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Abstract In this paper, a new class of higher order (φ, ρ)-invex function is introduced with
an example, in which the sublinearity and convexity assumption on φ with respect to third
argument is relaxed. A pair of higher order Wolfe type multiobjective symmetric dual for
a class of nondifferentiable multiobjective programming involving square root term is pre-
sented and the weak duality, strong duality and converse duality theorems are established
with their proofs under higher order (φ, ρ)-invexity and (φ, ρ)-incavity assumption. Self
duality theorem is proved for the proposed dual program. These results are used to discuss
Wolfe type higher-order symmetric minimax mixed integer dual problems. A numerical
example is developed where the results of weak and strong duality theorems can be applied.
Discussion on some particular cases shows that our results generalize earlier results in
related domain.

Keywords Multiple objective programming · Higher order (φ, ρ)-invexity · Pareto
optimal solution · Schwartz inequality · Square root term

1 Introduction

Duality is a fruitful theory in mathematical programming and is useful both theoretically
and practically. Duality as used in our daily life means the sort of harmony of two oppo-
site or complementary parts through which they integrate into a whole. Symmetry is bound
up with duality and in particular, is significant in mathematics. Duality principle relates to
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constrained minimization and maximization problems. According to this principle the exis-
tence of a solution to one primal or dual ensures a solution to other and optimum value of
the two problems is equal. The problem of optimizing a numerical function of one or more
variable subject to constraints on the variables is called the mathematical programming or
constrained optimization problem. When either the objective function or one or more of
the constraints are nonlinear, the programming problem is called nonlinear programming
problem. Nonlinear programming discipline plays an increasingly imperative role in such
diverse fields as operations research and management science, engineering, economics, sys-
tem analysis and computer science. Again, most of the optimizations problems arising in
practice have several objectives which have to be optimized simultaneously. We generally
aim at minimizing all the objective functions at the same time if there is no conflict between
the objective functions. However, for general multiobjective programming, the objective
functions are in contradiction to each other. For that case, Pareto optimality is a measure of
efficiency. For details, readers can see [12].

Duality for nonlinear programming problem has been studied by many researchers in
past. Symmetric duality in nonlinear programming was first introduced by. Dorn [18] who
defined a mathematical programming problem and its dual to be symmetric if the dual of
the dual is the primal problem. Later Dantzig et al. [16], Mond [31], Bazarra and Goode
[8] and Mond and Weir [33] established a pair of symmetric dual programs involving scalar
function f (x, y), x ∈ Rn, y ∈ Rm under the condition that f ( · , y) is convex for each y and
f (x, · ) is concave for each x. Devi [17], Weir and Mond [36], Mond and Schechter [32]
studied non differentiable symmetric duality for a class of optimization problem in which
the objective function consist of support function. Husain et al. [25] formulate a pair of
Mond Weir type second order symmetric dual and establish the duality results under pseudo
convexity –pseudo concavity assumption.

In recent years, several extension and generalization have been considered for classi-
cal convexity. A significant generalization of convex function is that of in-vex function
introduced by Hanson [23] and Craven [15]. After the work of Hanson and Craven, other
types of differentiable functions have been introduced with the intent of generalizing in vex
function from different point of view. Hanson and Mond [24] introduced the concept of
F-convexity. The concept of generalized (F, ρ) convexity is introduced by Preda [35]. The
(F, ρ)-convexity was recently generalized to (φ, ρ)-invexity by Caristi et al [9] in which
φ is convex in its third argument and replaces the sub linear property of F in third argu-
ment. Liang et al. [26] introduced a unified formulation of generalized convexity called
(F, α, ρ, d)-convexity and Yuan et al. [38] introduced the concept of (C, α, ρ, d)-convexity
which is the generalization of (F, α, ρ, d)-convexity.

Higher order duality in nonlinear programming has been studied in last few years by
many researchers. Mangasarian [27] formulated a class of higher order dual problems for
nonlinear programming problems. Mond and Zhang [34] obtained duality results for var-
ious higher order dual programming problems under higher order invexity assumptions.
Mishra and Rueda [29, 30] established duality results under higher order generalized invex-
ity whereas they generalized the results of Zhang [39] to higher order type 1 function in
their paper [30]. Later on Yang et al [37] discussed higher order duality results under gen-
eralized convexity assumption for multiobjective programming problems involving support
functions. Chen [10] presented Mond-Weir type higher order symmetric duality for scalar
and multiobjective nondifferentiable programming problem under F-convexity, where as
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Mishra [28] presented Mond-Weir type higher order symmetric dual program under gen-
eralized invexity. Chinchuluun and Pardalos [11] gave a survey of recent developments in
multiobjective optimization. Ahmad et al. [5] formulated a general Mond-Weir type higher
order dual and established duality results under (F, α, ρ, d) - type1 function. Higher order
symmetric multiobjective duality involving generalized (F, ρ, γ , b) - convexity was given by
Batatoresue et al. [7]. Chinchuluun et al. [13] established the optimality condition and dual-
ity for nondifferentiable multiobjective fractional programming with generalized convexity.
Gulati and Gupta [21] formulated Wolfe type higher order nondifferentiable symmetric
duality for scalar programming problem containing support function and established the
duality results with generalized F-convexity. Agarwal et al. [1] gave a note on higher
order nondifferentiable symmetric duality in multiobjective programming. Gupta et al. [22]
formulated a pair of symmetric higher order Wolfe type nondifferentiable multiobjective
programs over arbitrary cones and proved weak, strong and converse duality theorems
under higher order K-(F, α, ρ, d)-convexity assumption. Ahmad [2] introduced a uni-
fied higher order duality in nondifferentiable multiobjective programming involving cones.
Ahmad and Husain [4] presented second order symmetric duality in multiobjective pro-
gramming involving cones. Recently, Ahmad et al. [3] introduced higher order duality in
nondifferentiable fractional programming involving generalized convexity.

In the present paper, we have introduced the concept of higher order (φ, ρ)-invexity
which is a generalization of higher order (F, ρ)-convexity and higher order (C, ρ)-convexity
by relaxing the assumption of sublinearity and convexity of F and C respectively with
respect to third argument with an example. Then we have formulated a pair Wolfe type
higher nondifferentiable multiobjective symmetric dual programs using square root term
and established the duality results with higher order (φ, ρ)-invexity assumption. Also we
have established higher order Wolfe type self duality theorem with its proof. A numerical
example is developed in which the above duality results can be applied. Again the duality
results are used to discuss Wolfe type higher order nondifferentiable symmetric minimax
mixed integer dual programs. Special cases are discussed to show that this study extends
some of the known results.

2 Notations and Preliminaries

Let Rn and Rm denote the n-dimensional and m-dimensional Euclidean space respectively.
Also, let Rn+ and Rm+ be the nonnegative orthants of Rn and Rm respectively. The following
conventions for vectors x, u ∈ Rn will be followed throughout this paper; x < u ⇔ xi <

ui , i = 1, 2, .., n and x ≤ u ⇔ xi ≤ ui , i = 1, 2, .., n. Further for any vector, we denote

xT u =
n∑

i=1
xiui .

