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Abstract In this paper, we have formulated Data Envelopment Analysis (DEA) models to
reduce the inputs in an inefficient Decision Making Unit (DMU) when the specific inputs
are under the constant sum constraint. We have also extended the models to reallocate the
excess input without any reduction in efficiency of other DMUs. These DEA models and
methods developed in this work will help decision makers in developing an optimal strategy
to transfer excess input to other DMUs. Theoretical results have been illustrated with the
help of a case study.
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1 Introduction

Data Envelopment Analysis (DEA) is a widely applied non-parametric mathematical pro-
gramming technique to calculate the relative efficiency of firms/organizations or Decision
Making Units (DMUs) operating in a similar environment and utilizing multiple inputs
to produce multiple outputs. Based on Farrell’s [9] work on productive efficiency, DEA
was first introduced by Charnes et al. [3]. Efficiency obtained using DEA, in its simplest
form, is the comparison of the weighted output to weighted input ratio of the observing
DMU with that of the best practice in the group. Measurement of efficiency is important
to shareholders, managers, and investors for any future course of action. DEA has been
extensively applied to a wide spectrum of practical problems. Examples include financial
institutions [16], bank failure prediction [1], electric utilities evaluation [12], textile industry
performance [2], and portfolio evaluation [15].
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The basic DEA models start with the Charnes Cooper Rhodes (CCR) models [3]. The
CCR models assume that the production function exhibits Constant Returns to Scale (CRS).
These models use linear programming to determine the optimum virtual weights for the
parameters in order to calculate the best possible efficiency score for each DMU in com-
parison to the other DMUs. These models can have the orientation of minimizing the inputs
while keeping outputs constant (input oriented model) or vice versa (output-oriented). The
Banker-Charnes-Cooper (BCC) models [7], an extension of the basic CCR models, are used
when the production function exhibits Variable Returns to Scale (VRS). Other models, like
Additive models [18] focus directly on the slacks in the system as a means of determin-
ing efficiency. A further difference is that CCR and BCC models focus on radial projection
whereas additive models look at non-radial projection. The two approaches are combined
in the Hybrid model [7]. Further developments in DEA involve generalizing these models
for wider applications under different sets of assumptions.

One of the assumptions underlying basic DEA models is the assumption of free dispos-
ability of inputs and outputs, i.e., a DMU is free to change its inputs and outputs without
any conflict with the other DMUs. However, this assumption cannot always hold. One sit-
uation where this assumption fails is the case when the DMUs are under the Constant Sum
of Input (CSOI) constraint. In this situation, the total amount of input in one or more input
parameters is a fixed quantity. CSOI problems in the real world can be seen whenever there
is a limit to the amount of resources available. This could be a fixed cost [5] or office space
[11] to be allocated to different departments of an organization. It could even be an unde-
sirable output, like carbon-dioxide emissions by different countries allocated using carbon
credits [10]. Considerable prior research has already been done based on this scenario. Cook
and Kress [5] developed a fixed-cost allocation model in 1999, and Yan et al. [20] utilized
inverse DEA models for resource allocation. More recent work includes Guedes de Avellar
et al. [13] Spherical Frontier Model of fixed cost allocation. Yang et al. [21] work on com-
petition strategy under fixed-sum outputs is used as the basis of the models developed in
this paper.

The methods described in existing works [5, 11, 13] on CSOI generally assume the CSOI
scenario is a fixed cost allocation problem where the fixed input in question is to be freely
allocated among the various DMUs. We have discussed this problem from a different per-
spective - we assume that the fixed inputs have already been distributed among various
DMUs, and now an inefficient DMU will improve its efficiency by transferring excess input
to other DMUs. In this paper, we have formulated DEA models to find a strategy to reduce
the inputs in an inefficient DMU from a given set of DMUs, when the multiple inputs in
question are under the CSOI constraint. This strategy has been further developed to the
situations when the efficiency improvement takes place without reducing the efficiency of
other DMUs. It differs from the existing research on CSOI in the sense that it assumes
the resources have already been allocated, and now an inefficient DMU needs to reallocate
excess input while under the CSOI constraint. The models and algorithm developed in the
paper can carry out the reallocation without reducing the efficiency of the receiving DMUs.
This is an improvement over the original method in Yang et al. [21] as their model does not
take into account the effect of reallocation on the efficiency of other DMUs.

