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A Large-Update Interior-Point Method for Cartesian
P∗(κ)-LCP Over Symmetric Cones
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Abstract In this paper, we propose a new large-update interior point algorithm for the
Cartesian P∗(κ) linear complementarity problem over symmetric cones (SCLCP) based on
a parametric kernel function, which determines both search directions and the proximity
measure between the iterate and the μ-center. Using Euclidean Jordan algebras, we derive
the iteration bound that match the currently best known iteration bound for large update
methods.

Keywords Cartesian P∗(κ) property · Linear complementarity problem · Symmetric
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1 Introduction

Recently, more and more attention has been focused on the optimization problems over
symmetric cones due to the Euclidean Jordan algebraic tool. In 1997, Faybusovich [1] made
the first attempt to extend an interior-point method (IPM) from semidefinite programming
(SDP) to the symmetric conic linear programming (SCLP). Consequently, several IPMs
for linear optimization (LO), second order cone optimization (SOCO) and SDP optimiza-
tion as special cases have been successfully extended to symmetric optimization using the
framework of Euclidean Jordan algebras in [2–5].

This paper is concerned with the Cartesian P∗(κ)-SCLCP, which seeks vectors x, s ∈ J
such that

x ∈ K, s = A(x)+ q ∈ K, 〈x, s〉 = 0, (1)
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where 〈x, s〉 = Tr(x ◦ s) denotes the Euclidean inner product, A : J → J is a linear
transformation, q ∈ J , and J = J1 × J2 × . . .× JN is the Cartesian product space with
its cone of squares K = K1 ×K2 × . . .×KN , where each space Jν is a simple Euclidean
Jordan algebra with dimensions nν and ranks rν and each Kν is the corresponding cone of
squares of Jν . The dimension of J is n =∑N

ν=1 nν and the rank is r =∑N
ν=1 rν .

We call SCLCP the Cartesian P∗(κ)-SCLCP if linear transformation A has the Cartesian
P∗(κ) property for some nonnegative constant κ , i.e.,

A(u)− v = 0,

implies

(1 + 4κ)
∑

ν∈I+
〈u(ν), v(ν)〉 +

∑

ν∈I−
〈u(ν), v(ν)〉 ≥ 0, ∀ u, v ∈ J ,

where I+ = {ν : 〈u(ν), v(ν)〉 ≥ 0} and I− = {ν : 〈u(ν), v(ν)〉 < 0} are two index sets. If
A belongs to the class

P∗ = ∪κ≥0P∗(κ),

then SCLCP is said to be a Cartesian P∗-SCLCP.
The concept of the Cartesian P∗(κ)-property was first introduced by Luo and Xiu [6]

in the general Euclidean Jordan algebra. Actually, it is a straightforward extension of the
P∗(κ)-matrix introduced by Kojima et al. [9], where they first proved the existence and
uniqueness of the central path for the P∗(κ)-LCPs and generalized the primal-dual interior
point algorithm for LO to the P∗(κ)-LCPs. The Cartesian P∗(κ)-SCLCPs is a wide class
of problems that contains LCPs [7, 8], Cartesian P∗(κ)-LCPs [9, 10], Cartesian P∗(κ)-
SOCLCPs [11] and Cartesian P∗(κ)-SDLCPs [12] as special cases.

Recently, Choi et al. [20] presented a new complexity analysis for primal-dual IPM for
SOP, using a proximity function defined by a new eligible kernel function as follows:

ψ(t) = t2 − 1

2
+ ep(t

−q−1) − 1

pq
, p ≥ 1 and q ≥ 1 for t > 0, (2)

which was modified from the one in [13, 14]. A new class of eligible kernel functions was
defined by some simple conditions on the kernel function and its derivatives in [15]. From
[15] we recall that the kernel functions ψ : (0,∞) → [0,∞) that satisfy in the following
conditions are called eligible kernel functions:

(a) ψ(1) = ψ ′(1) = 0;
(b) ψ ′′(t) > 0;
(c) limt→0+ ψ(t) = limt→∞ ψ(t) = ∞;
(d) tψ ′′(t)+ ψ ′(t) > 0, t < 1;
(e) ψ ′′′(t) < 0, t > 0;
(f) 2ψ ′′(t)2 − ψ ′(t)ψ ′′′(t) > 0, t < 1;
(g) ψ ′′(t)ψ ′(βt)− βψ ′(t)ψ ′′(βt) > 0, t > 1, β > 1.