Let X and Y are open subset sets of Rn and Rm respectively. Let f i(x, y) be a real valued
twice differentiable function defined on X × Y. Let ∇x f i(x, y) and ∇y f i(x, y) denote the
gradient vectors of f i(x, y) with respect to first variable x and second variable y respectively.
Also let ∇xx f i(x, y) and ∇yy f i(x, y) denote the Hessian matrix of f i(x, y) with respect to the
first variable x and second variable y respectively. Let r ∈ R, ρ ∈ R. Assume that φ0 and
φ1are a real valued function defined on X × X × Rn+1 and Y × Y × Rm+1 respectively
such that φ0(x, u, (0, 0)) = 0, φ1(v, y, (0, 0)) = 0.
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Now we define the following definition;

Definition 2.1 A real-valued twice differentiable function f i( * , y): X × Y → R is said to
be higher order (φ, ρ)-invex at u ∈ X with respect to the differentiable function gi : X × Y
× Rn → R, if there exist φ0: X × X × Rn+1 → R, ρi ∈ R such that

fi(x, y) − fi (u, y) ≥ φ0
(
x, u; (∇xfi (u, y) + ∇qi

gi (u, y, qi) , ρi

))

+ gi (x, y, qi) − qT
i ∇qi

gi (x, y, qi) .

Definition 2.2 The function f i(x, * ) is said to be higher order (φ, ρ)-invex at y ∈ Y with
respect to a differentiable function hi : X × Y × Rm → R, if there exist φ1: Y × Y × Rm+1 →
R, ρi ∈ R such that

fi (x, v) − fi (x, y) ≥ φ1
(
v, y; (∇yfi (x, y) + ∇pi

hi (x, y,pi) , ρi

))

+ hi (x, y,pi) − pT
i ∇pi

hi (x, y, pi) .

Definition 2.3 A real-valued twice differentiable function f i( * , y): X × Y → R is said
to be higher order (φ, ρ)-pseudo invex at u ∈ X with respect to the differentiable function
gi : X × Y × Rn → R, if there exist φ0: X × X × Rn+1 → R, ρi ∈ R such that

φ0(x, u; (∇xfi(u, y) + ∇qi
gi(u, y, qi), ρi)) ≥ 0

⇒ fi(x, y) − fi(u, y) ≥ gi(x, y, qi) − qT
i ∇qi

gi(x, y, qi).

Definition 2.4 A real-valued twice differentiable function f i(x, * ): X × Y → R is said to be
higher order (φ, ρ)-pseudo invex at y ∈ Y with respect to the differentiable function hi : X
× Y × Rm → R, if there exist φ1: Y × Y × Rm+1 → R, ρi ∈ R such that

φ1(v, y; (∇yfi(x, y) + ∇pi
hi(x, y,pi), ρi)) ≥ 0

⇒ fi(x, v) − fi(x, y) ≥ hi(x, y, pi) − pT
i ∇pi

hi(x, y, pi).

Definition 2.5 A real valued twice differentiable function f is higher order (φ, ρ)- incave
with respect to h and higher order (φ, ρ)-pseudo incave with respect to h if - f is higher
order (φ, ρ)-invex with respect to –h and higher order (φ, ρ) pseudo invex with respect to
-h respectively.

Remark 2.1

i If φ(x, u; (∇xf (u, y) + ∇qg(u, y, q), ρ)) = F(x, u; (∇xf (u, y) + ∇qg(u, y, q)) +
ρd2(x, u) with ρ = 0 and F is sub linear in third argument, then the above definition
reduce to higher order F-convexity and higher order F-pseudo convexity introduced
by Chen [10].

ii If φ(x, u; (∇xf (u, y) + ∇qg(u, y, q), ρ)) = F(x, u; (∇xf (u, y) + ∇qg(u, y, q)) +
ρd2(x, u) with ρ > 0 and F is sub linear in third argument, then the above definition
reduce to higher order (F,ρ)convexity and higher order F-pseudo convexity introduced
Batatorescu [7] with b = 1 and γ = 1.

iii If φ(x, u; (∇f (u) + ∇ph(u, p), ρ)) = η(x, u)T [∇f (u) + ∇ph(u, p)] + ρd2(x, u),
where η: X × X → Rn and ρ = 0 then above definition reduces to higher order invex
function given by Mishra [28].

iv If φ(x, u; (∇xf (u, y)+∇qg(u, y, q), ρ))=F(x, u;α(x, u)(∇xf (u, y)+∇qg(u, y,q))

+ρd2(x, u) and F is sub linear in third argument, then the above definitions reduce to
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higher order (F, α, ρ, d)-convexity and higher order (F, α, ρ, d)-pseudo convexity
introduced by Liang et al. [26].

v If φ is convex with respect to third argument, then we obtain the definition of higher
order (C, α, ρ, d)-convex function introduced by Yuan et al. [38] with α = 1, d = 0.

Example 2.1 Let X = (0, ∞) = Y . P ⊂ R+. Let f : X × Y → R be defined as f (x, y) =
x4 +x2 +y2 +1 and h : X × Y × P → R be defined as h(x, y,p) = 3p(x2 + 1)−y, where
x ∈ X, y ∈ Y, p ∈ P, Let assume φ : X × X × P × R → R defined by φ(x, u; (a, ρ)) =
(1 − 2ρ)(x4 + x2) − uT a and F : X × X × R → R defined by F(x, u; a) = |a|

2 x2(u + 1)2.
Clearly F is sub linear in third argument and also F is convex in third argument, but (i) φ

is not sub linear with respect to third argument, because

φ(x, u; (a1 + a2, ρ1 + ρ2)) ≤ φ(x, u; (a1, ρ1)) + φ(x, u; (a2, ρ2))

is not true for

ρ1 = 1, ρ2 = −1.

and (ii) φ is not convex with respect to third argument, because

φ(x, u; (λ(a1, ρ1) + (1 − λ)(a2, ρ2)) ≤ λφ(x, u; (a1, ρ1)) + (1 − λ)φ(x, u; (a2, ρ2))

is not true for

λ = 1

2
, ρ1 = 1, ρ2 = 0.

Now let

α = 4, ρ = −2, d2(x, u) = x2 + u2.

So at

u = 0, f (x, y) − f (u, y) − h(u, y,p) + pT ∇ph(u, y,p) = x4 + x2 + y,

F (x, u;α(x, u)(∇xf (u, y) + ∇ph(u, y,p))) + ρd2(x, u) = 6x2 − 2x2 = 4x2,

and

φ(x, u; (∇xf (u, y) + ∇ph(u, y, p), ρ)) = (
1−2ρ

) (
x4 + x2

)
−uT

× (∇xf (u, y)+∇ph(u, y, p)
)

= (1 − 2ρ)(x4 + x2).

Hence ∀x ∈ X, ∀y ∈ Y, ρ ∈ R,

f (x, y) − f (u, y) − h (u, y,p) + pT ∇ph (u, y,p)

≥ φ
(
x, u; (∇xf (u, y) + ∇ph (u, y,p) , ρ

)) − uT
(∇xf (u, y) + ∇ph (u, y,p) .

Therefore f ( · , y): X × Y → R is said to be higher order (φ, ρ)-invex at u = 0 with respect
to h : X × Y × R → R.

