + ANT — D Axg) — T2

S ||Xk + SA*(TrECFZJ’lZ) _ I)Axk _ x*||2
<l — x*2 + E2AX(T 2 — D Ax P
28 (xp — x*, AX(T2M) — 1) Axy). (36)

Thus, we have
lug — x*1? < llxe — x*|I1° + (T2 — D Axy, AA*(T2) — 1) Axy)
28 (xp — x*, AX(T2) — 1) Axy). (37)
Now, we have
2T\ — 1) Axy, AA* (T2 — 1) Axy)
LEX(TS>") — D Axe, (TS>") — D Axg)
= LE (T3> — DA, (38)

IA

Denoting A := 2& (x; — x*, A*(T,(kF2’h2) — I)Ax,) and using (25), we have

A = 2E(x — x*, AN(T2M) — 1) Axy)

26(A(x —x*), (T — D Axy)

2E(AGxi — x*) + (T2 — D Ax — (T2 — 1) A, (T2 — 1) Axy)

= 26 {1724 Ay — Ax*, (T — 1) Aswg) — (T4 — 1) A2

IA

1
2 {EM(T,‘kF”'z) — DAxi|* — (1) — I)Axk”z}

IA

=& (T2 — 1) Axe|?. 39)
Using Equations (37), (38) and (39), we obtain
lug = x*1 < llxx — x> + E(LE — DIT2M) — D) Axe]|. (40)
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Since & € (0, %), we obtain

ke — x*1* < llxe — x*)1%. (1)
So from Equations (35) and (41), we have
ok = x*[| < llze = Y"1 < llux — x*|| < flxx — ™. (42)

Hence, we have

logxx + (1 — ag) Sxve — x|

llye — ™1

IA

ok llxx — x* 4+ (1 — o) | Skvx — 5™

IA

apllxe — x|+ (1 — ) lug — x|

IA

aklle — x [ + (1 — o)l — x|

[k — x*|I.

Thus, we get x* € Cy41. This implies that Q; C C, for all n € N.
Step 3. We will show that lim,,_, o ||X, — X0/ exists. From x,, = Pc,xo, we have

(X0 = Xp, y —xn) =0, (43)
then

(X0 = X, Xn — y) 2 0, (44)
for each y € C,,. Using Q2| C C,, we also have

(x0 — Xp, X —x™) > 0 foreach x* € Q| and n € N. (45)
Then, for x* € Q;, we obtain
0 < (x0 — Xn, Xp — X™)
= (X0 — Xpn, Xp — X0 + X0 — x*)

(X0 — Xn, Xn — Xx0) + (X0 — X5, X0 — x™)

< —(X0 — Xp, X0 — Xp) + (X0 — Xu, X0 — Xx™)
< —lxo = xall* + (xo — Xn, x0 — x*)
< —llxo = xalI* + llxo — Xallllxo — x*]I.
This implies that
llxo — x|l < |lxo — x™|| forall x* € Q; and n € N. (46)

From x, = Pc,x¢ and x,,+1 = Pc,+1x0 € Cy41 C Cy, we have
(x0 — Xp, Xp — Xp41) = 0. A7
Hence

0 < (x0 — Xn, Xp — Xn+1)

(X0 — Xn, Xp — X0 + X0 — Xp41)

(X0 — Xp, Xp — X0) + (X0 — Xn, X0 — Xpt1)

_<x0 — Xn, X0 _xn> + <x0 — Xn, X0 _xn+l>
2
—llxo — xn [I” + {x0 — Xn, X0 — Xn+1)

2
= —llxo = xall” + llxo — xullllx0 = X411l

IA

It follows that
lxo — xull < llxo — Xp+1ll, forall n € N. (43)
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Thus, the sequence {||x, —xo||} is a bounded and nondecreasing sequence, so lim,,_, o ||X;, —

xo|| exists, and then there exists m such that
lim ||x, — xo| = m.
n—oQ

Step 4. We will show the following :

limy— oo [[Xp4+1 — xnll = 0,
limy,— 00 [1X0 — yull =0,
lim,— 00 |Xp — un|l =0,
lim;, s o [|X, — vy |l = 0.

