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Abstract In this research an integrated production-distribution inventory model is devel-
oped for a single-vendor single-buyer supply chain system with the consideration of quality
inspection errors at the buyer’s end, the buyer’s warehouse has limited capacity and there
is an upper bound on the purchase of products. Mathematical modeling is employed in this
study for optimizing the replenishment lot-size and total number of deliveries from the ven-
dor to the buyer in one production run with the objective of minimizing integrated expected
total cost of the system while satisfying the constraints. We show that the model of this
problem is a constrained non-linear programme and propose a simple Lagrangian multiplier
algorithmic technique to solve it. The computational effort and time are small for the pro-
posed algorithm and it is simple to implement. A numerical example is given to demonstrate
the application and the performance of the proposed methodology. In addition, sensitivity
analysis has been carried out to illustrate the behaviors of the proposed model and some
managerial insights are also included.

Keywords Mathematical modeling · Lagrangian multiplier · Quality inspection error

1 Introduction

To achieve business objective, managers have to procure and make best use of resources
like money, machines, materials and men. Many of these resources and functions which are
under the disposal of managers are inter-related. To attain the common objectives of the
organization efficiently, different activities and efforts must be planned and carried on in
an orderly manner. Coordination among different business entities such as buyer, vendor,
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producer, etc. are an important way to gain today’s competitive advantages. It involves syn-
chronization of different efforts or actions of the various units of an organization to provide
the requisite amount, timing, quality and sequence of efforts so that the planned objectives
may be achieved with minimum conflict. In the retailing industry, WalMart and Proctor and
Gamble received substantial collaboration benefits by implementing collaborative planning,
and replenishment, a business model that intends to help supply chain members to collab-
orate in both tactical and strategic levels. Therefore, the integrated inventory research has
received more attention in the literature. For instance, Goyal and Nebebe [9], Pandey et al.
[17], Arora et al. [1], Yan et al. [28], Glock [6] and Uthayakumar and Priyan [24] addressed
integrated inventory model under various assumptions.

The traditional Economic Order Quantity (EOQ) and Economic Production Quantity
(EPQ) inventory models assumed that all products are perfect. It is common to all indus-
tries that a certain percent of produced/ordered products are non-conforming (imperfect)
quality. Among other researchers, Salameh and Jaber [20] addressed an inventory model
which accounted for imperfect quality products using the EPQ/EOQ formulae. Goyal and
Cardenas-Barron [7] extended Salameh and Jaber’s [20] model and proposed a practical
approach to determine EPQ for products with imperfect quality. In contrast to the above
models, Goyal et al. [8] examined the model of Goyal and Cardenas-Barron [7], consider-
ing vendor-buyer integration policy. Recently, Sana [21] developed a production inventory
model of imperfect quality products in a three-layer supply chain. Further, some research
(see, for instance, Huang [12], Huang [13], Wang [26] and Sarkar et al. [22]) has been
done in multi-stage lot sizing decisions for imperfect production processes with imperfect
production quality.

Inspection helps to control the quality of products by helping to fix the sources of defects
immediately after they are detected, and it is useful for any factory/or companies that wants
to improve productivity, reduce defect rates, and reduce re-work and waste. In the literature,
there are several types of inspection plans. Due to the disastrous consequences from accept-
ing a defective component a common practice in industry is to institute repeat (multiple)
inspections. Repeat inspection means each characteristic is inspected more than once. The
reason for repeat inspections is that inspection is never perfect. There is always the possi-
bility of false rejection (type I error) and false acceptance (type II error). In case of critical
components the cost of inspection and the cost of false rejection are much less in order of
magnitude than the cost of false acceptance. Because in case of accepting a defective com-
ponent and mounting it on the system (such as aircraft avionics, the parts of a gas ignition,
space shuttles and nuclear reactors) will result in system failure which may cause the loss
of the system and human lives. Therefore, many developed countries have always main-
tenance check of electronic equipment on a Navy aircraft as safety is the highest priority
(For instance, see Wee and Widyadana [27]). Hence, the production process is interrupted
regularly for maintenance so as to avoid major failures and supply disruptions.

Quality inspection error is an important aspect that demands due consideration in the
inventory and supply chain management related literature. Initially, Bennett et al. [4] inves-
tigated the effects of inspection errors on a cost-based single sampling plan. Duffuaa [5]
addressed the impact of inspection errors on the performance measures of a complete
repeat inspection plan. Hsu and Hsu [11] developed two EPQ models with imperfect pro-
duction processes, inspection errors, planned backorders, and sales returns. Further, some
researchers developed EOQ/EPQ inventory model with imperfect quality and inspection
errors (see Khan et al. [15], Hsu and Hsu [10] and Khan et al. [14]). In contrast to the
existing models, Ben-Daya and Rahim [2] incorporated inspection errors in integrated
production, quality, and maintenance decisions in two-stage, as well as in multi-stage,
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imperfect production-inventory environments. Recently, Khan et al. [14] developed a math-
ematical model to determine an optimal vendor-buyer inventory policy. They take into
quality inspection errors at the buyer’s end and learning in production at vendor’s end with
an objective to minimize the joint annual cost incurred by the supply chain.

Most of the classical inventory models are generally developed for a single constraint.
Nevertheless, in real life, this kind of inventory model rarely occurs. Instead of single
constraint, many companies, enterprises or buyers deal with several constraints such as
available floor/shelf space, capital investment and average number of inventory, etc. Sin-
gle stage classical inventory models under single resource constraint are presented in
well-known text books of this subject. Ben-Daya and Raouf [3] discussed a multi-item
inventory model with stochastic demand subject to the restrictions on available space
and budget. Recently, Taleizadeh et al. [23] addressed a multi-buyer multi-vendor supply
chain problem is considered in which there are several products, each buyer has lim-
ited capacity to purchase products, and each vendor has warehouse limitation to store
products. Later, some researchers (Pasandideh et al. [18], Pasandideh et al. [19] and Yan
et al. [29]) investigated a multi-echelon multi-constraint inventory model under various
assumptions.