But α = 4, ρ = −2, x = 1, y = 1,

f (x, y) − f (u, y) − h (u, y, p) + pT ∇ph (u, y, p) = 3
< F

(
x, u; α (x, u)

(∇xf (u, y) + ∇ph (u, y, p)
)) + ρd2 (x, u) = 4.
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So f ( · , y): X × Y → R is not higher order (F, α, ρ, d)-convex at u = 0 with respect to
h : X × Y × R → R.

Again since F is convex in third argument, we can replace F by C.
So f ( · , y) : X × Y → R is not higher order (C, α, ρ, d)-convex at u = 0 with respect to

h : X × Y × R → R.
Therefore the above examples clearly illustrate that the class of higher order higher

order (φ, ρ)-invex is more generalized than the higher order (F, α, ρ, d)-convex intro-
duced by Liang et al. [26] and higher order (C, α, ρ, d)-convex introduced by Yuan
et al. [37]
Consider the following multiobjective programming problem (MP):

MP :( Primal) Minimize f (x) = (f 1(x), f 2(x), ....., f k(x))
Subject to h(x) ≤ 0, x ∈ X ⊆ Rn, where f : X → Rk, h : X → Rm.

Definition 2.6 [12, 13] A vector x ∈ X0 is said to be an efficient solution (Pareto Optimal)
of problem (P) if there exists no x ∈ X0 such that fi (x) ≤ fi(x), ∀i = 1, 2, ..., k and
fj (x) < fj (x̄), for at least one index j ∈ {1, 2, ..., k}.

Definition 2.7 [12, 13] A vector x̄ ∈ X0 is said to be weakly efficient solution (weakly
Pareto Optimal) of problem (P) if there exists no x ∈ X0 such that fi (x) < fi (x), ∀i = 1,
2, ..., k.

Definition 2.8 (Schwartz Inequality) Let x, y ∈ Rn and A ∈ Rn× Rn be a positive semi

definite matrix, xT Ay ≤ (
xT Ax

) 1
2
(
yT Ay

) 1
2 , equality holds if for some λ ≥ 0, Ax = λAy.

3 Wolfe Type Higher Order Symmetric Dual Programs

Let f i :Rn× Rm → R, gi:Rn× Rm× Rn → R and hi :Rn× Rm× Rm → R. are twice differen-
tiable functions. λi ∈ R, pi ∈ Rm, qi ∈ Rn, wi ∈ Rm, zi ∈ Rn, i = 1, 2, ....k. Bi and Ciare
positive semi definite matrices of order n × n and m × m respectively. And also w = (w1,
w2, ...wk), z = (z1, z2, ...zk).

Now we formulate the following pair of Wolfe type higher order nondifferentiable
multiobjective symmetric dual programs and prove duality theorems.

Wolfe type higher order nondifferentiable multiobjective symmetric primal

• Primal (WHNMSP):

L(x, y, w, p)=Minimize

⎛

⎝
fi (x, y)+(

xT Bix
) 1

2 +hi (x, y, pi)−pT
i

(∇pi
hi (x, y, pi )

−yT
[∇yfi (x, y) + ∇pi

hi (x, y, pi)
]
, i = 1, 2, ..k.

⎞

⎠

Subject to
∑k

i=1 λi

[∇yfi (x, y) − Ciwi + ∇pi
hi (x, y, pi)

] ≤ 0,

(3.1)

wT
i Ciwi ≤ 1, i = 1, 2, ...k. (3.2)

λ > 0,
∑k

i=1
λi = 1, (3.3)
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• Dual (WHNMSD):

M (u, v, z, q) = Maximize

(

fi (u, v) − (
vT Civ

) 1
2 + gi (u, v, qi ) − qT

i

(∇qi
gi (u, v, qi )

−uT
[∇ufi (u, v) + ∇qi

gi (u, v, qi )
]
, i = 1, 2, ..k.

)

Subject to
∑k

i=1 λi

[∇ufi (u, v) + Bizi + ∇qi
gi (u, v, qi )

] ≥ 0,

(3.4)

zT
i Bizi ≤ 1, i = 1, 2, ...k. (3.5)

λ > 0,
∑k

i=1
λi = 1, (3.6)

Remark 3.1 Since the objective function of (WHNMSP) and (WHNMSD) contains the

square root terms like
(
xT Ax

) 1
2 , these problems are nondifferentiable programming

problems.

Theorem 3.1 (Weak Duality) Let (x, y, λ, w, p) be feasible solution of (WHNMSP) and
(u, v, λ, z, q) be feasible solution of (WHNMSD) and assume that

i.
∑k

i=1 λi

[
fi (·, v) + (·)T Bizi

]
is higher order (φ, ρ)-invex at u with respect to

gi (u, v, qi) , i = 1, 2, .., k;

ii.
∑k

i=1 λi

[
fi (x, ·) − (·)T Ciwi

]
is higher order (φ, ρ)-incave at y with respect to

hi (x, y, pi) , i = 1, 2, .., k;

iii φo (x, u; (ξ, ρ)) + uT ξ ≥ 0,∀ξ ∈ Rn+,

iv φ1 (v, y; (ς, ρ)) + yT ς ≥ 0,∀ς ∈ Rm+ .

Then L (x, y, w, λ, p) 
≤M (u, v, z, λ, q).

Proof Since (u, v, λ, z, q) is feasible solution for dual, by dual constraint (3.4), the vector
ξ = ∑k

i=1 λi

[∇ufi (u, v) + Bizi + ∇qi
gi (u, v, qi)

] ∈ Rn+ and so from the hypothesis (iii),
we have

φo (x, u; (ξ, ρ)) + uT ξ ≥ 0 ⇒ φo

(

x, u;
(∑k

i=1
λi

[∇ufi (u, v) + Bizi + ∇qi
gi (u, v, qi)

]
, ρ

))

≥ −uT

(∑k

i=1
λi

[∇ufi (u, v) + Bizi + ∇qi
gi (u, v, qi)

]
)

(3.7)

Again since (x, y, λ, w, p) is feasible solution for primal, by primal constraint (3.1)

ς = −
(∑k

i=1
λi

[∇yfi (x, y) − Ciwi + ∇pi
hi (x, y, pi)

]
)

∈ Rm+ .
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So hypothesis (iv) implies

φ(x, u; (ς, ρ)) + yT ς ≥ 0 ⇒ φ1

(

x, u;
(

−
(∑k

i=1
λ

[∇yfi(x, y)

−Ciwi + ∇pi
hi(x, y, pi)

])

, p

))

≥ yT

(∑k

i=1

[∇yfi(x, y) − Ciwi + ∇pi
hi(x, y,pi)

]
)

(3.8)

Now from hypothesis (i) we have
k∑

i=1
λi

[
fi (∗, v) + (∗)T Bizi

]
is higher order (φ0, ρ)-in

vex at u for fixed v and λ > 0. So for φ0: Rn× Rn× Rn+1 → R and ρ ∈ R, we have

k∑

i=1
λi

[
fi (x, v) + xT Bizi

] −
k∑

i=1
λi

[
fi (u, v) + uT Bizi

]

≥ φ0

(
x, u,

(∑k
i=1 λi

[∇ufi (u, v) + Bizi + ∇qi
gi (u, v, qi)

]
, ρ

))

+
k∑

i=1
λi

[
gi (u, v, qi) − qT

i ∇qi
gi (u, v, qi)

]

(3.9)

Again the higher order (φ1, ρ) -incavity of
∑k

i=1 λi

[
fi (x, ·) − (·)T Ciwi

]
at y for fixed x,

λ > 0, φ1: Rm× Rm× Rm+1 → R and ρ ∈ R, implies that

k∑

i=1
λi

[
fi (x, y) − yT Ciwi

] −
k∑

i=1
λi

[
fi (x, v) − vT Ciwi

]

≥ φ1

(

y, v;
(

−
r∑

i=1

(
λi

[∇yfi (x, y) − Ciwi + ∇pi
hi (x, y,pi)

]
, ρ

)
)

−
k∑

i=1
λi

[
hi (x, y,pi) − pT

i ∇pi
hi (x, y, pi)

]
.