From (47), we get

2
—x0 +x0 — Xpy1l
2 2
—xoll” + 2{xn — x0, X0 — Xp+1) + X0 — Xp41l
2 2
— x|l + 2(xy — x0, X0 — X + Xn — Xpt1) + X0 — Xnt1l

2
Xp — X0, X0 — Xp) + 2(xn — X0, Xp — Xp+1) + X0 — Xpp1 |l

IA

2 2
—x0ll” + 2{xp — x0, X0 — xu) + llx0 — Xp41ll

2 2
—x0ll* = 2{xp — x0, Xn — x0) + llx0 — Xp41ll

2 2 2
—x0llI” = 2llxp — xolI” + llxo — Xp+1l

IA

2 2
=X = xoll” + llxo — Xn41 117

From (49), we obtain ||x,4+1 — x0l? = llxn — x0l> = 0, therefore
lim [x, — X1l = 0.
n—oo
By xp+1 = Pc,. ,x0 € C+1 C Cp, we have
1x%n41 — Yull < X1 — xnll.
Furthermore, we also obtain
lxn = Yull < llxn — Xpet | + 01 — Y ll < 2l — Xp411l.
From (50), we get
lim |lx, — y.ll =0,
n—oo
and we also have

lyn — xull = llanxy + (1 — ap)Spvn — x5l = | = (1 — ap)xp + (1 — ap) Spvnll
= [[(1 — o) (Spvp — xp)ll = (1 — ) ISpvn — Xnl.

Since «, € (0, 1) and (53), we get

lim [|Syvn — xnll = O.
n—oo

(49)

(50)

(D

(52)

(53)

(54)
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Consider from Equations (34), (40) and (42), we obtain

IANIA A TA

lyn — x*|1?

anllxn = x* 12+ (1 = @) [ Spvn — 22

anlln — x* 12+ (1 — ) v, — x|

anllxn — x* 12+ (1 — ) luy — x*|?

anllxn — x* 12+ (1 — ) ([l — ¥ + E(LE — DI — 1) Ax, 12
anllxn — x* 12+ on — X7 — o [l — 212

+(1 — )& (LE — DT — 1) Axy |

lln = 12 = (1 = 0§ (1 = LEITS>" — D Axa %,

This implies that

(1 = a&(1 — LE|(T2") — 1) Ax, |I?
< o — X7 = flyn — x*)1?
= (lxa = x*I = llyn — X DUxn — X+ lyw — x*1)
= (lxn — x* =y + ¥ DUxn — x| + llya — x*ID)
=[x = Yull(lxa = ™ + lyn — x*1).

From (53), a, € (0, 1), (1 — a)&(1 — L&) > 0, we obtain

lim ||(T\2"2) — 1) Ax, | = 0. (55)
n—oo n

For x* € Q) and T,SIF"h‘) is firmly nonexpansive, we get

lien — x*|1?
TS G+ EA(TD — 1) Axy) — x|

= 1T (o + EAX (T — 1 Axy) — T30 )2

IA

(Un — x*, x5 + EAN(T2MD) — 1) Axy, — x¥)

1
5 =+ e+ 545 @) — DA, 3
Gt = ¥ = L + EA LD = DAx, — 1P

1
5 i =+l =1 = =, = £AT T — D Ax, 1)

1
5 =12 e = 2712 = = a4 21 AT — DA |2

—2&(un — xp, A*(Tr(an’hz) - I)Axn)} .

Hence, we obtain

i = x*1% < o — x* 1% = Il — xal* + 28 [ AGun — x) | I(T2") — 1) Axy|l. (56)
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By Equations (34), (42) and (56), it follows that

2
lyn —x*|l

IANIA A TA

2 2
ol — x*N17 4+ (1 — ap) | Spvn — x*||

2 2
apllxp — X*H + (1 —ap)llvy — X*”

2 2
o[l — X7+ (1 — o)l — x* ||

2 2
ap |l x, _X*” + (1 —ap)(llx, _X*” — llun — xn

2
I

26| Aty — x) (T2 — 1) Axy )

So,

(1 — ) llxn — un |l

IA

xn = x*[1> = (1 = at) X — unl* + 201 — )& [ Ay — x) [I1(T2"2) — 1) Axy .

130 — X 1% = llyn — x* 1% +2(1 — )& | AGun — x) (T2 — 1) Axy |
10 = Yull(1xn — X1+ lyn = x*1) + 2(1 — )& | AGn — x) 11T — 1) Axy |

From Equations (53), (55) and o, € (0, 1), we get

lim [|x, — un ] = O. (57)
n—o0

Since x* € @ from Equations (34) and (42), we obtain

2 2
ol — X174+ (1 — ) | Spvn _X*”

2
opllxn —x I+ (A — o) v, — x*|

2 2 2
= oyllxy — X"+ lvg — 217 — apllx, —x¥|

= |Pc(zn — 21 Bizn) — Pc(y* — a1 B1y")|?