The aforementioned multi-echelon multi-constraint inventory models showed that the
model of the problem is a constrained non-linear program and proposed a genetic algorithm
to solve it. The major limitations of the genetic algorithms are the amount of computer
memory and the computation time required for large problems. As a result, Uthayakumar
and Priyan [25] proposed a Lagrangian multiplier algorithmic technique to solve a multi-
echelon multi-product multi-constraint inventory problem under healthcare environment. In
this study, we develop a single-vendor single-buyer supply chain system with the consid-
eration of quality inspection errors at the buyer’s end, the buyer’s warehouse has limited
capacity and there is an upper bound on the purchase of products. We develop a mathemati-
cal model and recommend the Lagrangian multiplier approach similar to Uthayakumar and
Priyan [25] to find the optimal solution of the proposed model. The remainder of this paper
is organized as follows: In Section 2, a list of the notations and the description formulation
of the model are given. Section 3 provides the solution procedure of the proposed model.
The numerical and sensitivity analysis are given in Section 4. Finally, the conclusion of the
study is summarized in Section 5.

2 Notations and Model Formulation

In this study, an equal lot-size inventory policy is adopted for a two-stage vendor-buyer
supply chain similar to Huang [12]. The vendor follows an EPQ policy to manufacture a
single product. The coordination mechanism is such that the vendor receives the buyer’s
demand and produces the single product at a finite production rate P ; the vendor replenishes
the order in a number of equal-sized shipments. It is assumed that the vendor’s produc-
tion processes are imperfect and may produce defective products. Thus, once the buyer
receives the lot-size Q, a 100 % screening process is conducted. The screening process
and demand proceed simultaneously. The screening process is also imperfect in that an
inspector may incorrectly classify a non-defective product as defective (Type I error), or a
defective product as non-defective (Type II error). The goal of this study is to determine
values of the lot-size Q and total number of deliveries n in a production run such that
the integrated expected total cost of the supply chain is minimized and the constraints are
satisfied.
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2.1 Notations

The following notations would be used throughout the model:

n Total number of deliveries from the vendor to the buyer in one production run, an
integer, a decision variable

Q Lot-size of a shipment from the vendor to the buyer, a decision variable
A Buyer’s ordering cost per order
hb Buyer’s holding cost per unit time
hv Vendor’s holding cost per unit time
S Vendor’s setup cost per setup
sc Buyer’s unit screening cost ($)
D Demand for the vendor (units/year)
P Vendor’s production rate (units/year), P > D

Cv Vendor’s production cost per unit time ($/year)
Ca(Q) False acceptance cost, which is proportional to the lot size Q($/delivery)
θ False acceptance cost rate (per monetary unit invested in inventory) per unit

time
Cr(Q) False rejections cost, which is proportional to the lot size Q($/delivery)
θ0 False rejections cost rate (per monetary unit invested in inventory) per unit time
p Buyer’s purchasing price per unit item ($/unit)
F Buyer’s fixed transportation cost per delivery ($/delivery)
v Buyer’s unit variable cost for order handling and receiving ($/unit)
α Percentage of defective products supplied by the vendor
αc The percentage of defective products observed by the buyer through screening

αc = (1 − α)m1 + α(1 − m2)

m1 Probability of a Type I error (classifying a non-defective product as defective)
m2 Probability of a Type II error (classifying a defective product as non-defective)
f (α) Probability density function of α

f (m1) Probability density function of m1
f (m2) Probability density function of m2
x Buyers screening rate (units/year)
T Time between successive shipments (years)
Tp Vendor’s production time in a cycle
Td Vendor’s non-production time in a cycle
B Buyer’s maximum available budget to purchase products
fc Space occupied per product
W Buyer’s total available storage space

2.2 Inventory Pattern and Base Model

Once the buyer orders a lot size of Q units, the vendor produces the items in a lot size of nQ

units in each production cycle of length nQ/D with a constant production rate P units per
unit time, and the buyer will receive the supply in n lots each of size Q units. The vendor
ships in its first lot as soon as it has Q units. Figures 1 and 2 illustrate the inventory patterns
at the buyer and vendor, respectively. Figure 2 leads to the the first lot size of Q units is ready
for shipment after time Q/P just after the start of the production. During the production
period, Tp = nQ/P , the vendor’s inventory is building up at a constant production rate P

which is higher than demand rate D (i.e. P > D), and simultaneously supplies a lot of size
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Fig. 1 Buyer’s inventory in vendor’s one cycle

Q units to the buyer on expected every Q/D units of time. Subsequently, during the non-
production period, Td , the vendor continues his shipments to the buyer on expected every
Q/D units of time until the inventory level falls to zero. Figure 1 demonstrates the behavior
of the buyer’s inventory, which is the same as in Salameh and Jaber [20] and Khan et al.
[14]. The buyer starts screening at the beginning of the cycle and discards or salvages the
defective lot at the end of this screening process.

Figure 3 demonstrates the same manners of inventory in another appearance. That is, the
triangle XOY and the rectangle OCYZ are the total inventory at the vendor’s end whereas
the shaded rectangles are the total inventory supplied to the buyer (see Salameh and Jaber
[20] and Khan et al. [14]). Thus, the total inventory or stock level with the vendor will be
determined by using Fig. 3. Alternatively, the buyer’s stock level will be calculated by using
Fig. 1.