(3.10)

Adding (3.9) and (3.10)

k∑

i=1
λi

[
fi (x, y) + xT Bizi − yT Ciwi

] −
k∑

i=1
λi

[
fi (u, v) + uT Bizi − vT Ciwi

]

≥ φ0

(
x, u,

(∑k
i=1 λi

[∇ufi (u, v) + Bizi + ∇qi
gi (u, v, qi)

]
, ρ

))

+φ1

(

y, v;
(

−
r∑

i=1

(
λi

[∇yfi (x, y) − Ciwi + ∇pi
hi (x, y,pi)

]
, ρ

)
)

+
k∑

i=1
λi

[
gi (u, v, qi) − qT

i ∇qi
gi (u, v, qi)

]

−
k∑

i=1
λi

[
hi (x, y, pi) − pT

i ∇pi
hi (x, y, pi)

]

(3.11)
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Using (3.7) and (3.8), in (3.11), we get

k∑

i=1
λi

[
fi (x, y) + xT Bizi − yT Ciwi

] −
k∑

i=1
λi

[
fi (u, v) + uT Bizi − vT Ciwi

]

≥ −uT
k∑

i=1
λi

[∇ufi (u, v) + Bizi + ∇qi
gi (u, v, qi)

]

+ yT
k∑

i=1
λi

[∇yfi (x, y) − Ciwi + ∇pi
hi (u, v, pi)

]

+
k∑

i=1
λi

[
gi (u, v, qi) − qT

i ∇qi
gi (u, v, qi)

]

−
k∑

i=1
λi

[
hi (x, y,pi) − pT

i ∇pi
hi (x, y, pi)

]

⇒
k∑

i=1
λi

[
fi (x, y) + xT Bizi

] −
k∑

i=1
λi

[
fi (u, v) − vT Ciwi

]

≥ −uT
k∑

i=1
λi

[∇ufi (u, v) + ∇qi
gi (u, v, qi)

] + yT
k∑

i=1
λi

[∇yfi (x, y) + ∇pi
hi (u, v, pi)

]

+
k∑

i=1
λi

[
gi (u, v, qi)−qT

i ∇qi
gi (u, v, qi)

]−
k∑

i=1
λi

[
hi (x, y, pi)−pT

i ∇pi
hi (x, y,pi)

]

⇒
k∑

i=1
λi

[
fi (x, y) + xT Bizi + hi (x, y,pi) − pT

i ∇pi
hi (x, y, pi)

−yT
(∇yfi (x, y) − ∇pi

hi (x, y, pi)
)]

≥
k∑

i=1
λi

[
fi (u, v) − vT Ciwi + gi (u, v, qi) − qT

i ∇qi
gi (u, v, qi)

−uT
(∇ufi (u, v) − ∇qi

gi (u, v, qi)
)]

(3.12)
From Schwartz inequality, (3.2) and (3.5) we get

xT Bizi =
(
xT Bix

) 1
2
(
zT
i Bizi

) 1
2 ≤

(
xT Bix

) 1
2
. (3.13)

vT Ciwi =
(

vT Civ
) 1

2
(

wT
i Ciwi

) 1
2 ≤

(
vT Civ

) 1
2
. (3.14)

Using (3.13) and (3.14) in (3.12), we obtain

k∑

i=1
λi

[

fi (x, y) + (
xT Bix

) 1
2 + hi (x, y, pi) − pT

i ∇pi
hi (x, y,pi)

−yT
(∇yfi (x, y) − ∇pi

hi (x, y,pi)
)
]

≥
k∑

i=1
λi

[

fi (u, v) − (
vT Civ

) 1
2 + gi (u, v, qi) − qT

i ∇qi
gi (u, v, qi)

−uT
(∇ufi (u, v) − ∇qi

gi (u, v, qi)
)
]

⇒ ∑k
i=1 λiLi (x, y, z, p) ≥ ∑k

i=1 λiMi (u, v, w, q)

That is L(x, y, λ, z, p) ≥ M(u, v, λ, w, q).

Theorem 3.2 (Strong Duality) Let fi : Rn× Rm → R be thrice differentiable function,
gi: Rn× Rm× Rn → R and hi: Rn× Rm× Rm → R be differentiable function, Bi and
Ci for i = 1,2, .,k; are n × n and m × m positive semi definite matrices respectively.
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Let
(
x̄, ȳ, w̄, λ̄, p̄

)
be a weakly Pareto optimal solution of Primal (WHNMSP). Assume the

following conditions are satisfied;

(i) for all i ∈ {1, 2, ..k} ,∇pipi
hi

(
x, y, pi

)
are nonsingular,

(ii) the vector
k∑

i=1
λi

[∇yhi

(
x, y, pi

) − ∇pi
hi

(
x, y, pi

) + ∇yyfi (x, y) pi

]
/∈

span
{∇yf1 (x, y) − C1w1, ..,∇yfk (x, y) − Ckwk

}
.

(iii)
k∑

i=1
λi

[∇yhi

(
x, y, pi

) − ∇pi
hi

(
x, y, pi

) + ∇yyfi (x, y) pi

] = 0 ⇒ pi = 0,∀i.

(iv) for all i, hi (x, y, 0) = 0, gi (x, y, 0) = 0,∇pi
hi (x, y, 0) = 0,∇yhi (x, y, 0) = 0,

∇xhi (x, y, 0) = ∇qi
gi (x, y, 0)

(v) The set of vectors
{∇yf1 (x, y) − C1w1, ...,∇yfk (x, y) − Ckwk

}
are linearly inde-

pendent.

Then (a) pi = 0,∀i. (b) there exist zi ∈ Rn such that
(
x, y, λ, z, q = 0

)
is a feasible

solution for dual (WHNMSD) and two objective values are equal. Also if the hypothe-
sis of theorem 3.1 are satisfied for all feasible solution of (WHNMSP) and (WHNMSD),
then

(
x, y, w, λ, p

)
and

(
x, y, λ, z, q

)
are Pareto optimal solution for (WHNMSP) and

(WHNMSD) respectively.