Several IPMs have been provided for SCLCPs and Cartesian P∗(κ)-SCLCPs based on
the kernel functions, which determine both search directions and the proximity measure
between the iterates and the center path (see e.g., [16–19]). The purpose of the paper is
to extend the primal-dual IPM for SOP in [20] based on the kernel function (2) to the
Cartesian P∗(κ)-SCLCPs. We adopt the basic analysis used in [20] and revise them to be
suited for the Cartesian P∗(κ)-SCLCPs case. Finally, we derive the iteration bounds that
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match the currently best known iteration bounds for large-update methods by using the
analysis emphasized on the kernel function and the Euclidean Jordan algebraic techniques,
namely, O

(
(1 + 2κ)

√
r log r log r

ε

)
.

2 Preliminaries

2.1 Euclidean Jordan Algebras and Symmetric Cones

Now, we recall some basic concepts and useful results of Euclidean Jordan algebras which
are found in [21]. To ease discussion, we assume that cone K is defined with N = 1.

Definition 1 Let (J , 〈·, ·〉) be an n-dimensional inner product space over R endowed with
a bilinear mapping ◦ : (x, y) �→ x ◦ y from J × J to J . Then the triple (J , ◦, 〈·, ·〉) is
a Euclidean Jordan algebra if the following conditions hold:

(1) x ◦ y = y ◦ x for all x, y ∈ J ;
(2) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ J , where x2 := x ◦ x;
(3) 〈x ◦ y, z〉 = 〈y, x ◦ z〉 for all x, y, z ∈ J .

For any x, y ∈ J we define the canonical inner product of x, y ∈ J as follows:

〈x, y〉 := Tr(x ◦ y),
and the Frobenius norm of x as follows

‖x‖ := √〈x, x〉.
An Euclidean Jordan algebra is called simple iff it cannot be represented as the orthogonal
direct sum of two Euclidean Jordan algebras. We assume that there exists an element e ∈ J ,
which called the identity element, such that x ◦ e = e ◦ x = x for all x ∈ J . Note
that the identity element e is unique. Denote the corresponding cone of squares by K :={
x2 : x ∈ J }. K is indeed a symmetric cone (i.e., self-dual and homogeneous). Since J

is finite-dimensional, given x ∈ J , there exists a minimal positive integer k such that the
set
{
e, x, . . . , xk

}
is linearly dependent. The rank of J , denoted rank (J ), is the largest

deg(x) of any element x ∈ J .
Two idempotents c1 and c2 are orthogonal if c1 ◦ c2 = 0. The set {c1, c2, . . . , ck} is

called a complete system of orthogonal idempotents if all ci , i = 1, 2, . . . , k are idempo-
tent, each two cj , cl are orthogonal and

∑k
j=1 cj = e. An idempotent element is said to be

primitive if it cannot be written as the sum of two other idempotents. A complete system of
orthogonal primitive idempotents forms a Jordan frame.

Theorem 1 (Theorem III.1.2 in [21]) Let J be a Euclidean Jordan algebra of rank r .
For any x ∈ J , there exists a Jordan frame {c1(x), c2(x), . . . , cr (x)} and real numbers
λ1(x), . . . , λr (x) such that

x =
r∑

j=1

λj (x)cj (x). (3)

The numbers λ1(x), λ2(x), . . . , λr (x) (with their multiplicities) are called the eigen-
values of x and Eq. 3 is the spectral decomposition of x. Now, it is possible to extend the
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definition of any real-valued function ψK(·) to elements of the Euclidean Jordan algebra via
their eigenvalues:

ψK(x) := ψK(λ1(x))c1(x)+ . . .+ ψK(λr(x))cr(x).

Furthermore, some functions in eigenvalues can be generated as follows: for any x ∈ J ,

Tr(x) =
r∑

i=1

λi(x), and det(x) =
r∏

i=1

λi(x).

Let the interior of K, denoted intK. Moreover, we can easily verify that

x ∈ K ⇔ λi(x) ≥ 0, x ∈ intK ⇔ λi(x) > 0, i = 1, 2, . . . , r.

Since “ ◦ ” is bilinear for every x ∈ J , the Lyapunov transformation L(x) : J → J is
defined as L(x)y := x ◦ y. For each x ∈ J , we define

P (x) := 2L(x)2 − L(x2),

where L(x)2 = L(x)L(x). The map P (x) is called the quadratic representation of x in
J , which is an essential concept in the theory of Jordan algebras. In the following we first
recall some results from [5].

Proposition 1 Let x, s ∈ intK. Then P (x)s ∈ intK.

Lemma 1 Let x, s ∈ intK and w be invertible. Then x ◦ s = μe if and only if

P (w)x ◦ P (w−1)s = μe.

In the following lemma, we give the so-called Nesterov-Todd scaling of J , which plays
an important role in the design of an interior-point algorithm for Cartesian P∗(κ)-SCLCPs.