2
lyn —x*|I° <
<
=<
<
<
and also
2
lyn —x*|I° <
<

(I = 21 B1)zn — (I — 1 B)y*|?
lzn — y*II* + 21 (1 — 2B Bizy — B1y*|1?
2 — x* 1> + a1 (by — 2B1) | Biza — B1y*|I*.

2 2
anllx, _x*” + (1 —ap)llSpvn _X*“

2
ap |l x, — X*” +  —an)llvy — X*”

2 2 2
= otpllxn — X174 llzn — Y*II7 — otnll2y — x|

INIATA

Therefore, we have

| Pc (i — 22 Bouy) — Pe(x* — Ay Bax™)||?
(I — A2B2)uy — (I — AaBo)x*|?

liun — x*1* + 22(h2 — 2B2) | Bouy — Box™||?
s — x*II + a2 (b2 — 2B2) | Bouy — Box*|*.

a1(2B1 — b)IB1zn — B1y*I* < lIxn — x* 1% = llyn — x*|?

and

ax(2B> — by) || Bouy

< N = yullClln — x*1 + lyn — x*ID

A

2 2 2
— Box™[|” < llxq — 217 — llyn — x|l

< loen = yull(llxn — x4 llyn — x*D.

A
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From conditions (C1), (C2) and (53), we get
lim [|Biz, — B1y*|| = lim || Bau, — Bax™|| = 0. (58)
n—oo n—oo

On the other hand, by (20), we have

lzn — y*II?
= ||Pc(un — AaBauy) — Po(x* — daBox™)|?
((un — MaBoup) — (x* — Ao Box™), z, — y™)

IA

1
5 {1 = 22Bow) = % = 22 Bax)I 4 lzs = v

1 tn = 32 Battn) = (6" = 22 B2 )P = (2 = v

A

1
5 =1 20 = 1 = = 2 = @7 = %) = Ra(Bawy — Bax™) |12}

1
3 {nxn — X2+ Nz = Y12 = N — z0) — = y5))12

IA

+20a (= za) = (7 = ¥), Bty — Box*) = i3 Baun — B}
So, we obtain
lzn = Y*I* < llxn — X 17 = G — 20) — (&% = )12
+222 )| (tty — z0) — (¢* = Yyl Bauty — Box*|
—33||Bouy — Box*||*. (59)
From (42) and (59), it follows that
llyn — x*|1?
= llatpxy + (1 — &) Spv — x*|1?
anllxn — x* 12+ (1 — ) [lvn — x|
anlln — x* 12+ (1 — an)llzn — y*II
ol — x* 12+ (1= )l — x* 12 = [(n — z0) — (& =y
+222|(ttn — z0) — (¢* = Y| Bauty — Box*|| — 31 Boun — Bax*||%)
30 — x* 17 = (1 = ) [|(un — 20) — (% — y5)|?
+232(1 = o) |ty — 20) — (% = y") || Boun — Box™|
—23(1 — )| Bouty — Box*||*.

IAIA IA

Thus, we get
(= o)l s — 20) = &% = yH)I
< b = x 112 = lyw = 517 = 2431 = ) [ Bouy — Box™||?
+222(1 — o) [[(n — z0) — & = y) || Bauy — Box™||
< ot = Yall(lxn — x* 1 + llyn — x*ID) = A3(1 — ) || Bty — Box*|)?
+222(1 — o) [|(n — z0) — ™ — y) ||| Bautn — Box™|.
Since «y, € (0, 1), Equations (53) and (58), we obtain

Tim |t = 2) = (7 =y = 0. (60)
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Now, from Equations (16) and (23), we observe that

I(zn — va) + (& = yH)II?

= (2 = ") = (a —xH)|1?

= |[(zn — A1 Bi1za) — (3" — A1 B1y*™) — [Pc(zn — M1Bizy) — Pc(y* — A1 B1y™)]
+A1(Bizy — Biy")|?