Proof Since
(
x, y, λ, w, p

)
is weakly Pareto optimal solution (WHNMSP), there exist

α ∈ Rk, β ∈ Rm, ν ∈ Rk,μ =
k∑

i=1
αi ∈ R such that the following Fritz-John optimality

condition stated by Craven [14] are satisfied at
(
x, y, λ, w, p

)
for w ∈ Rm;

∑k
i=1 αi [∇xfi (x, y) + Bizi] + μ

k∑

i=1
λi

[∇xhi

(
x, y, pi

)] + ∑k
i=1 λi

[∇xyfi (x, y)
]

×(β − μy)+ ∑k
i=1 λi

[∇xpi
hi

(
x, y, pi

)] (
β − μ

(
y + pi

)) = 0,

(3.15)

∑k
i=1

(
αi − μλi

) [∇yfi (x, y) − Ciwi

] +
k∑

i=1
μλi

[∇yhi

(
x, y, pi

) − ∇pi
hi

(
x, y, pi

)]

+
k∑

i=1
λi

(

∇yyfi (x, y) (β − μy) +
k∑

i=1
λi

[∇piyhi

(
x, y, pi

)] (
β − μy − μpi

)
)

= 0.

(3.16)

k∑

i=1

λi

[∇pipi
hi

(
x, y, pi

)] [
β − μ

(
pi + y

)] = 0, (3.17)

βT
∑k

i=1
λi

[∇yfi (x, y) − Ciwi + ∇pi
hi

(
x, y, pi

)] = 0, (3.18)

αiCiy + (β − μy)T λiCi = 2νiCiwi , i = 1, 2, ..k. (3.19)

xT Bizi =
(
xT Bix

) 1
2
, i = 1, 2, ..k (3.20)

zT
i Bizi ≤ 1, i = 1, 2, ..k (3.21)
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νi

(
wT

i Ciwi − 1
)

= 0, i = 1, 2, ..k (3.22)

(α, β, μ, ν) ≥ 0, (3.23)

(α, β, μ, ν) 
= 0. (3.24)

By hypothesis (i), (3.17) gives
β = μ

(
pi + y

)
(3.25)

Suppose αi = 0, for i = 1, 2, ..k. So

μ =
k∑

i=1

αi = 0. (3.26)

So (25) gives,
β = 0. (3.27)

Again from (3.19) we get
νi = 0,∀i. (3.28)

So from (3.26), (3.27) and (3.28), we get (α, β , μ, ν) = 0. This contradicts (3.24).
So αi > 0 for at least one i which implies α ≥ 0.

Hence

μ =
k∑

i=1

αi > 0. (3.29)

Using (3.25) in (3.16), we get

k∑

i=1

(
αi − μλi

) [∇yfi (x, y) − Ciwi

] +
k∑

i=1
μλi

[∇yhi

(
x, y, pi

) − ∇pi
hi

(
x, y, pi

)]

+
k∑

i=1
μλi∇yyfi (x, y) pi = 0.

⇒
k∑

i=1

(
αi − μλi

) [∇yfi (x, y) − Ciwi

]

+μ
k∑

i=1
λi

[∇yhi

(
x, y, pi

) − ∇pi
hi

(
x, y, pi

) + ∇yyfi (x, y) pi

] = 0

⇒
k∑

i=1
λi

[∇yhi

(
x, y, pi

) − ∇pi
hi

(
x, y, pi

) + ∇yyfi (x, y) pi

]

= − 1
μ

k∑

i=1

(
αi − μλi

) [∇yfi (x, y) − Ciwi

]

(3.30)
So by hypothesis (ii), we get

k∑

i=1

λi

[∇yhi(x, y, pi)i − ∇pi
hi(x, y, pi) + ∇yyfi(x, y)pi

] = 0. (3.31)

Hence by hypothesis (iii) we get
pi = 0,∀i. (3.32)

So (3.25) implies
β = μy. (3.33)
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Now from (3.30) and (3.31), we have

k∑

i=1

(
αi − μλi

) [∇yfi (x, y) − Ciwi

] = 0. (3.34)

Since the vectors
{∇yf1 (x, y) − C1w1, ...,∇yfk (x, y) − Ckwk

}
are linearly independent,

from (3.34), we obtain

αi = μλi. (3.35)

Using (3.32) and (3.33) in (3.15), we get

k∑

i=1

αi [∇xfi (x, y) + Bizi ] +
k∑

i=1

μλi

(∇xhi

(
x, y, pi

) = 0.

Using (3.35) in above equation, we get

μ
k∑

i=1
λi

[∇xfi (x, y) + Bizi + ∇xhi

(
x, y, pi

)] = 0.

⇒
k∑

i=1
λi

[∇xfi (x, y) + Bizi + ∇xhi

(
x, y, pi

)] = 0.

(3.36)

From the hypothesis (iv), for q = 0, (3.36) yields

∑k

i=1
λi

[∇xfi (x, y) + Bizi + ∇qi
gi

(
x, y, qi = 0

)] = 0. (3.37)

Again whenever νi > 0, (3.22) reduces to

wiCiwi = 1. (3.38)

So yT Ciwi = (
yT Ciy

) 1
2 .

When νi = 0, (3.19) gives αiCiy + (β − μy)T λiCi = 0, i = 1, 2, ..k.

which by (3.33) reduces to αiCiy = 0,∀i.

Since αi > 0 for at least one i, the above equation implies y = 0. So yT Ciwi = (
yT Ciy

) 1
2 .

Hence in either case

yT Ciwi =
(
yT Ciy

) 1
2
. (3.39)

Now from (3.37) and (3.39), we obtain that
(
x, y, λ, z, q = 0

)
satisfies the dual constraint

(3.4) and (3.5).
Hence

(
x, y, λ, z, q = 0

)
is feasible for (WHNMSD).

From (3.18), (3.33), we get

yT
(∑k

i=1 λi

[∇yfi (x, y) − Ciwi + ∇pi
hi

(
x, y, pi

)]) = 0.

⇒
k∑

i=1
λi

(
yT Ciwi

) = yT

(
k∑

i=1
λi

[∇yfi (x, y) + ∇pi
hi

(
x, y, pi

)]
)

.
(3.40)
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Hence

L(x, y, w, 0) =
k∑

i=1

λi

[

fi (x, y)+
(
xT Bix

) 1
2 −yT ∇yfi (x, y)+hi (x, y, 0)−yT ∇pi

hi (x, y, 0)

]

=
k∑

i=1
λi

[
fi (x, y) + (

xT Bizi

) − yT ∇yfi (x, y)+hi (x, y, 0)−yT ∇pi
hi (x, y, 0)

]
(using (3.21)

=
k∑

i=1
λi

[
fi (x, y) − xT

[∇xfi (x, y) + ∇qi
gi (x, y, 0)

]

−yT
(∇yfi (x, y) + yT ∇pi

hi (x, y, 0)
) + hi (x, y, 0)

]

=
k∑

i=1
λi

[
fi (x, y) − xT

[∇xfi (x, y) + ∇qi
gi (x, y, 0)

]

−yT Ciwi + hi (x, y, 0)
]

(using (3.40))

=
k∑

i=1
λi

[

fi (x, y) − xT
[∇xfi (x, y) + ∇qi

gi (x, y, 0)
] − (

yT Ciy
) 1

2 + gi (x, y, 0)

]

= fi (x, y) − xT

(
k∑

i=1
λi

[∇xfi (x, y) + ∇qi
g (x, y, 0)

]
)

− (
yT Ciy

) 1
2 + gi (x, y, 0)

(using hypothesis (iii) and (3.39))
= M (x, y, z, 0) .