Similar to the method of Goyal et al. [8] the total inventory for the vendor in a cycle is
the sum of areas of the triangle XYO and the rectangle OYCZ in Fig. 3, that is,

AreaXOY = 1

2

(
nQ

P

)
(nQ) = n2Q2

2P

AreaOCYZ = nQ

[
(n − 1)

(
Q

D
− Q

P

)]
= nQ2(n − 1)(P − D)

PD

Fig. 2 Vendor’s inventory level in a one cycle with time
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Fig. 3 Accumulation and supply of vendor’s inventory in a cycle

The total inventory moved to the buyer in a cycle by the vendor is n(n−1)Q2

2D
. Therefore,

the vendor’s total inventory in a cycle is

Iv(Q, n) = n2Q2

2P
+ nQ2(n − 1)(P − D)

PD
− n(n − 1)Q2

2D

= nQ2

2D

{
(n − 1) − (n − 2)

D

P

}

Hence, the vendor’s total cost in a cycle is the sum of the setup, holding and production
costs

T Cv(Q, n) = S + hvnQ2

2D

{
(n − 1) − (n − 2)

D

P

}
+ nQCv

P
(1)

Then, the buyer’s total cost in a vendor’s cycle is the sum of ordering, holding, screening
and the shipment costs

T Cb(Q, n) = A + nhb

{
Q(1 − α)T

2
+ αQ2

x

}
+ nQsc + n(F + vQ) (2)

Accordingly, the annual total cost in a cycle for the vendor-buyer integrated system is
given by sum of Eqs. (1) and (2), mathematically

T C(Q, n) = T Cv(Q, n) + T Cb(Q, n)

T C(Q, n) = S + hvnQ2

2D

{
(n − 1) − (n − 2)

D

P

}
+ nQCv

P
+ A

+nhb

{
Q(1 − α)T

2
+ αQ2

x

}
+ nQsc + n(F + vQ)
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Since α is a random variable with probability density function f (α), the inte-
grated expected total cost of the supply chain per cycle, after some algebraic simpli-
fication, is

T C(Q, n) = S + A + nF + nQ2

2D

[
hv

{
(n − 1) − (n − 2)

D

P

}
+ 2hbDE[α]

x

]

+nQCv

P
+ nhbQ(1 − E[α])E[T ]

2
+ nQ(sc + v)

In addition, as we have E[T ] = (1−E[α])Q
D

, using nE(T ) as the total cycle time, the
integrated expected total cost, by using the renewal theory as in Maddah and Jaber [16],
would be

E [T C(Q, n)] = D

(1 − E[α])Q
{

(S + A)

n
+ F

}
+ D

(1 − E[α])
(

sc + v + Cv

P

)

+Q

2

[
hv

(1 − E[α])
{
(n − 1) − (n − 2)

D

P

}
(3)

+hb

{
(1 − E[α]) + 2DE[α]

x(1 − E[α])
}]

2.3 Inspection Errors

The performance of an inspection plan is greatly influenced by inspection errors. An
inspector can commit two types of errors. Type I error is the probability of classifying a
non-defective item as defective and type II error is the probability of classifying a defec-
tive item as non-defective. These errors may have an adverse effect on the ability of an
inspection plan to ensure product quality. However, the screening process in most of the
supply chain literature is assumed to be error-free, for instance Goyal et al. [8] and Huang
[12]. In this section, it is assumed that the inspectors at the buyer’s end commit errors while
screening the vendor’s product. That is, they will categorize some non-defective units as
defectives, i.e. (1 − α)m1, while some defective units as non-defectives, i.e. αm2. In other
words, they will characteristic a percentage of defective to the vendor which is dissimi-
lar from the actual one. Thus, the fraction of defective units as professed by the inspectors
would be

αc = (1 − α)m1 + α(1 − m2)

and

E[αc] = (1 − E[α])E[m1] + E[α](1 − E[m2])
So the time interval between successive shipments would now be

E[T ] = (1 − E[αc])Q
D

= {(1 − E[α])E[m1] + E[α](1 − E[m2])}Q

D

The errors in screening will cause the buyer’s costs of misclassifications. That is, the cost
of false rejection of non-defective items (Type 1 error) and the cost of false acceptance of
defective items (Type II error). In this study, we assume that the cost of false acceptance Ca

and false rejections Cr are function of lot-size Q. That is, Ca(Q) = θQ where 0 ≤ θ ≤ 1
and Cr(Q) = θ0Q where 0 ≤ θ0 ≤ 1. In case of critical components, such as aircraft
and healthcare industries where safety is the highest priority, the cost of false acceptance is
much more than that of false rejection. To accommodate this fact, the value of θ is chosen



74 J Math Model Algor (2015) 14:67–89

to be much higher than that of θ0 (θ � θ0) in our numerical example. Thus accounting for
these costs, the expected total cost given in Eq. (3), would now be written as

ET C(Q, n) = D

(1 − E[αc])Q
{

(S + A)

n
+ F

}
+ D

(1 − E[αc])
(

sc + v + Cv

P

)

+Q

2

[
hv

(1 − E[αc])
{
(n − 1) − (n − 2)

D

P

}

+hb

{
(1 − E[αc]) + 2DE[αc]

x(1 − E[αc])
}]

+θQE[α]E[m2]D
(1 − E[αc]) + θ0Q(1 − E[α])E[m1]D

(1 − E[αc]) (4)

As mentioned earlier, our goal is to determine values of the lot-size Q and total number
of deliveries n in a production run such that the integrated expected total cost of the supply
chain (as expressed in Eq. (4)) is minimized and the constraints are satisfied. The constraints
are:

(i) The capacity of the storage to store all products is limited, mathematically, fcQ ≤ W

(ii) The purchasing cost for all products is also limited, mathematically, pQ ≤ B

Now our problem is to find the optimal of Q and n in a production cycle that min-
imize the integrated expected total cost (as expressed in Eq. (4)) and satisfy the
constraints on storage and budget, that is the mathematical formulation of the problem
becomes

Min ET C(Q, n) = D

(1 − E[αc])Q
{

(S + A)

n
+ F

}
+ D

(1 − E[αc])
(

sc + v + Cv

P

)

+Q

2

[
hv

(1 − E[αc])
{
(n − 1) − (n − 2)

D

P

}

+hb

{
(1 − E[αc]) + 2DE[αc]

x(1 − E[αc])
}]

+θQE[α]E[m2]D
(1 − E[αc]) + θ0Q(1 − E[α])E[m1]D

(1 − E[αc])
Subject to fcQ ≤ W

pQ ≤ B. (5)

3 Solution Procedure

The problem (as expressed in Eq. (5)) is a nonlinear programming model, and this problem
is hard to solve by a exact method. Therefore, we present a simple Lagrangian multi-
plier technique similar to Uthayakumar and Priyan [25] to solve the given problem. In
this section, the following cases discuss the detailed solution approach of this nonlinear
problem.

Case 1 In this case, we temporarily ignore the constraints fcQ ≤ W and pQ ≤ B then
determine the optimal solutions of Q and n which minimizes the integrated expected total
cost ETC(Q,n).
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{
ET C(Q, n∗) ≥ ET C(Q, n∗ + 1)

ET C(Q, n∗) ≥ ET C(Q, n∗ − 1)

Property 1. For fixed Q, ET C(Q, n) is convex in n.

Proof Taking the first and second partial derivatives of ET C(Q, n) with respect to n, we
have

∂ET C(Q, n)

∂n
= − D(S + A)

(1 − E[αc])Qn2
+ Qhv

2(1 − E[αc]) − QhvD

2P(1 − E[αc])
and

∂2ET C(Q, n)

∂n2
= 2D(S + A)

(1 − E[αc])Qn3
> 0.

Therefore, for fixed Q, ET C(Q, n) is convex in n.
This completes the proof of Property 1.

Now, for fixed n, we take the first partial derivative of ET C(Q, n) with respect to Q,
and obtain

∂ET C(Q, n)

∂Q
= − D

(1 − E[αc])Q2

{
(S + A)

n
+ F

}

+θE[α]E[m2]D
(1 − E[αc]) + θ0(1 − E[α])E[m1]D

(1 − E[αc])
+1

2

[
hv

(1 − E[αc])
{
(n − 1) − (n − 2)

D

P

}

+hb

{
(1 − E[αc]) + 2DE[αc]

x(1 − E[αc])
}]

(6)

Hence, for fixed n, ET C(Q, n) is convex in Q since

∂2ET C(Q, n)

∂Q2
= 2D

(1 − E[αc])Q3

{
(S + A)

n
+ F

}
> 0

On the other hand, for fixed n, we obtain optimal Q by setting Eq. (6) to zero as

Q =
⎧⎨
⎩

2D
(

(S+A)
n

+ F
)

θE[α]E[m2]D + θ0(1 − E[α])E[m1]D + G(n)

⎫⎬
⎭

1/2

(7)

where G(n) = hv

(
(n − 1) − (n − 2)D

P

) + hb

(
(1 − E[αc])2 + 2DE[αc]

x

)

Now we discuss the solution procedure of this case. Initially, for fixed Q, ETC(Q,n)

can be proved to be a convex function of n, which indicate that there must be an optimal
n = n∗ to meet the following equation:
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Thus, for fixed n, when all constraints are ignored, Eq. (7) gives optimal value of Q such
that the integrated expected total cost is minimum. Furthermore, based on the convexity
behavior of objective function with respect to the decision variables the following algorithm
is developed to find the optimal values for Q and n.

Algorithm 1

Step 1. Set n = 1.
Step 2. Determine Q from Eq. (7).
Step 3. Compute the corresponding ET C(Q, n) by putting Q in Eq. (4).
Step 4. Set n = n + 1, repeat the step 2 and 3 to get ET C(Q, n).
Step 5. If ET C(Q, n) ≤ ET C(Q, n − 1), then go to step 4, otherwise go to step 6.
Step 6. Set (Q∗, n∗) = (Q, n − 1), then the set (Q∗, n∗) is the optimal solution for

multi-echelon multi-constraint inventory system when both constraints are
ignored.

Min ET C(Q, β, n) = D

(1 − E[αc])Q
{

(S + A)

n
+ F

}
+ D

(1 − E[αc])
(

sc + v + Cv

P

)

+Q

2

[
hv

(1 − E[αc])
{
(n − 1) − (n − 2)

D

P

}
(8)

+hb

{
(1 − E[αc]) + 2DE[αc]

x(1 − E[αc])
}]

+θQE[α]E[m2]D
(1 − E[αc]) +θ0Q(1 − E[α])E[m1]D

(1 − E[αc]) +β(fcQ − W)

Q =
⎧⎨
⎩

2D
(

(S+A)
n

+ F
)

θE[α]E[m2]D + θ0(1 − E[α])E[m1]D + G(n) + βfc

⎫⎬
⎭

1/2

(9)

fc

⎡
⎢⎢⎣

√√√√ 2D
(

(S+A)
n

+ F
)

θE[α]E[m2]D + θ0(1 − E[α])E[m1]D + G(n) + βfc

⎤
⎥⎥⎦ − W = 0 (10)

Further, as in the first case, we can prove that ET C(Q, β, n) is a convex function of
n. Now, based on the convexity behavior of objective function with respect to the deci-
sion variables the following algorithm is developed to find the optimal values for Q,n

and β.