This paper is organized as follows. In Section 2, we have formulated various DEA models
and theoretical results have been developed. Section 3 contains a case study to illustrate the
theoretical results developed in the paper. In Section 4, we provide the concluding remarks.
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2 Model Formulation and Theoretical Results

The following notations have been used throughout this paper. Other notations, used in
certain sections, will be defined at appropriate places when used.

n: The number of DMUs.
m: The number of inputs.
s: The number of outputs.
xij : j th input of the ith DMU.
yir : rth output of the ith DMU.
u0: Value representing the variable part of variable returns to scale DEA models like

BCC.
ur : The weight assigned to the rth output.
vj : The weight assigned to the j th input.
θk: Efficiency of the kth DMU.
fkj : The amount being reduced from the j th input under CSOI from the kth DMU.
sij : The amount being added to the j th input of the ith DMU, i �= k.
Xkl : The maximum value to which the lth input of the kth DMU must be reduced, for the

kth DMU to become efficient.
ε: An infinitesimally small positive value.

2.1 Model Formulation Under Variable Returns to Scale (VRS)

Consider the following input-oriented BCC model to evaluate the efficiency of the kth

DMU:

θk = Max

s∑

r=1

urykr + u0

m∑

j=1

vj xkj

subject to
s∑

r=1

uryir + u0

m∑

j=1

vjxij

≤ 1, i = 1, . . . , n,

vj , ur ≥ 0, j = 1, . . . , m, r = 1, . . . , s, u0 free in sign.

Without any loss of generality, it can be assumed that the first d input parameters are under
CSOI constraint. Since they are under CSOI constraint, therefore the sum of all changes
must be 0. Thus, if the j th input of the kth DMU i.e., xkj , is reduced by a certain amount
fkj then the value of the j th input of the other DMUs will have to be increased. Let sij (i �=
k, i = 1, . . . , n) be the amount by which the j th input of the ith(i �= k) DMU is increased,

then fkj =
n∑

i=1,i �=k

sij , fkj < xkj . After incorporating these changes into the BCC
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model, the new efficiency of the kth DMU can be obtained by solving the following model
(M1):

(M1) θnew
k = Max

s∑

r=1

urykr + u0

d∑

j=1

vj (xkj − fkj ) +
m∑

j=d+1

vjxkj

subject to
s∑

r=1

urykr + u0

d∑

j=1

vj (xkj − fkj ) +
m∑

j=d+1

vj xkj

≤ 1,

s∑

r=1

uryir + u0

d∑

j=1

vj (xij + sij ) +
m∑

j=d+1

vj xij

≤ 1, i �= k, i = 1, . . . , n,

fkj =
n∑

i=1,i �=k

sij , j = 1, . . . , d,

fkj ≤ xkj − ε, j = 1, . . . , d,

fkj , sij ≥ 0, j = 1, . . . , d, i = 1, . . . , n,

vj , ur ≥ 0, j = 1, . . . , m, r = 1, . . . , s, u0 free in sign.

Theorem 1 In the model (M1), for any kth observed DMU from a set of DMUs, there exists
at least one feasible solution at which θnew

k = 1.

Proof To prove this, we need to show that there exists at least one feasible solution such
that θnew

k = 1. Let us set the values û0 = 0 and v̂j = 0 (representing the values of u0 and
vj respectively) for j = 2, . . . , m. Now, let ûr (representing the value of ur ; r = 1, . . . , s),
and v̂1(representing the value of v1) be any positive values such that

s∑

r=1

ûryir

v̂1xi1
≤ 1, i = 1, . . . , n. (2.1)

Using the values set in Eq. 2.1, let there be a positive value f̂k1 < xk1(representing the value
of fk1), such that

s∑

r=1

ûr ykr

v̂1(xk1−f̂k1)
= 1

⇒ f̂k1 = xk1 −

s∑

r=1

ûrykr

v̂1
≤ xk1 − ε (2.2)
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Let us choose the values of ŝi1 such that f̂k1 =
n∑

i=1,i �=k

ŝi1 and let

ŝij , f̂kj = 0; j = 2, . . . , d. (2.3)

Substituting these assumed values ŝij , f̂kj (i �= k, i = 1, . . . , n, j = 1, . . . , d),
û0, ûr (r = 1, . . . , s), v̂j (j = 1, . . . , m) in model (M1), we get

θnew
k =

s∑

r=1

ûr ykr + û0

d∑

j=1

v̂j (xkj − f̂kj ) +
m∑

j=d+1

v̂j xkj

= 1, (Using (2.2))

s∑

r=1

ûryir + û0

d∑

j=1

v̂j (xij + ŝij ) +
m∑

j=d+1

v̂j xij

≤

s∑

r=1

ûr yir

v̂1xi1
≤ 1, i �= k, i = 1, . . . , n, (Using (2.1))

f̂kj =
n∑

i=1,i �=k

ŝij , (Using (2.3))

f̂kj ≤ xkj − ε,

f̂kj , ŝij ≥ 0, j = 1, . . . , d, i = 1, . . . , n,

v̂j , ûr ≥ 0, j = 1, . . . , m, r = 1, . . . , s, û0 free in sign.