< zn — MBiza) — (VF = A1 B1y*) — [Pc(zn — M Biza) — Pc(y* — A1 B1yM)]|1?
+211(Bizp — B1y*, (zy — vp) + (x* — y™))
< [lzn = M1 Bizn) — (* = M B1y")|I> — | Pc(zn — A1 Biza) — Pc(y* — A Biy™)|1?
+22111Bizn — Biy* 1 (zn — vn) + (* = yH)||
< Ilzn = A1 Bizn) — (0* = M Biy)I> — 1S4 Pc (zn — A1 B1zy)
=S Pe(y* = MB1Y)|? + 201 Bizn — B1y*[lll(zn — va) + (* — 9|
< [lzn = 21B1zn) — (* = M Biy")|1> = [Suvn — Spx™|1?
+20111B1zn — Biy*[(zn — va) + (* — y9)]
< {Ilzn = M1 B1zn) — (* = 2Byl — 1Svn — x*II}
x{ll(zn — A1 B1za) — (0" = M Bry")| + 1Savn — x* 1}
+20111B1zn — Biy*[1(zn — va) + (¢* — y9)|
< I(zn — A1 Biza) — (3" — A1 B1Y*) — (Spvp — xM)||
x{ll(zn — A1 Biza) — (v = M BiyYH)| + [Savn — x* |1}
+22111Bizn — Biy* 1 (zn — va) + (* = yH)||
= |(zn — Un +up — Spvp) + (x* = ¥*) — A1 (Bizn — Byl
x{ll(zn — A1 B1zn) — (v = M Bry")| + 1Savn — x* 1}
+22111Bizn — Biy* [l (zn — va) + (* = y)||
= (n — Spva) + (* = ¥*) = (un — 24) — A1 (Bizy — B1y™)||
x{ll(zn — A1 Biza) — (v* = M BiyH)| + [1Savn — x* |1}
+24111B1zn — Biy*ll(zn — vn) + (* = yH)||
< {llun — Spvall + 1% = ¥*) = (n — z) 1l + A1l Brza — Bry* |1}
x{ll(zn — A Biza) — (v = MBIy + [[Savn — x|}
+22111Bizn — Biy*[l(zn — vn) + (* = yH)II.
Since
lin — Suvnll < ln — xull + X0 = Snvall. (61)
From Equations (54) and (57), implies that
lim iy — Syl = 0. (62)

We have from Equations (58), (60) and (62), it follows that
lim |[(zp — vp) + (" =y = 0. (63)
n—00
Also, observe that
1Snvn — vpll
= [|Spvn —up +upy — 24 + 20 —x* " _y*+y* — vl
[1Snvn — tnll + 10 — 20) — & = Y+ [zn — va) + & = ¥y

IA

@ Springer



420 J Math Model Algor (2014) 13:405-423

From Equations (60), (62) and (63), we get

lim ||S,v, — v,] = 0. (64)
n—o0
Since
”xn — Up ” =< ”xn - Snvn” + ”Snvn — Un ” (65)

By Equations (54) and (64), we get
lim ||x, — v,|| = 0. (66)
n—oo

Step 5. We will show that z € Q := N> Fix(S,) N\’ NGVI(C, By, By).

First, we show that z € NP2 | Fix(S,). From ||S, v, — v, || — 0, we obtain that S,v,, — 2
as i — o0o. By Lemma 4, we conclude that z € m?f:] Fix(Sy,).

Next, we will show that z € I".

First, we will show z € GEP(F, hy).

Since u, = Trf,F"h')x,,, we have

Fi(uy, w) + hy(up, w) + ri(w —Up, Uy —Xy) >0, Yw e C. (67)
It follows from the monotonicity of Fj th:lt
hl(”n»w)“‘%(w_un,un_xn) > Fi(w, uy), (68)
and hence replacing n by n;, we get

hl(un,-,w)+<w—uni,u> > Fi(w, ;). (69)

Fn:

i

Since [lu, — x,|| = 0 we getu,, — z and 2™ _, (. It follows by Lemma 1 (iv) that
0> Fi(w,z),Yz € C.Forany t with0 < ¢ <1 andw e C,letw, =tw+ (1 —t)z. Since

w e C,z € C,wehave w; € C, and hence, F(w;, z) < 0. So, from Lemma 1 (i) and (iv),
we have

0 = Fi(we, wy) + hy(wy, wy)
< t[F1(ws, w) + hy(we, w)] + (1 = O[F1(wy, 2) + hy(wy, 2)]
< t[F1(we, w) + by (we, w)] + (1 = DO[F1(z, we) + hi(z, we)]
< [Fi(we, w) + Ay (wr, w)].

Therefore, 0 < Fj(w;, w) + A1 (w;, w). From Lemma 1 (iii), we have 0 < Fi(z, w) +
h1(z, w). This implies that z € GE P(F1, hy).