Lemma 2 (Lemma 3.2 in [22]) Let x, s ∈ intK. Then there exists a unique w ∈ int K such
that

x = P (w)s.

Moreover,

w = P (x)
1
2

(
P
(
x

1
2

)
s
)− 1

2
[

= P
(
s−

1
2

) (
P
(
s

1
2

)
x
) 1

2
]

.

The point w is called the scaling point of x and s (in this order).

Proposition 2 (Proposition 18 in [5]) Let x, s ∈ intK. Then

P (x)s ∈ intK.

2.2 Back to the General Case

We proceed by adapting the definitions and properties stated so far in this section to the
general case, when the cone underlying the given Cartesian P∗(κ)-SCLCPs is the Cartesian
product of N symmetric cones Kν , where N > 1. As we mentioned in Section 1, we
assume that J = J1 × J2 × . . . × JN is the Cartesian product space with its cone of
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squares K = K1 × K2 × . . . × KN , where each space Jν is a simple Euclidean Jordan
algebra with ranks rν . It has the following properties:

• For any z = (
z(1)T , z(2)T , . . . , z(N)T

)T ∈ J , where z(ν) ∈ Jν , we have

‖z‖ =
√
√
√
√

N∑

ν=1

‖z(ν)‖2, λmin(z) = min
1≤ν≤N

{
λmin(z

(ν))
}
,

Tr(z) =
N∑

ν=1

Tr
(
z(ν)

)
, det (z) =

N∏

ν=1

det
(
z(ν)

)
;

• For any x = (
x(1)T , x(2)T , . . . , x(N)T

)T
, s = (

s(1)T , s(2)T , . . . , s(N)T
)T ∈ J we

have

x ◦ s =
((

x(1) ◦ s(1)
)T

,
(
x(2) ◦ s(2)

)T
, . . . ,

(
x(N) ◦ s(N)

)T
)T

,

〈x, s〉 =
N∑

ν=1

〈
x(ν), s(ν)

〉
;

• If e(ν) ∈ Jν is the identity element in the Jordan algebra for the ν-th cone, then vector

e =
(
e(1)T , e(2)T , . . . , e(N)T

)T

is the identity element in (J , ◦);
• The Lyapunov transformation and the quadratic representation of J can be adjusted to

L(x) = diag
(
L
(
x(1)

)
, . . . , L

(
x(N)

))
,

and

P (x) = diag
(
P
(
x(1)

)
, . . . , P

(
x(N)

))
;

• For any v = (
v(1)T , v(2)T , . . . , v(N)T

)T ∈ J we define the eligible kernel function
ψ(v) and the barrier function �(v) as follows:

ψ(v) =
(
ψ
(
v(1)

)
, . . . , ψ

(
v(N)

))T
,

and

�(v) := Tr(ψ(v)) =
N∑

ν=1

Tr
(
ψ
(
v(ν)

))
=

N∑

ν=1

rν∑

i=1

ψ
(
λi

(
v(ν)

))
, (4)

where ψ(v(ν))(ν = 1, 2, . . . , N) are defined by Eq. 2.

3 Interior-Point Algorithm for Cartesian P∗(κ)-SCLCPs

In this section we first introduce the concept of the central path for Cartesian P∗(κ)-
SCLCPs. Then we mainly derive new search directions for Cartesian P∗(κ)-SCLCPs based
on the eligible kernel function. A generic polynomial interior-point algorithm for Cartesian
P∗(κ)-SCLCPs is also presented.
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3.1 Central Path for Cartesian P∗(κ)-SCLCPs

Similarly, to the P∗(κ)-LCPs case, the concept of the central path can also be extended
to the Cartesian P∗(κ)-SCLCPs. The existence and uniqueness of central path for
Cartesian P∗(κ)-SCLCPs was first established by Luo and Xiu [23]. Throughout the paper
we assume that the Cartesian P∗(κ)-SCLCPs satisfies the interior-point condition (IPC),
i.e., there exists x0, s0 ∈ intK such that s0 = A(x0) + q . Under the IPC condition, by
relaxing the complementarity slackness x ◦ s = 0, we obtain

(A(x)− s

x ◦ s
)

=
(−q

μe

)

, x, s ∈ intK, (5)

where μ > 0 is a parameter. Since linear transformation A has the Cartesian P∗(κ)-property
and the IPC holds, the parameterized system (5) has a unique solution [23]. This solution
is denoted as (x(μ), s(μ)) and we call (x(μ), s(μ)) the μ-center of the Cartesian P∗(κ)-
SCLCPs. The set of μ-centers, that {(x(μ), s(μ)) | μ > 0}, is called the central path of
cartesian P∗(κ)-SCLCPs. Note that at μ-center we have

〈x(μ), s(μ)〉 = Tr(x(μ) ◦ s(μ)) = Tr(μe) = μTr(e) = rμ.