(3.41)

Now we claim that
(
x, y, w, pi = 0

)
is Pareto optimal solution for (WHNMSP). If this

would not be the case, then there would exist a feasible solution
(
u, v, w, pi = 0

)
for

(WHNMSP) such that for L (u, v, w, p = 0) < L (x, y, w, p = 0)

⇒ L (u, v, w, p = 0) < M (x, y, z, q = 0) . (using (3.41))

This is a contradiction to Theorem 3.1.
Hence

(
x, y, w, pi = 0

)
is a Pareto optimal solution of (WHNMSP).

Similarly by Theorem 3.1
(
x, y, λ, z, q

)
is Pareto optimal solution of (WHNMSD).

Theorem 3.3 (Converse Duality) Let fi: Rn× Rm → R be thrice differentiable
function,gi: Rn× Rm× Rn → R and hi: Rn× Rm× Rm → R be differentiable function, Bi

and Ci for i = 1, 2,., k; are n × n and m × m positive semi definite matrices respectively.
Let

(
u, v, λ, z, q

)
be a weakly Pareto optimal solution of Dual (WHNMSD). Assume the

following conditions are satisfied;

(i) for all i ∈ {1, 2, ..k} , ∇qiqi
gi

(
x, y, qi

)
are nonsingular,

(ii) the vector
k∑

i=1
λi

[∇ugi

(
u, v, qi

) − ∇qi
gi

(
u, v, qi

) + ∇uufi (u, v) qi

]
/∈

span {∇uf1 (u, v) + B1z1, ..,∇ufk (u, v) + Bkzk} .

(iii)
k∑

i=1
λi

[∇ugi

(
u, v, qi

) − ∇qi
gi

(
u, v, qi

) + ∇uufi (u, v) qi

] = 0 ⇒ qi = 0,∀i;
(iv) for all hi (u, v, 0) = 0, gi (u, v, 0) = 0,∇qi

gi (u, v, 0) = 0,∇ugi (u, v, 0) = 0,
∇vgi (u, v, 0) = ∇pi

hi (u, v, 0).
(v) The set of vectors {∇uf1 (u, v) + B1z1, ...,∇ufk (u, v) + Bkzk} are linearly

independent.

Then (a) qi = 0,∀i. (b) there exist wi ∈ Rm such that
(
u, v, λ, w, p = 0

)
is a feasible

solution for primal (WHNMSP) and two objective values are equal. Also if the hypothesis
of Theorem 3.1 are satisfied for all feasible solution of (WHNMSP) and (WHNMSD), then
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(
u, v, λ, z, q = 0

)
and

(
x, y, λ, z, q = 0

)
are Pareto optimal solution for (WHNMSP) and

(WHNMSD) respectively.

Proof The proof follows along the lines of Theorem 3.2.

4 Self Dual

A mathematical programming problem is said to be self dual when the dual is recast in the
form of the primal and new program constructed is same as the primal problem.

We now prove the following self duality theorem for the primal and dual.

Theorem 4.4 (Self Duality) Assume m = n, Bi = Ci , pi = qi , zi = wi . If fi , hi and gi

are skew symmetric with respect to x and y with hi(x, y, pi) = gi(x, y, qi), then (WHN-
MSP) is a self dual. Furthermore, if (WHNMSP) and (WHNMSD) are dual programs and
the hypothesis of Theorem 6.3.2 are satisfied, then (x, y, w, p) is Pareto optimal solution
for (WHNMSP), implies (i) p = 0 and (ii) (y, x, w, q = 0) is Pareto optimal solution for
(WHNMSD). Also the values of two objective functions are equal to zero.

Proof Rewriting the dual as minimization problem, we have

M∗ (u, v, z, q) = Minimize (−M (u, v, z, q))

= Minimize

(

−fi (u, v) + (
vT Civ

) 1
2 − gi (u, v, qi) + qT

i

(∇qi
gi (u, v, qi)

+ uT
[∇ufi (u, v) + ∇qi

gi (u, v, qi)
]
, i = 1, 2, .., k.

)

Subject to

∑k

i=1
λi

[−∇ufi (u, v) + Bizi − ∇qi
gi (u, v, qi)

] ≤ 0,

zT
i Bizi ≤ 1, i = 1, 2, ...k.

λ > 0,
∑p

i=1
λi = 1,

Since f i(u, v) and gi(u, v, qi ) are skew symmetric with respect to u and v, we have f i(u, v)
= −fi (v, u), gi(u, v, qi ) = −gi(v, u, qi ), ∇ufi(u, v) = −∇vfi(v, u) and ∇qi

gi(u, v, qi) =
−∇qi

gi(v, u, qi).
Hence the above dual program becomes

M∗(u, v, z, q) = Minimize

(

fi(v, u) + (
vT Civ

) 1
2 − uT Bizi + gi(v, u, qi)

− qT
i (∇qi

gi (v, u, qi)), i = 1, 2, ..k.

)

Subject to

∑k

i=1
λi

[∇ufi (v, u) − Bizi + ∇qi
gi (v, u, qi)

] ≤ 0,

zT
i Bizi ≤ 1, i = 1, 2, ...k.

λ > 0,
∑p

i=1
λi = 1,
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Again since Bi = Ci , wi = zi and hi(x, y, pi ) = gi(x, y, qi ) the above problem is just primal
problem. Hence the dual program is self dual.

Thus
(
x, y, w, pi

)
is Pareto optimal solution for (WHNMSP) implies

(
y, x, w, pi

)
is

Pareto optimal solution for (WHNMSD). By similar argument
(
x, y, z, qi

)
is optimal for

(WHNMSD) implies
(
y, x, z, qi

)
is Pareto optimal for (WHNMSP).

Since
(
x, y, w, pi

)
is Pareto optimal solution for (WHNMSP), then by Theorem 3.2,

there exist z ∈ Rn such that
(
x, y, z, qi

)
is Pareto optimal solution for (WHNMSD) and

L(x, y, w, p = 0) = M (x, y, z, q = 0) (4.1)

Hence
(
x, y, w, pi

)
and

(
y, x, z, qi

)
are Pareto optimal solution for (WHNMSP)

So Li

(
x, y, w, pi = 0

) = fi (x, y) + (
xT Bix

) 1
2 + hi

(
x, y, pi = 0

)

−yT
[∇yfi (x, y) − ∇pi

hi (x, y, p = 0)
]

= fi (y, x) + (
yT Ciy

) 1
2 + hi

(
y, x, qi = 0

) − xT
[∇xfi (y, x) − ∇pi

hi (y, x, q = 0)
]

= −fi (x, y) + (
yT Ciy

) 1
2 − hi

(
x, y, qi = 0

) + xT
[∇xfi (x, y) − ∇pi

hi (x, y, q = 0)
]

(∵ fi(x, y) and hi(x, y, p) are skew symmetric with respect to x and y.)