Case 2 In this case, we consider the buyer’s floor space and ignore budget constraint. In
order to solve this kind of problem we optimize the following function adding a Lagrange
multiplier β:

Now we discuss the solution procedure of this case. Initially, for fixed n, the optimal
Q can be determined by solving m + 1 equations in m + 1 unknown variables given by
∂ETC(Q,β,n)

∂Q
= 0 and ∂ET C(Q,β,n)

∂β
= 0. Without loss of generality, we present the final

results

where the β value can be determined by solving the following equation:
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Algorithm 2

Step 1. Set n = 1.
Step 2. Calculate β value solving Eq. (10).
Step 3. Compute Q from Eq. (9) by using the value of β.
Step 4. Compute the corresponding ET C(Q, β, n) by putting Q and β in Eq. (8).
Step 5. Set n = n + 1, repeat the step 2 to 4 to get ET C(Q, β, n).
Step 6. If ET C(Q, β, n) ≤ ET C(Q, β, n − 1), then go to step 5, otherwise go to step 7.
Step 7. Set (Q∗, β∗, n∗) = (Q, β, n − 1), then the set (Q∗, β∗, n∗) is the optimal solu-

tion for multi-echelon multi-constraint inventory system when budget constraint
is ignored.

Min ET C(Q, γ, n) = D

(1 − E[αc])Q
{

(S + A)

n
+ F

}
+ D

(1 − E[αc])
(

sc + v + Cv

P

)

+Q

2

[
hv

(1 − E[αc])
{
(n − 1) − (n − 2)

D

P

}
(11)

+hb

{
(1 − E[αc]) + 2DE[αc]

x(1 − E[αc])
}]

+θQE[α]E[m2]D
(1 − E[αc]) + θ0Q(1 − E[α])E[m1]D

(1 − E[αc]) + γ (pQ − B)

Q =
⎧⎨
⎩

2D
(

(S+A)
n

+ F
)

θE[α]E[m2]D + θ0(1 − E[α])E[m1]D + G(n) + γp

⎫⎬
⎭

1/2

(12)

p

⎡
⎢⎢⎣

√√√√ 2D
(

(S+A)
n

+ F
)

θE[α]E[m2]D + θ0(1 − E[α])E[m1]D + G(n) + γp

⎤
⎥⎥⎦ − B = 0 (13)

In addition, as in the first case, we can prove that ET C(Q, γ, n) is a convex function
of n. Based on the convexity behavior of objective function with respect to the decision
variables the following algorithm is developed to find the optimal values for Q, n and γ .

Case 3 In this case, we consider the buyer’s budget and ignore floor space constraint. In
order to solve this kind of problem we optimize the following function adding a Lagrange
multiplier γ :

Now we discuss the solution procedure of this case. Initially, for fixed n, the optimal
Q can be determined by solving m + 1 equations in m + 1 unknown variables given by
∂ETC(Q,γ,n)

∂Q
= 0 and ∂ET C(Q,γ,n)

∂γ
= 0. Without loss of generality, we present the final

results

where the γ value can be determined by solving the following equation:
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Algorithm 3

Step 1. Set n = 1.
Step 2. Calculate γ value solving Eq. (13).
Step 3. Compute Q from Eq. (12) by using the value of γ .
Step 4. Compute the corresponding ET C(Q, γ, n) by putting Q and γ in Eq. (11).
Step 5. Set n = n + 1, repeat the step 2 to 4 to get ET C(Q, γ, n).
Step 6. If ET C(Q, γ, n) ≤ ET C(Q, γ, n − 1), then go to step 5, otherwise go to step 7.
Step 7. Set (Q∗, γ ∗, n∗) = (Q, γ, n−1), then the set (Q∗, γ ∗, n∗) is the optimal solution

for multi-and echelon multi-constraint inventory system when space constraint is
ignored.

Min ET C(Q, β, γ, n) = D

(1 − E[αc])Q
{

(S + A)

n
+ F

}
+ D

(1 − E[αc])
(

sc + v + Cv

P

)

+Q

2

[
hv

(1 − E[αc])
{
(n − 1) − (n − 2)

D

P

}

+hb

{
(1 − E[αc]) + 2DE[αc]

x(1 − E[αc])
}]

+θQE[α]E[m2]D
(1 − E[αc]) + θ0Q(1 − E[α])E[m1]D

(1 − E[αc])
+β(fcQ − W) + γ (pQ − B) (14)

Q =
⎧⎨
⎩

2D
(

(S+A)
n

+ F
)

θE[α]E[m2]D + θ0(1 − E[α])E[m1]D + G(n) + βfc + γp

⎫⎬
⎭

1/2

(15)

fc

⎡
⎢⎢⎣

√√√√ 2D
(

(S+A)
n

+ F
)

θE[α]E[m2]D + θ0(1 − E[α])E[m1]D + G(n) + βfc + γp

⎤
⎥⎥⎦ − W = 0 (16)

and

p

⎡
⎢⎢⎣

√√√√ 2D
(

(S+A)
n

+ F
)

θE[α]E[m2]D + θ0(1 − E[α])E[m1]D + G(n) + βfc + γp

⎤
⎥⎥⎦ − B = 0 (17)

Case 4 In this case, we consider both constraints such as budget and floor space con-
straint. To solve this kind of problem we optimize the following function adding a Lagrange
multipliers β and γ :

Now we discuss the solution procedure of this case. Initially, for fixed n, the optimal
Q can be determined by solving m + 2 equations in m + 2 unknown variables given by
∂ETC(Q,β,γ,n)

∂Q
= 0, ∂ET C(Q,β,γ,n)

∂β
= 0 and ∂ET C(Q,β,γ,n)

∂γ
= 0. Without loss of generality,

we present the final results

where the β and γ values can be determined by solving the following equations simultane-
ously:
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In addition, as in the first case, we can prove that ET C(Q, β, γ, n) is a convex function
of n. Based on the convexity behavior of objective function with respect to the decision
variables the following algorithm is developed to find the optimal values for Q, β, γ and n.