Next, we show that Az € GE P(F>, hy). Since ||u, — x,|| = 0, u,, — zasn — oo and
{x} is bounded, there exists a subsequence {x,,} of {x,} such that x,, — z, and since A is
bounded linear operator, so Ax,, — Az.

Now, setting k,, = Ax,, — T,Efz’hZ)Axni. It follows from (55) that lim;_, o k,; = 0 and
Axy, — ky, = T2 Ay,

Therefore, from Lemma 3, we have

~ 1
FZ(Axn,- _kn,-’ Z)+h2(Axn,~ n, L)+ —(z2— (Axn, kn,-)’ (Axni _kn,-)_Axn,-> >0, (70)
nl
Vz € Q. Since F;, and h; are upper semicontinuous, taking lim sup to above inequality as
i — oo and using condition (C3), we obtain

F2(Az,2) + h2(Az,2) > 0, VZ € Q, (71)
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which means that Az € GEP(F;, hy) and hence z € I'.
Last, we show that z € GVI(C, By, By). Since lim,_ o [|Spvn — vull =

0, limy, s o [[Sp vy — x|l = 0, limy— o6 || — uy || = 0, then we get
lve — unll < llve — Spvpll + [1Suvn — xull + X0 — unll, (72)
we conclude that lim,,_, o ||v, — 1, || = 0. Furthermore, by the nonexpansivity of G in
Lemma 6, we have
lvn = Gl = II1PclPc(uy — A2 Batty) — i By Pc (un — A2 Bouty)] = G (vy) |
= |Gun) — G(vn)ll
< |lup — vull.

Since [lup — vall < llun — xall + llXn — vall, and [uy — xall = 0, llxp — vall — 0, we get
lup, — vu|l = 0asn — oo. Thus, lim,_, o |[vy, — G(v,)|| = 0. According to Lemma 4, we
obtain that z € GV I(C, By, B;). Hence, z € Q.

Step 6. We will show that x, — z, where z = Pq, xp. Since x, = Pc,xo and z € Q1 C
C,, we have

X0 — xoll < llz — Xoll. (73)
It follows from Z = Pgq, xg and the lower semicontinuity of the norm that
12— xoll < llz = xoll < liminf [x,, — xoll < limsup [|x,, — xoll < IZ —xoll.  (74)
11— 00 i—00
Thus, we obtain that lim; .« ||x,;, — Xoll = [z — xoll = [IZ — xo||. Using the Kadec-Klee
property of Hj, we obtain that
lim x,, =z =2 (75)
11— 00
Since {x,,;} is an arbitrary weakly convergent subsequence of {x,}, we can conclude that
{xn} converges strongly to z, where z = Pq, xo. This complete the proof. O

Corollary 1 Let H; and H, be two real Hilbert spaces and C C Hy and Q C Hj be
nonempty closed convex subsets of Hy and Hj, respectively. Let B be B-inverse strongly
monotone mappings from C into Hy, respectively. Let A : Hi — Hj be a bounded linear
operator. Let F1,hy : C x C — Rand Fy, hy : Q x Q — R satisfying Lemma 1; hy, hy
are monotone and F» is upper semicontinuous and S be a nonexpansive mapping from C
into itself such that

Q=N Fix(SYNTNVI(C, B) # 9. (76)
For a given xo € H,C; = C,x1 = Pcxo,un, € C, let the iterative sequences
{un}, {zn}. {yn} and {x,} be generated by

wn = TaM (v + EAXTS" — 1) Axy),

Zn = Pc(uy — ABuy),

Yn = onXy + (1 — ) SPc(zn — ABzy), )
Cot1={z€Cp:llyn—zll < llxn —zll},

Xp+1 = PCn+1x07 Vn € N,

where {a,} € (0,1] for some l € (0,1),11 € [a,b] C (0,28),& € (0, %), L is the
spectral radius of the operator A* A and A* is the adjoint of A and {r,} C (0, co) satisfying
liminf, ooy > 0. Then the sequence {x,} converges strongly to Pq,xo and (x*, y*) is
a solution of a general system of variational inequalities problems, where y* = Pc(x™ —
ABx™).

Proof Setting S,, = Sforalln € N, B= B} = B, and A = A| = A, in Theorem 1. O
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4 Conclusion

The results presented in Theorem 1 and Corollary 1 of this paper extend and improve the
results of Kazmi and Rivi [18], Kumam [21] and Kumam and Kumam [22].
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