(Using (2.2 and 2.3))

Thus, we have proved that the assumed values ŝij , f̂kj , û0, ûr , v̂j represent a feasible solu-
tion according to the constraints in model (M1) and for which θnew

k = 1. This concludes
the proof.

By Theorem 1, we have shown that there exists at least one feasible solution for which
θnew
k = 1. Since θnew

k in model (M1) is the objective function of a maximizing optimiza-
tion with a maximum possible value of 1, it can be concluded that for any set of DMUs,
θnew
k = 1. This implies that the observed DMU will always achieve efficiency when model

(M1) is solved. Next, we analyze the problem of minimizing the amount of reduction. This

would mean minimizing the weighted sum of reduction amount,
d∑

j=1

vjfkj . However, it is

problematic to use this as an objective function because the weights vj ’s tend to be lowered
to 0. Instead, the objective function is changed to maximize the new weighted sum of inputs
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d∑

j=1

vj (xkj −fkj ) of the observed DMU. We have already shown that there always exist val-

ues of fkj for which θnew
k = 1, and therefore, this is taken as a constraint. After applying

these modifications, the new model (M2) is as follows:

(M2) Max

d∑

j=1

vj (xkj − fkj )

subject to
s∑

r=1

urykr + u0

d∑

j=1

vj (xkj − fkj ) +
m∑

j=d+1

vjxkj

= 1,

s∑

r=1

uryir + u0

d∑

j=1

vj (xij + sij ) +
m∑

j=d+1

vjxij

≤ 1, i �= k, i = 1, . . . , n,

fkj =
n∑

i=1,i �=k

sij ,

fkj ≤ xkj − ε,

fkj , sij ≥ 0, j = 1, . . . , d, i = 1, . . . , n,

vj , ur ≥ 0, j = 1, . . . , m, r = 1, . . . , s, u0 free in sign.

The first constraint of model (M2) sets the weighted output to input ratio of the observed
DMU equal to 1 after decrease in input, thus ensuring the observed DMU will achieve
efficiency after the decrease. Also, it can be easily shown that if a DMU is already efficient,

applying model (M2) will result in an objective value of
d∑

j=1

vjxkj , as no input reduction is

necessary.
However, model (M2) is a non-linear programming problem. To transform it to a

linear programming problem, we set vjfkj = τkj and vj sij = φij , then carry out cross-

multiplication on the constraints. We add the constraint
m∑

j=1

vj xkj = 1 to prevent the weights
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from reaching extreme values. It should also be noted that
d∑

j=1

(vjxkj −τkj )+
m∑

j=d+1

vjxkj =
m∑

j=1

vjxkj −
d∑

j=1

τkj , which allows us to simplify some of the constraints. The linear

programming model (M3) is shown below.

(M3) Max

d∑

j=1

(vjxkj − τkj )

subject to

s∑

r=1

urykr + u0 −
m∑

j=1

vjxkj +
d∑

j=1

τkj = 0,

s∑

r=1

uryir + u0 −
m∑

j=1

vj xij −
d∑

j=1

φij ≤ 0, i �= k, i = 1, . . . , n,

m∑

j=1

vjxkj = 1,

τkj =
n∑

i=1,i �=k

φij ,

τkj ≤ vjxkj − ε,

τkj , φij ≥ 0, j = 1, . . . , d, i = 1, . . . , n,

vj , ur ≥ 0, j = 1, . . . , m, r = 1, . . . , s, u0 free in sign.

2.2 Improving the Efficiency of the Observed DMU Without Reducing Efficiency
of the Other DMUs

So far, we have discussed the models where the excess input is redistributed to the other
DMUs, without considering the effect on the efficiency of the receiving DMUs. We will
now analyze how to redistribute the excess input of the observed DMU so that the efficiency
scores of all the other DMUs are not adversely affected.