Algorithm 4

Step 1. Set n = 1.
Step 2. Calculate β and γ values solving Eqs. (16) and (17).
Step 3. Compute Q from Eq. (15) by using the values of β and γ .
Step 4. Compute the corresponding ET C(Q, β, γ, n) by putting Q, β and γ in Eq. (14).
Step 5. Set n = n + 1, repeat the step 2 to 4 to get ET C(Q, β, γ, n).
Step 6. If ET C(Q, β, γ, n) ≤ ET C(Q, β, γ, n − 1), then go to step 5, otherwise go to

step 7.
Step 7. Set (Q∗, β∗, γ ∗, n∗) = (Q, β, γ, n − 1), then the set (Q∗, β∗, γ ∗, n∗) is the

optimal solution for multi-echelon multi-constraint inventory system when both
constraints are considered.

3.1 Main Computational Procedure

When there are two constraints imposed simultaneously in multi-echelon inventory system,
based on the above four cases, the main computational procedure to solve the problem is as
follows:

Step 1. Ignoring both constraints and determine the optimal values using algorithm 1.
If Q satisfy both constraints, then the obtained values of Q and n are optimal
solutions such that the integrated expected total cost is minimum and go to step 5.

Step 2. Else solve the optimization problem subject to floor space constraint and ignore
budget constraint. That is, determine the optimal values using algorithm 2. If
Q satisfy budget constraint, then the obtained values of Q, β and n are opti-
mal solutions such that the integrated expected total cost is minimum and go to
step 5.

Step 3. Else solve the optimization problem subject to budget constraint and ignore floor
space constraint. That is, determine the optimal values using algorithm 3. If Q

satisfy floor space constraint, then the obtained values of Q, γ and n are optimal
solutions such that the integrated expected total cost is minimum and go to step 5.

Step 4. If none of the three steps aforementioned is applicable, both constraints are active.
Then solve the optimization problem subject to both constraints such as floor
space and budget. That is, determine the optimal values using algorithm 4 and the
optimal solutions Q, β, γ and n has been found such that the integrated expected
total cost is minimum and go to step 5.

Step 5. Stop.

4 Numerical Analysis

In this section, we conduct numerical analysis to illustrate the solution procedure. The val-
ues of the following parameters which are almost similar to those used in Goyal et al. [8] and
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Salameh and Jaber [20]: D = 1000 units/year, P = 3200 units/year, Cv = $100000 /year,
x = 175200 units/year, A = $25/order, S = $400/setup, hb =$5/unit/year, hv =$4/unit/year,
sc =$ 0.5/unit, F = $25/shipment, v = $2/unit, θ = 0.3 and θ0 = 0.05, fc = 0.4 square feet,
p = $20/unit, B = $2000 and W = 40 square feet.

In addition, if defective percentage and inspection errors (Type I and Type II) follow
uniform distribution with

f (α) =
{

1
λ
, 0 ≤ α ≤ λ

0, otherwise.

f (m1) =
{ 1

η
, 0 ≤ m1 ≤ η

0, otherwise.

f (m2) =
{

1
δ
, 0 ≤ m2 ≤ δ

0, otherwise.

then we have

E[α] =
∫ λ

0
αf (α)dα =

∫ λ

0

α

λ
dα = λ

2
,

E[m1] =
∫ η

0
m1f (m1)dm1 =

∫ η

0

m1

η
dm1 = η

2
,

E[m2] =
∫ δ

0
m2f (m2)dm2 =

∫ δ

0

m2

δ
dm2 = δ

2
,

Specifically, if λ = η = δ = 0.04, we have E(α) = E(m1) = E(m2) = 0.02.
Calculating optimal inventory policies for multi constraint in a multi echelon inventory

system requires efficient solution procedures that can handle large scale inventory sys-
tems, reduce the associated computational time, and reduce modeling complexity due to
the dependency between echelons [25]. We proposed computational algorithms based on a
Lagrangian multiplier approach similar to Uthayakumar and Priyan [25] to solve the two-
echelon multi-constraint inventory problem. The computational effort and time are small
for the proposed algorithm and it is simple to implement. The algorithms were coded in
MATLAB. Here we describe the computational testing done to evaluate the performance of
the algorithm in the numerical example. The solution procedure of the numerical example
through main computational procedure described in Section 3.1 is given in Table 1.

Now, from Table 1, we can recognized that the integrated expected total cost ET C(Q, n)

is clearly lower for n = 6 than for n = 5 and n = 7, and the proposed algorithm reports this
as an approximate minimum. In other words, from Table 1, we can verify that

ET C(Q, n = 5) > ET C(Q, n = 6) < ET C(Q, n = 7)

Accordingly, when both constraints are ignored, we can choose the optimal values for
the optimal lot size Q∗ = 96, total number of deliveries n∗ = 6 and the corresponding
minimum integrated expected total cost ET C(Q∗, n∗) = $37256.

Now we consider both floor space and budget constraints. Then

fcQ
∗ < 40

pQ∗ < 2000
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Table 1 Illustration of the
solution procedure for the
numerical example

n Q β γ ET C(.)