= −fi (x, y) + (
yT Ciy

) 1
2 − gi

(
x, y, qi = 0

) + xT
[∇xfi (x, y) − ∇pi

gi (x, y, q = 0)
]

(∵ h (x, y, 0) = g (x, y, 0))

= −M (x, y, z, q = 0)

(4.2)
From (4.1) and (4.2), we obtain H (x, y, w, p = 0) = G (x, y, z, q = 0) = 0.

5 Wolfe Type Higher Order Minimax Mixed Integer Programming

Let U and V be two arbitrary sets of integers in Rn1 and Rm1 respectively. Throughout this
section, we constraint some of the components of x and y are belong to arbitrary sets of
integers as in Balas [6]. Suppose that the first n1(0 ≤ n1 ≤ n) components of x belong to U
and the first m1(0 ≤ m1 ≤ m) components of y belongs to v, then we write (x, y) = (x1, x2,
y1, y2) where x1 = (

x1, x2, .., xn1

)
and y1 = (

y1, y2, .., yn1

)
. x2 and y2 belong to Rn−n1

and Rm−m1 .

Definition 5. 1 Let s1, s2,. . .,sk be elements of an arbitrary vector space. A vector function
G(s1, s2 ,. . .,sk) will be called additively separable with respect to s1, if there exist vector
function H(s1) (independent of s2 ,. . .,sk ) and K(s2 ,. . .,sk) (independent of s1) such that
G(s1, s2 ,. . .,sk)= H(s1)+ K(s2 ,. . .,sk).

We now consider the following Wolfe type higher order multiobjective minimax mixed
integer symmetric dual program.

• Primal (WHNMSIP):

L(x, y, w, p) = maxx1 minx2,y,w,λ,p

×
(
fi(x, y) + (xT Bix)

1
2 + hi(x, y, pi) − pT

i

(∇pi
hi(x, y,pi

)

−yT
[∇yfi(x, y) + ∇pi

hi(x, y,pi)
]
, i = 1, 2, ...k

)
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Subject to
∑k

i=1
λi

[∇yfi(x, y) − Ciwi + ∇pi
hi(x, y,pi)

] ≤ 0, (5.1)

wT
i Ciwi ≤ 1, i = 1, 2, ...k. (5.2)

λ > 0,
∑k

i=1
λi = 1, (5.3)

x1 ∈ U, y1 ∈ V, p ∈ Rm−m1 . (5.4)

• Dual (WHNMSID):

M(u, v, z, q) = minv1 maxu,v2,z,λ,q

(

fi(u, v) − (
vT Civ

) 1
2 + gi (u, v, qi) − qT

i

(∇qi
gi (u, v, qi )

−uT
[∇ufi(u, v) + ∇qi

gi (u, v, qi )
]
, i = 1, 2, ...k.

)

Subject to
∑k

i=1
λi

[∇ufi(u, v) + Bizi + ∇qi
gi (u, v, qi)

] ≥ 0, (5.5)

zT
i Bizi ≤ 1, i = 1, 2, ...k. (5.6)

λ > 0,
∑p

i=1
λi = 1, (5.7)

u1 ∈ U, v1 ∈ V, q ∈ Rn−n1 . (5.8)

Theorem 5.5 (Symmetric Duality) Let
(
x, y, w, λ, p

)
be Weakly Pareto optimal solution of

primal. Suppose that the following conditions are satisfied:

1. f(x, y) and h(x, y, p) are additively separable with respect to x1 or y1.
2. For any feasible solution

(
x, y, w, λ, p

)
in primal and

(
u, v, z, λ, q

)
in dual;

k∑

i=1
λi

[
fi(u

2, v) + (u2)T Bizi

]
is higher order (φ, ρ) - invex at u2 with respect to g(u,

v, q) with q ∈ Rn−n1 for each (u1, v) and
k∑

i=1
λi

[
fi(x

2, y) − (y2)T Ciwi

]
is higher

order (φ, ρ) - incave at y2 with respect to h(x, y, p) with p ∈ Rm−m1 for each (x, y1).
3. ∇pph (x, y, p) is nonsingular.
4. The vector hi (x, y, 0) = g (x, y, 0) ∇x2hi (x, y, 0) = ∇qi

g (x, y, 0)

5. φ0(x2, u2; (a, ρ)) + (u2)T a ≥ 0, φ1(v2, y2; (b, ρ)) + (y2)T b ≥ 0, for all a ∈ R
n−n1+ and

b ∈ R
m−m1+

Then there exist zi ∈ Rn−n1 such that
(
x, y, λ, z, q = 0

)
is Pareto optimal solution of dual

and the values of two objective functions are equal.
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Proof The proof follows along the lines of Theorem 3.1 in Gulati and Ahmad [19] by using
Theorem 3.1 and 3.2 stated in section -3.

6 Numerical Example

Let X = [1,∞) = Y.P ⊂ R+. Let f : X2× Y2 → R be defined as
f (x, y) = ex2

1 + ex2
2 − ey2

1 − ey2
2 , h: X2× Y2× P2 → R be defined as

h(x, y,p) = − (
p2

1 + p2
2

) (
x2

1 + x2
2 + y2

1 + y2
2

)
, g: X2× Y2× P2 → R defined as

g(x, y, q) =
(
q2

1 + q2
2

)(
x2

1 + x2
2 + y2

1 + y2
2

)
.

Where x = (x1, x2) ∈ X2, y = (y1, y2) ∈ Y2, p = (p1, p2) ∈ P2, B = C =
(

1 0
0 1

)

,

p =
(

p1

p2

)

, p1, p2 ∈ P, q =
(

q1

q2

)

, q1, q2 ∈ P, w =
(

w1

w2

)

,

z =
(

z1
z2

)

, z1, z2, w1, w2 ∈ [1,∞) ,

∇xf (x, y) =
(

2x1e
x2

1

2x2e
x2

2

)

,∇yf (x, y) =
(

−2y1e
y2

1

−2y2e
y2

2

)

,

∇ph (x, y, p) =
( −2p1

(
x2

1 + x2
2 + y2

1 + y2
2

)

−2p2
(
x2

1 + x2
2 + y2

1 + y2
2

)

)

,

Primal: Maximize

(
ex2

1 +ex2
2 −ey2

1 −ey2
2 + (

p2
1 +p2

2 +2p1y1 +2p2y2
) (

x2
1 +x2

2 + y12 +y2
1

)

+2y2
1ey2

1 + 2y2
2ey2

2 +
√

x2
1 + x2

2

)

Subject to −2y1e
y2

1 − w1 − 2p1
(
x2

1 + x2
2 + y2

1 + y2
2

) ≤ 0,

−2y2e
y2

2 − w2 − 2p2
(
x2

1 + x2
2 + y2

1 + y2
2

) ≤ 0,

w2
1 + w2

2 ≤ 1.