In order to achieve this, our aim is to identify those conditions under which we may
increase the value of an input without reducing efficiency of the observed DMU. In the next
theorem, we have shown that if the number of input parameters is reduced by one, then the
new efficiency will not be better than the original efficiency.
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Let θPART
k denote the efficiency of the kth DMU if the values of any one j th input

parameter xij (i = 1, . . . , n, j = 1, . . . ,m) is removed from the data set of all DMUs.

Theorem 2 If the original efficiency of the observed DMU is θk and the efficiency after one
input parameter is removed is θPART

k then θPART
k ≤ θk .

Proof Without any loss of generality, it can be assumed that the first input parame-
ter is missing from the data. Thus, the formulation to calculate θPART

k can be written
as:

θPART
k = Max

s∑

r=1

urykr + u0

m∑

j=2

vjxkj

subject to
s∑

r=1

uryir + u0

m∑

j=2

vjxij

≤ 1; i = 1, . . . , n,

vj , ur ≥ 0, j = 2, . . . , m, r = 1, . . . , s, u0 free in sign.

If v1 = 0, and all other values of vj (j = 2, . . . , m), ur (r = 1, . . . , s) and u0 remain
the same then θPART

k = θk . The actual solutions are obtained by a maximization problem,
so we have proved that θk can never be less than θPART

k as there always exist a solution
whereby it can at least be of equal value.

Remark 1 According to Theorem 2, θPART
k ≤ θk . It can be shown that if we assume

θPART
k = θk (2.4)

then in the optimal solution for the standard DEA model, v1 = 0.

Remark 2 The managerial implications of Theorem 2 are twofold. Firstly, Theorem 2 proves
that the efficiency of any DMU will either reduce or stay the same if the number of input
parameters is decreased. It also proves that increasing the number of input parameters will
either increase efficiency of a DMU, or allow it to stay the same. Secondly, if Eq. 2.4 is
satisfied by any kth DMU, then the input parameter that was removed for calculating θPART

k

can be increased without reducing θk , since its weight is 0. This means that Theorem 2
allows us to identify which input parameters in a DMU can be increased without reducing
the DMU’s efficiency.

Now, using these arguments, we describe an algorithm for distributing the excess input
under CSOI in Section 2.3.
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2.3 Algorithm for Observed DMU Achieving Efficiency Without Reducing Efficiency
of the Other DMUs (All DMUs Having Two or More Inputs)

Algorithm 1

Step 1. Determine the maximum amount Xkl , to which the lth input of the kth DMU can
be reduced so that the kth DMU becomes efficient. It can be assumed that the first
d inputs (d ≤ m) are under CSOI. Choose any single value of l(l = 1, . . . , d),
and solve the following model:

(M4) Max Xkl

subject to
s∑

r=1

urykr + u0 −
m∑

j=1,j �=l

vj xkj − vlXkl = 0,

s∑

r=1

uryir + u0 −
m∑

j=1

vj xij ≤ 0, i �= k, i = 1, . . . , n,

0 ≤ Xkl ≤ xkl,

vl ≥ ε,

vj , ur ≥ 0, j = 1, . . . , m, r = 1, . . . , s, u0 free in sign.

Model (M4) is repeated for all values of l(l = 1, . . . , d), to get the corresponding
values of Xkl(l = 1, . . . , d). Since it is necessary for Xkl to have a non-zero
weight for a meaningful result, the weight vl is constrained to be greater than 0.

Step 2. Determine the DMUs which satisfy Eq. 2.4 for Input 1. Let set A1 be the set of
these DMUs. Repeat this step for the 2nd, 3rd, . . . , dth inputs, and store the results
to sets A2, A3, . . . , Ad .

Step 3. Model (M3) is modified so that the excess input is redistributed only to those
DMUs that satisfy (2.4) for that particular input, as determined in Step 2, and the
inputs are not reduced to less than the values determined in Step 1. This modified
model (M5) is as follows:

(M5) Max

d∑

j=1

(vjxkj − τkj )

subject to
s∑

r=1

urykr + u0 −
m∑

j=1

vjxkj +
d∑

j=1

τkj = 0,

s∑

r=1

uryir + u0 −
m∑

j=1

vj xij −
d∑

j=1,i∈Aj

φij ≤ 0, i �= k, i = 1, . . . , n,

m∑

j=1

vjxkj = 1,
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τkj =
n∑

i=1,i �=k,i∈Aj

φij , j = 1, . . . , d,

τkj ≤ vj (xkj − Xkj ), j = 1, . . . , d,

φij ≥ 0, i ∈ Aj , j = 1, . . . , d,

τkj ≥ 0, j = 1, . . . , d,

vj , ur ≥ 0, j = 1, . . . , m, r = 1, . . . , s, u0 free in sign.