1 359 - - 37939

2 221 - - 37490

3 164 - - 37342

4 131 - - 37282

5 111 - - 37260

6 96 - - 37256∗

7 85 - - 37263

8 77 - - 37278
*Minimum integrated expected
cost

The optimal solution for the given example is not affected by the constraints as the opti-
mal lot-size of Q∗ satisfy both constraints, so the constraints can be ignored. Suppose that
the optimal lot size does not satisfy the floor space constraint and satisfy budget constraint
and we apply the same procedure to find the optimal solution using algorithm 2. Similarly,
if the optimal lot size does not satisfy the budget constraint and satisfy floor space con-
straint, then we apply the same procedure to find the optimal solution using algorithm 3. If
the optimal lot size does not satisfy either of the constraints, we apply the same procedure
to find the optimal solution using algorithm 4. Hence, the optimal solution for vendor-buyer
inventory system involving quality inspection errors with multi-constraints is the lot size
Q∗ = 96, total number of deliveries n∗ = 6 and the corresponding minimum integrated
expected total cost ET C(Q∗, n∗) = $37256.

4.1 Sensitivity Analysis

We now study the effects of changes in the system parameters D, P , Cv , S, A and θ on the
optimal lot-size Q∗, total number of deliveries n∗, Lagrangian multipliers β∗ and γ ∗, and
the expected total cost ET C(.) of the given example.

4.1.1 Effects of Demand on Optimal Solution

In order to study how various demand D affect the optimal solution of the proposed model.
The demand sensitivity analysis is performed by changing the parameter of D by +50 %,
+40 % +30 %, +20 %, +10 %, −10 %, −20 %, −30 %, −40 % and −50 %, and keep-
ing the remaining parameters unchanged. The results of the demand analysis are shown in
Table 2 and the corresponding curve of the minimum expected total cost is also plotted
in Fig. 4.

4.1.2 Effects of Production Rate on Optimal Solution

In order to study how various production rate P affect the optimal solution of the proposed
model. The production rate sensitivity analysis is performed by changing the parameter of P

by +50 %, +40 % +30%, +20 %, +10 %, −10 %, −20 %, −30 %, −40 % and −50 %, and
keeping the remaining parameters unchanged. The results of the production rate analysis
are shown in Table 3 and the corresponding curve of the minimum integrated expected total
cost is plotted in Fig. 5.



82 J Math Model Algor (2015) 14:67–89

Table 2 Effects of demand on
optimal solution of given
example

D Q∗ β∗ γ ∗ n∗ ET C(.)

+50 % 70 0.34 0.26 12 55083

+40 % 78 0.13 0.16 10 51570

+30 % 81 0.08 0.11 9 48012

+20 % 96 − − 7 44454

+10 % 79 0.05 0.08 8 40839

−10 % 68 0.28 0.15 8 33577

−20 % 96 − − 5 30024

−30 % 91 − − 5 26394

−40 % 99 − − 4 22751

−50 % 91 − − 4 19094

4.1.3 Effects of Production Cost on Optimal Solution

In order to study how various production cost Cv affect the optimal solution of the proposed
model. The production cost sensitivity analysis is performed by changing the parameter of
Cv by +50 %, +40 % +30 %, +20 %, +10 %, −10 %, −20 %, −30 %, −40 % and
−50 %, and keeping the remaining parameters unchanged. The results of the production
cost analysis are shown in Table 4 and the corresponding curve of the minimum integrated
expected total cost is plotted in Fig. 6.

4.1.4 Effects of Setup Cost on Optimal Solution

In order to study how various setup cost S affect the optimal solution of the proposed model.
The setup cost sensitivity analysis is performed by changing the parameter of S by +50 %,
+40 % +30 %, +20 %, +10 %, −10 %, −20 %, −30 %, −40 % and −50 %, and keeping
the remaining parameters unchanged. The results of the setup cost analysis are shown in
Table 5 and the corresponding curve of the minimum integrated expected total cost is plotted
in Fig. 7 as well.

Fig. 4 Curve of minimum ET C(.) for various demand
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Table 3 Effects of production
rate on optimal solution of given
example

P Q∗ β∗ γ ∗ n∗ ET C(.)

+50 % 56 0.46 0.38 10 26251

+40 % 63 0.26 0.25 9 27906

+30 % 70 0.20 0.19 8 29725

+20 % 80 0.09 0.11 7 31843

+10 % 95 − − 6 34321

−10 % 97 − − 6 40843

−20 % 80 − − 7 45326

−30 % 91 − − 7 51083

−40 % 86 − − 8 58755

−50 % 85 − − 9 69479

4.1.5 Effects of Ordering Cost on Optimal Solution

In order to study how various ordering cost A affect the optimal solution of the proposed
model. The ordering cost sensitivity analysis is performed by changing the parameter of A

by +50 %, +40 % +30 %, +20 %, +10 %, −10 %, −20 %, −30 %, −40 % and −50 %,
and keeping the remaining parameters unchanged. The results of the ordering cost analysis
are shown in Table 6 and the corresponding curve of the minimum integrated expected total
cost is plotted in Fig. 8 as well.

4.1.6 Effects of Parameter θ on Optimal Solution

In order to study how various value of θ affect the optimal solution of the proposed model.
The parameter θ sensitivity analysis is performed in Table 7. In addition, the minimum
integrated expected total cost ET C(.) is plotted for different values of θ in Fig. 9.

Fig. 5 Curve of minimum ET C(.) for various production rate
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Table 4 Effects of production
cost on optimal solution of given
example

Cv Q∗ β∗ γ ∗ n∗ ET C(.)