Dual: Maximize

(
eu2

1 + eu2
2 − ev2

1 − ev2
2 + (

q2
1 + q2

2 − 2q1u1 − 2q2u2
) (

u2
1 + u2

2 + v2
1 + v2

1

)

−2u2
1e

u2
1 − 2u2

2e
u2

2 −
√

v2
1 + v2

2

)

Subject to 2u1e
u2

1 + z1 + 2q1
(
u2

1 + u2
2 + v2

1 + v2
2

) ≥ 0,

2u2e
u2

2 + z2 + 2q2
(
u2

1 + u2
2 + v2

1 + v2
2

) ≥ 0,

z2
1 + z2

2 ≤ 1.
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Now for the above problem let assume φ0 : X × X × P × R+ → R defined by

φ0(x, u; (a, ρ)) = (1 − 2ρ)
(
eu2

1 + eu2
2

)
+ 2u2

1e
u2

1 + 2u2
2e

u2
2 − uT a and φ1 : Y × Y × P ×

R+ → R defined by φ1(v, y; (b, ρ)) = (1 − 2ρ)
(
ey2

1 + ey2
2

)
+ 2y2

1ey2
1 + 2y2

2ey2
2 − yT b.

Now for ρ = 1

(f (x, v) + xT z) − (f (u, v) + uT z) − φ0(x, u; (∇uf (u, v) + z + ∇qg(u, v, q), ρ))

−g(u, v, q) + qT (∇qg(u, v, q))

=
(
ex2

1 + ex2
2 − ey2

1 − ey2
2 + x1z1 + x2z2

)
−

(
eu2

1 + eu2
2 − ey2

1 − ey2
2 + u1z1 + u2z2

)

−
[
(1−2ρ)

(
eu2

1 +eu2
2

)
+ 2u2

1e
u2

1 + 2u2
2e

u2
2 −2u2

1e
u2

1 − u1z1 − 2q1u1
(
u2

1 + u2
2 + v2

1 + v2
2

)

−2u2
2e

u2
2 − u2z2 − 2q2u2

(
u2

1 + u2
2 + v2

1 + v2
2

)] + (
q2

1 + q2
1

) (
u2

1 + u2
2 + v2

1 + v2
2

)

= ex2
1 + ex2

2 + x1z1 + x2z2 + (
q2

1 + q2
2 + 2q1u1 + 2q2u2

) (
u2

1 + u2
2 + v2

1 + v2
2

)

≥ x1 + x2 + x1z1 + x2z2 + (
q2

1 + q2
2 + 2q1u1 + 2q2u2

) (
u2

1 + u2
2 + v2

1 + v2
2

) ≥ 0 for all

x1, x2, u1, u2, v1, v2 ∈ [1,∞) , q1, q2 ∈ [0,∞) , z1, z2 ∈ [−1, 1] .

(∵ x ≥ −xz for z ∈ [−1, 1] & x ∈ [1,∞) .)

So f ( · , v) + ( · )T Bz is higher order (φ0, ρ) - invex at u ∈ X with respect to g.
Again for ρ = 1

(f (x, y)−yT w)−(f (x, v)−vT w) − φ1(v, y; (−(∇yf (x, y) − w + ∇ph(x, y, p)), ρ))

+h(x, y, p) − pT (∇ph(x, y, p))

=
(
ex2

1 + ex2
2 − ey2

1 − ey2
2 − y1w1 − y2w2

)
−

(
ex2

1 + ex2
2 − ev2

1 − ev2
2 − v1w1 − v2w2

)

−
[(

1−21
) (

ey2
1 +ey2

2

)
+2y2

1ey2
1 +2y2

2ey2
2 −2y2

1ey2
1 − y1w1 − 2p1y1

(
x2

1 + x2
2 + y2

1 + y2
2

)

−2y2
2ey2

2 − y2w2 − 2p2y2
(
x2

1 + x2
2 + y2

1 + y2
2

)] + (
p2

1 + p2
2

) (
x2

1 + x2
2 + y2

1 + y2
2

)

= ev2
1 + ev2

2 + v1w1 + v2w2 + (
p2

1 + p2
2 + 2p1y1 + 2p2y2

) (
x2

1 + x2
2 + y2

1 + y2
2

)

≥ v1+v2+v1w1+v2w2+(
p2

1+p2
2 +2p1y1+2p2y2

) (
x2

1 +x2
2 +y2

1 +y2
2

) ≥ 0 for all

x1, x2, y1, y2, v1, v2 ∈ [1,∞) , p1, p2 ∈ [0,∞) , w1, w2 ∈ [−1, 1] .

(∵ v ≥ −vw for w ∈ [−1, 1] & v ∈ [1,∞) .)

So f (x, ·) − (·)T Cw is higher order (φ1, ρ) - incave at y ∈ Y with respect to h.
Therefore all the conditions of Theorem 3.1 are satisfied. Hence the result of Weak

duality theorem (Theorem 3.1) is applicable.
Again (1) ∇pph (x, y, p) is nonsingular,

(II) ∇yh (x, y, p) − ∇ph (x, y, p) + ∇yyf (x, y) p = 0 ⇒ p = 0.

And (III) h (x, y, 0) = g (x, y, 0), ∇xh (x, y, 0) = ∇ph (x, y, 0), So all the condition of
strong duality theorem are satisfied. Hence the result of Strong duality theorem (Theorem
3.2) is applicable. Also f (x, y) and h(x, y, p) are skew symmetric with respect to x and y.
Thus the above dual problem becomes a self dual and by self duality theorem the optimal
value of both primal and dual problem is 0 for p = 0.
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7 Special Cases

(1) If we take (xT Ax)
1
2 = s(x|C) and (yT By)

1
2 = s(y|D) for

C = {Ay : yT Ay ≤ 1}, D = {Bx : xT Bx ≤ 1} for k = 1, then our model reduces to the
model proposed by Gulati and Gupta [21] as follows;

• Primal1: L(x, y, w, p) = minimize

(
f (x, y) + s(x|C) + h(x, y, p) − pT (∇ph(x, y, p)

−yT
[∇yf (x, y) + ∇ph(x, y, p)

]
)

Subject to ∇yf (x, y) − z + ∇ph(x, y, p) ≤ 0

z ∈ D

• Dual1: M(u, v, z, q) = maximize

(
f (u, v) − s(v|D) + g(u, v, q) − qT (∇qg(u, v, q)

−uT
[∇uf (u, v) + ∇qg(u, v, q)

)

Subject to ∇uf (u, v) + w + ∇qg(u, v, q) ≥ 0,

w ∈ C

(II) If we take (xT Ax)
1
2 = s(x|C) and (yT By)

1
2 = s(y|D) for C = {Ay : yT Ay ≤ 1},

D = {Bx : xT Bx ≤ 1} and h(x, y, p) = 1
2pT ∇yyf (x, y)p, g(u, v, q) = 1

2qT ∇xxf (u, v)q
for k = 1, then our model reduces to the model proposed by Gulati and Gupta [20] as
follows;

• Primal2: L(x, y, z, p) = minimize

(
f (x, y) + s(x|C) − 1

2pT (∇yyf (x, y)p)

−yT
[∇yf (x, y) + ∇yyf (x, y)p)

]

)

Subject to ∇yf (x, y) − z + ∇yyf (x, y)p ≤ 0

z ∈ D

• Dual2: M(u, v, z, q) = maximize

(
f (u, v) − s(v|D) − 1

2qT (∇uuf (u, v)q)

−uT [∇uf (u, v) + ∇uuf (u, v)q)

)

Subject to ∇uf (u, v) + w + ∇uuf (u, v)q ≥ 0,

w ∈ C.
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