Theorem 3 Model (M4) always has a feasible solution.

Proof Let ur (r = 1, . . . , s) and u0 have any positive values. Set vj = 0(j = 1, . . . , l,

j �= l). Now, select a value of vl such that
s∑

r=1

uryir+u0−vlxil ≤ 0 for all i = 1, . . . , n, i �=
k. This means a feasible value of vl is

vl = Max

⎛
⎜⎜⎝

s∑
r=1

uryir + u0

xil

⎞
⎟⎟⎠ , i = 1 . . . , n, i �= k.

Now, the value of Xkl can be calculated as

Xkl =

s∑
r=1

urykr + u0

vl

.

Thus, we have proved that by setting vj = 0(j = 1, . . . , l, j �= l) and ur, u0 ≥ 0(r =
1, . . . , s) we can get feasible solutions to vl and Xkl for any set of input and output values.

Remark 3 It is possible for the above model (M5) to have alternative optimal solutions.
Although results developed in this paper are mainly concerned with the efficiency scores of
a set of DMUs, analysts may be interested in eliminating the alternate optimal solutions to
have more insights into the performance of various DMUs. In case of model (M5) having
alternate optima, efficient DMUs may have alternative parameter weights that give the same
efficiency score.

Here, we eliminate the alternate optimal solutions using the approach proposed by
Cooper et al. [6]. In this, we choose to eliminate optima where the weights of one or
more input parameter (vj ) or output parameter (ur ) has a value of zero. A zero parame-
ter weight implies that particular parameter is not being considered at all while calculating
the observed DMU’s efficiency, and this is undesirable as efficiency of a DMU is meant
to be calculated using all chosen parameters. The objective of model (M6) is to iden-
tify an optimum solution where the maximum number of parameter weights are strictly
positive.
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The model for eliminating alternate optima is a mixed integer linear programming prob-

lem. Let s∗
ij (i = 1, . . . , n, i �= k, j = 1, . . . , d) and f ∗

kj =
n∑

i=1,i �=k,i∈Aj

s∗
ij (j = 1, . . . , d)

be the results for input transfer calculated from the solution of model (M5).
Let z0 be the variable that checks how many parameter weight are strictly positive.
Let Ip be the integer variable checking if a parameter is strictly positive.
Let M be an arbitrarily large positive value.
The model (M6) is as follows:

(M6) Max z0 =
m+s∑

p=1

Ip

subject to
s∑

r=1

urykr + u0 −
m∑

j=1

vjxkj +
d∑

j=1

τkj = 0,

s∑

r=1

uryir + u0 −
m∑

j=1

vjxij −
d∑

j=1,i∈Aj

φij ≤ 0, i �= k, i = 1, . . . , n,

m∑

j=1

vjxkj = 1,

τkj =
n∑

i=1,i �=k,i∈Aj

φij , j = 1, . . . , d,

τkj ≤ vj (xkj − Xkj ), j = 1, . . . , d,

d∑

j=1

τkj ≤
d∑

j=1

vjf
∗
kj ,

Ip ∈ {0, 1}, p = 1, . . . , m + s,

Ir ≤ Mur, r = 1, . . . , s,

Is+j ≤ Mvj , j = 1, . . . , m,

τkj ≥ 0, j = 1, . . . , d,

φij ≥ 0, i ∈ Aj , j = 1, . . . , d,

vj , ur , z0 ≥ 0, j = 1, . . . , m, r = 1, . . . , s, u0 free in sign.

Model (M6) ensures that the largest number of parameter weights have strictly positive
values. However, it is possible for a parameter weight to have such a small value that even
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though it is positive, it does not have any effect on the model. To try and ensure that as many
parameter weights as possible have meaningful values, we need to maximize the minimum
value of all non-zero parameter weights. Let I∗

p (p = 1, . . . , m+s) be the solution to model
(M6). Let z0 be the minimum value of all parameter weights. The model to maximize the
minimum value of the non-zero parameter weights is as shown in model (M7).