+50 % 96 - - 6 53519

+40 % 96 - - 6 50266

+30 % 96 - - 6 47014

+20 % 96 - - 6 43761

+10 % 96 - - 6 40509

-10 % 96 - - 6 34004

-20 % 96 - - 6 30751

-30 % 96 - - 6 27499

-40 % 96 - - 6 24246

-50 % 96 - - 6 20994

4.2 Managerial Insights

In this section, we present some managerial insights of the proposed model based on the
numerical results and sensitivity analyses.

(i) Table 2 shows that when the demand D decreases, the total number of deliveries n

and expected total cost ET C(.) also decrease. This fact may occurs in real life busi-
ness, because, if the buyer’s demand decrease, then the buyer orders low amount of
quantity with the vendor, so that the number of deliveries and costs are automatically
decrease.

(ii) If we produce the products at higher production rate, then we can reduce the total
cost of the system (see Table 3).

(iii) From Table 4, it is interesting to note that an reduce in the production cost Cv

tends to reduce the expected total cost ET C(.) without affecting the lot-size Q

and total number of deliveries n. This is expected because Eqs. (7), (9), (12) and

Fig. 6 Curve of minimum ET C(.) for various production cost
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Table 5 Effects of setup cost on
optimal solution of given
example

S Q∗ β∗ γ ∗ n∗ ET C(.)

+50 % 99 − − 7 37594

+40 % 96 − − 7 37532

+30 % 94 − − 7 37467

+20 % 65 0.49 0.21 10 37291

+10 % 99 − − 5 37329

−10 % 64 0.29 0.21 9 37075

−20 % 68 0.13 0.17 8 37025

−30 % 98 − − 5 37013

−40 % 93 − − 5 36923

−50 % 57 0.21 0.32 8 36629

(15) show that Cv is an independent of lot-size Q. Further, the optimal solu-
tions for all different values of Cv satisfy both constraints such as floor space and
budget.

(iv) Table 5 shows that when the setup cost S decreases, the expected total cost ET C(.)

also decrease. This fact is expected because the inventory total cost automatically
decrease when the producer control his/her setup cost in practice.

(v) From table 6, it is interesting to note that reduce in the ordering cost A tends to
reduce the lot-size Q and expected total cost ET C(.) without affecting the total
number of deliveries n.

(vi) Table 7 shows that when the value of θ increases, the expected total cost ET C(.)

increase without affecting the lot-size Q and total number of deliveries n. This
is expected because Eqs. (7), (9), (12) and (15) show that θ is an independent of
lot-size Q. Further, the optimal solutions for all different values of θ satisfy both
constraints.

(vii) The proposed model can be used in industries like aircraft, healthcare, automobiles,
computers, textiles, footwear, printers, refrigerators, mobile phones, televisions, air

Fig. 7 Curve of minimum ET C(.) for various setup cost
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Table 6 Effects of ordering cost
on optimal solution of given
example

A Q∗ β∗ γ ∗ n∗ ET C(.)

+50 % 97 − − 6 37279

+40 % 97 − − 6 37274

+30 % 97 − − 6 37270

+20 % 97 − − 6 37265

+10 % 96 − − 6 37261

−10 % 96 − − 6 37251

−20 % 96 − − 6 37247

−30 % 96 − − 6 37242

−40 % 95 − − 6 37237

−50 % 95 − − 6 37233

conditioners, washing machines, tyres and bulky products such as printed circuit
boards., etc.

5 Conclusion

Inspection is an important step in ensuring product quality especially in aircraft and health-
care industries where safety is the highest priority. Since safety is involved, effective
strategies need to be set to improve quality and reliability of aircraft and healthcare inspec-
tion/maintenance and for reducing errors. Nevertheless, an important issue lacking in the
supply chain literature relates to the integration of such prototypical and ubiquitous human
factor as errors in quality inspections. The proposed model addressed a two-level supply
chain consisting of a single vendor and a single buyer with the consideration of quality
inspection errors at the buyer’s end, the buyer’s warehouse has limited capacity and there
is an upper bound on the purchase of products. Under these conditions, we formulated the

Fig. 8 Curves of minimum ET C(.) for various ordering cost
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Table 7 Effects of θ on optimal
solution of given example θ Q∗ β∗ γ ∗ n∗ ET C(.)

0.1 96 − − 6 37248

0.2 96 − − 6 37252

0.3 96 − − 6 37256

0.4 96 − − 6 37260

0.5 96 − − 6 37264

0.6 96 − − 6 37268

0.7 96 − − 6 37272

0.8 96 − − 6 37276

0.9 96 − − 6 37280

mathematical problem as a non-linear programming model and recommended a Lagrangian
multiplier algorithm similar to Uthayakumar and Priyan [25] to solve it. The proposed algo-
rithm is simple as well as it does not require tedious computational effort and obtains the
solution in a very short time. In other words, it does not require any intensive computational
effort due to the fact that only evaluates maximum 13 times the total cost function in any
instance. All instances were solved using a lap top computer with the following technical
characteristics: Intel@ CoreTM 2 Duo CPU, P8700 @ 2.53 GHz, 3.45 GB of RAM.

There are several extension of this work that could constitute future research related to
this field. One immediate probable extension could be to discuss the effect of shortage.
Another possible extension of this work may be conducted by considering the vendor’s pro-
vision of a permissible delay in payments in this integrated inventory model. Also, we can
consider multi-echelon supply chains such as; single buyer multiple-vendor, multiple-buyer
single-vendor and multiple-buyer multiple-vendor systems. Furthermore, some of parame-
ter of the model may be either fuzzy or random variable. In this case, the model has either
fuzzy or stochastic nature.

Fig. 9 Curve of minimum ET C(.) for various θ
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