(M7) Max z0

subject to
s∑

r=1

urykr + u0 −
m∑

j=1

vjxkj +
d∑

j=1

τkj = 0,

s∑

r=1

uryir + u0 −
m∑

j=1

vjxij −
d∑

j=1,i∈Aj

φij ≤ 0, i �= k, i = 1, . . . , n,

m∑

j=1

vj xkj = 1,

τkj =
n∑

i=1,i �=k,i∈Aj

φij , j = 1, . . . , d,

τkj ≤ vj (xkj − Xkj ), j = 1, . . . , d,

d∑

j=1

τkj ≤
d∑

j=1

vjf
∗
kj ,

I∗
r z0 ≤ ur, r = 1, . . . , s,

I∗
s+j z0 ≤ vj , j = 1, . . . , m,

τkj ≥ 0, j = 1, . . . , d,

φij ≥ 0, i ∈ Aj, j = 1, . . . , d,

vj , ur , z0 ≥ 0, j = 1, . . . , m, r = 1, . . . , s, u0 free in sign.

Through above we have described the process to eliminate the alternate optima for efficient
DMUs as only the efficient DMUs in DEA are used to calculate the efficiency scores of
all other DMUs. In addition, it may also be noted that the inefficient DMUs rarely have
alternative optimal solution in practice [6].

Remark 4 Algorithm 1 can only be utilized when there are at least two input parameters in
the original data for the DMUs. When there is only one input, Step 1 of the algorithm cannot
be carried out. This is because step 1 involves determining the efficiency of the observed
DMU after the input under CSOI is removed from consideration. If there is only one input
and it is removed, there is no input data and the efficiency cannot be calculated using the
standard CCR or BCC DEA models.

Remark 5 The DEA models described in this paper can be easily adapted to DMUs which
operate under Constant Return to Scale (CRS). In order to adapt the model to CRS, we set
u0 = 0.
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2.4 Algorithm for Observed DMU Achieving Efficiency Without Reducing Efficiency
of the Other DMUs (All DMUs Having Only One Input)

The algorithm described in Section 2.3 can only be applied when m ≥ 2. To obtain the
desired result when there is only one input, we use the following algorithm.

Algorithm 2

Step 1. First, the amount of excess input fs in the observed DMU is determined by
applying model (M4) with l = 1. The excess input in the observed DMU
fs = xk1 − Xk1.

Step 2. The excess input fs as determined from Step 1, is now redistributed across all
DMUs in proportion to their input, in order to ensure none of the DMUs drop
in efficiency. Let the input values Xk1, xi1(i �= k) all be multiplied by value
α(α ≥ 1), such that the sum of the new input values is equal to the original sum

of input
n∑

i=1

xi1.

Thus, α

(
n∑

i=1

xi1 − fs

)
=

n∑

i=1

xi1

⇒ α =

n∑

i=1

xi1

n∑

i=1

xi1 − fs

= 1 + fs

n∑

i=1

xi1 − fs

(2.5)

Multiplying the input values of step 1 with α, the new input values are

⇒ x∗
k1 = (xk1 − fs)

⎛

⎜⎜⎜⎜⎝
1 + fs

n∑

i=1

xi1 − fs

⎞

⎟⎟⎟⎟⎠
(2.6)

x∗
i1 = xi1

⎛

⎜⎜⎜⎜⎝
1 + fs

n∑

i=1

xi1 − fs

⎞

⎟⎟⎟⎟⎠
, i = 1, . . . , n, i �= (2.7)

3 A Case Study of CO2 Emissions in 2012

We use a case study on carbon dioxide emissions by various countries to demonstrate
how a DMU will use Algorithm 1 to improve efficiency under CSOI without reducing the
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efficiency of other DMUs. CO2 emissions can be transferred from one country to another
through the use of carbon credits. The data for this case study has been collected from a vari-
ety of public sources. For this study, we have collected data on 32 countries with the highest
estimated CO2 emissions in 2012 [8]. The countries use three inputs - CO2 emissions [8],
population [14], and energy consumption [17], in the year 2012, and the output is the 2012
national GDP, adjusted for Purchasing Power Parity (PPP), as estimated by the International
Monetary Fund [19]. While CO2 emissions are a product, of a country’s industrial process,

Table 1 Output/Input and data for 32 countries

Country Input 1 Input 2 Input 3 Output 1 VRS

CO2 emission Population Energy used GDP(PPP) Eff.

(thou. ton.) (millions) (mil. ton. oil) ($ billion)

China 9700000 1361.24 2735.2 12261 0.592

USA 5420000 317.13 2208.8 16244 1

India 1970000 1236.84 563.5 4716 0.886

Russian Federation 1830000 143.6 694.2 2486 0.406

Japan 1240000 127.29 478.2 4575 1

Germany 810000 80.55 311.7 3167 1

South Korea 610000 50.22 271.1 1622 0.73

Canada 560000 35.16 328.8 1446 0.882

Indonesia 490000 237.64 159.4 1212 0.735

United Kingdom 470000 63.71 203.6 2312 1

Saudi Arabia 460000 30 222.2 741 0.579

Brazil 450000 201.03 274.7 2330 0.895

Mexico 450000 118.4 187.7 1758 0.851

Australia 430000 23.26 125.7 961 0.953

Iran 410000 77.08 234.2 988 0.491

Italy 410000 59.83 162.5 1813 1

South Africa 360000 52.98 123.8 579 0.602

France 360000 65.81 245.4 2252 1

Poland 350000 38.5 97.6 802 0.911

Ukraine 320000 45.46 125.3 335 0.591

Malaysia 310429.33 29.79 76.3 492 0.926

Spain 300000 46.7 144.8 1407 0.971

Turkey 278866.33 75.63 119.2 1125 0.936

Taiwan 270000 23.36 109.4 902 0.951

Thailand 230000 65.93 117.6 646 0.717

Kazakhstan 222990.58 17.1 58.1 232 1

Egypt 208864.56 83.66 87.1 538 0.864

Argentina 195212.22 40.12 82.1 747 1

Venezuela 178217.22 29.28 86.8 402 0.957

Pakistan 174912.11 184.88 69.3 515 1

United Arab Emirates 170376.43 8.26 89.3 271 1

Netherlands 160000 16.81 89.1 710 1
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since it is an undesirable product, it may be reclassified as an input [10] for the purposes
of efficiency calculation. Since the countries have different sizes and populations and must
operate at different scales, we use Variable Returns to Scale (VRS) models for our calcula-
tions. The efficiency scores of the DMUs in the numerical illustration are calculated using
Coelli’s [4] DEAP software. The data for the 32 countries is shown in Table 1.

Of the inefficient countries, we choose to improve the efficiency of Russia since it has
the lowest efficiency.

Table 2 New CO2 emissions and VRS efficiency

Country Old CO2 Old VRS New CO2 New VRS

emissions Eff. emissions Eff.

(thou. ton.) (thou. ton.)

China 9700000 0.592 9700000 0.592

USA 5420000 1 6646846.174 1

India 1970000 0.886 1970000 0.886

Russian Federation 1830000 0.406 444839.792 1

Japan 1240000 1 1398314.034 1

Germany 810000 1 810000 1

South Korea 610000 0.73 610000 0.755

Canada 560000 0.882 560000 0.883

Indonesia 490000 0.735 490000 0.735

United Kingdom 470000 1 470000 1

Saudi Arabia 460000 0.579 460000 0.579

Brazil 450000 0.895 450000 0.9

Mexico 450000 0.851 450000 0.851

Australia 430000 0.953 430000 0.953

Iran 410000 0.491 410000 0.491

Italy 410000 1 410000 1

South Africa 360000 0.602 360000 0.602

France 360000 1 360000 1

Poland 350000 0.911 350000 0.911

Ukraine 320000 0.591 320000 0.591

Malaysia 310429.33 0.926 310429.33 0.926

Spain 300000 0.971 300000 0.971

Turkey 278866.33 0.936 278866.33 0.936

Taiwan 270000 0.951 270000 0.951

Thailand 230000 0.717 230000 0.717

Kazakhstan 222990.58 1 222990.58 1

Egypt 208864.56 0.864 208864.56 0.864

Argentina 195212.22 1 195212.22 1

Venezuela 178217.22 0.957 178217.22 0.957

Pakistan 174912.11 1 174912.11 1

United Arab Emirates 170376.43 1 170376.43 1

Netherlands 160000 1 160000 1
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In step 1 of Algorithm 1, we calculate Russia’s highest CO2 emission quantity that
guarantees efficiency, X4 1 = 444839.792.

Following Step 2 of Algorithm 1, we determine the DMUs which satisfy Eq. 2.4 for the
input under CSOI, CO2 emissions. The DMUs that fulfill the condition are listed in set A1

as follows:

A1 = {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 14, 16, 17, 19, 21, 24, 26, 28, 30, 31, 32}.

Table 3 CO2 Emissions and efficiency after eliminating alternate optima

Country Original CO2 Original Final CO2 Final

emissions VRS Eff. emissions VRS Eff.

(thou. ton.) (thou. ton.)

China 9700000 0.592 9700000 0.592

USA 5420000 1 6639577.088 1

India 1970000 0.886 1970000 0.886

Russian Federation 1830000 0.406 444839.7923 1

Japan 1240000 1 1405583.12 1

Germany 810000 1 810000 1

South Korea 610000 0.73 610000 0.755

Canada 560000 0.882 560000 0.883

Indonesia 490000 0.735 490000 0.735

United Kingdom 470000 1 470000 1

Saudi Arabia 460000 0.579 460000 0.579

Brazil 450000 0.895 450000 0.9

Mexico 450000 0.851 450000 0.851

Australia 430000 0.953 430000 0.953

Iran 410000 0.491 410000 0.491

Italy 410000 1 410000 1

South Africa 360000 0.602 360000 0.602

France 360000 1 360000 1

Poland 350000 0.911 350000 0.911

Ukraine 320000 0.591 320000 0.591

Malaysia 310429.33 0.926 310429.33 0.926

Spain 300000 0.971 300000 0.971

Turkey 278866.33 0.936 278866.33 0.936

Taiwan 270000 0.951 270000 0.951

Thailand 230000 0.717 230000 0.717

Kazakhstan 222990.58 1 222990.58 1

Egypt 208864.56 0.864 208864.56 0.864

Argentina 195212.22 1 195212.22 1

Venezuela 178217.22 0.957 178217.22 0.957

Pakistan 174912.11 1 174912.11 1

United Arab Emirates 170376.43 1 170376.43 1

Netherlands 160000 1 160000 1
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In step 3, we use the results of the first two steps to apply model (M5). The results are
shown in Table 2 on the following page.

Table 2 shows that Russia has now become efficient, and all the other countries still have
the same efficiency score or better. Thus, Algorithm 1 has fulfilled its objective of making
the chosen DMU efficient without reducing the efficiency of the other DMUs. Now, we need
to eliminate alternate optima and select an optimum solution with as few extreme parameter
weight values as possible. To do this we first apply model (M6) to the results of Algorithm
1. Model (M6) gives the results z0 = 4 and Ip = 1, 1, 1, 1, meaning that there exists a
solution where all parameter weights have strictly positive values. Using these results of
model (M6) and the earlier results from model (M5), we apply model (M7) to maximize
the minimum non-zero weight. The results of model (M7) are shown in Table 3.

Model (M7) causes the same reduction in input as model (M5), but the redistribution
of the input is different. After model (M5), the parameter weights were v1 = 5.3487E −
07, v2 = 0.000147554, v3 = 0, u1 = 0.000242976, meaning the LP placed no weight on
the third input parameter. After applying (M7), the weights were v1 = 5.36327E−07, v2 =
2.21069E − 05, v3 = 2.21069E − 05, u1 = 0.000244202, and at least some weight has
been placed on all parameters. Thus, the results in Table 3 represent an improved optimal
solution over that shown in Table 2.

4 Conclusion

We have formulated DEA models to reduce the inputs in an inefficient DMU from a given
set of DMUs, when the multiple inputs are under CSOI constraint. It is different from ear-
lier works, which treated CSOI inputs as fixed costs to be allocated across all DMUs with
maximum efficiency. The models developed here focus only on improving the efficiency of
one DMU at a time. First, a model is developed to achieve the objective with a minimum
amount of reduction in the original inputs of the observed DMU. Subsequently, algorithms
are developed to increase the efficiency of the observed DMU without any reduction in
efficiency of the other DMUs. Theoretical results developed in this paper have been illus-
trated with the help of a case study example on CO2 emmission in 2012. One of the main
advantages of this work is that it allows a single DMU to develop a strategy to improve its
efficiency and the strategy will require the cooperation of only a few chosen DMUs. Exist-
ing work often treats the CSOI problem as a fixed cost allocation, assuming cooperation
among all the DMUs, something that might not be feasible. Furthermore, the models and
algorithms in this paper allow the improvement of efficiency of one DMU without reduc-
ing the efficiency of others. The limitation of this work is that the models in this paper are
designed to work under the assumption that there is no restriction on parameter weights, and
improve only the technical efficiency. Future developments may include addressing situa-
tions where the inputs are not freely disposable. Considerations of allocative efficiency or
weight restrictions are beyond the scope of this work, but may be an area of future research.
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