Therefore, if as μ tends to zero, (x(μ), s(μ)) converges to an optimal solution for cartesian
P∗(κ)-SCLCPs [23].

3.2 New Search Directions for Cartesian P∗(κ)-SCLCPs

The basic idea of IPMs is to follow the central path and approach the optimal set of Cartesian
P∗(κ)-SCLCPs by letting μ go to zero. To obtain the search directions for cartesian P∗(κ)-
SCLCPs a typical approach is to apply Newton’s method to system (5). For any strictly
feasible points x, s ∈ intK, we find displacements 	x and 	s such that

(A(x +	x)− (s +	s)

(x +	x) ◦ (s +	s)

)

=
(−q

μe

)

. (6)

Neglecting the term 	x ◦ 	s in the left-hand side expression of the second equation, we
obtain the following system:

( A	x −	s

s ◦	x + x ◦	s

)

=
(

0
μe − x ◦ s

)

. (7)

By Lemma 1 and Lemma 2, we can replace the second equation of the system (7) by

P (u)(x +	x) ◦ P (u)−1(s +	s) = μe,

where P (u−1) = P (u)−1 and u = w−1/2 such that w is the Nesterov-Todd scaling point of
x and s. Applying Newton’s method again, and neglecting the term P (u)	x ◦ P (u)−1	s,
we get

( A	x −	s

P (u)−1(s) ◦ P (u)	x + P (u)(x) ◦ P (u)−1	s

)

=
(

0
μe − P (u)(x) ◦ P (u)−1(s)

)

.

(8)
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To describe our new search directions, we define following notations:

A := AP (u−1)√
μ

, v : = P (u)x√
μ

= P (u−1)s√
μ

,

dx := P (u)	x√
μ

, ds : = P (u−1)	s√
μ

.

(9)

After some elementary reductions, we obtain the system (8) which is equivalent to the scaled
Newton system as follows:

(A(dx)− ds

dx + ds

)

=
(

0
v−1 − v

)

. (10)

Since linear transformation A has the Cartesian P∗(κ)-property, the system (10) has a
unique solution [23]. Replacing the right-hand side of the last equation in Eq. 10 by −ψ ′(v),
we obtain:

(A(dx)− ds

dx + ds

)

=
(

0
−ψ ′(v)

)

. (11)

The scaled search directions dx and ds are obtained by solving (11) so that 	x and 	s are
computed via (9). By taking a default step size α along the search directions, we get the new
iterates (x+, s+) according to

x+ := x + α	x, s+ := s + α	s. (12)

3.3 Properties of the Kernel Function and the Proximity Function

In this section we present some useful properties of the kernel function (2) and the proximity
function �(v) as defined by Eq. 4 that are used in the analysis of interior-point algorithm
for Cartesian P∗(κ)-SCLCPs.

The eligible kernel function (2) satisfies

ψ ′′(t) > 1, ψ ′′′(t) < 0 and lim
t→0+

ψ(t) = lim
t→∞ψ(t) = ∞.

Note that ψ(1) = ψ ′(1) = 0. Then ψ(t) is determined:

ψ(t) =
∫ t

1

∫ ξ

1
ψ ′′(ζ )dζ dξ.

By using the condition (a) of the eligible kernel functions, we can easily verify that

x ◦ s = μe ⇔ v = e ⇔ ψ ′(v) = 0 ⇔ �(v) = 0.

Therefore, the value of �(v) can be considered as a measure for the distance between the
given iterate (x, s) and the μ-center (x(μ), s(μ)). Hence, we call �(v) the proximity func-
tion for Cartesian P∗(κ)-SCLCP . Furthermore, we introduce the norm-based proximity
measure as follows:

σ := ‖dx + ds‖ = ‖ψ ′(v)‖ =
√
√
√
√‖dx‖2 + ‖ds‖2 + 2

N∑

ν=1

〈dx(ν), ds(ν)〉.

One can easily verify that σ ≥ 0, and σ = 0 if and only if �(v) = 0. The following lemma
gives a lower bound of σ in terms of �(v).
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Lemma 3 For any v ∈ intK,

σ ≥ √2�(v).

Proof From definition of the kernel function (2), we obtain 2ψ(t) ≤ (ψ ′(t))2 and

σ 2 =
N∑

ν=1

rν∑

i=1

(ψ ′(λi(v(ν))))2,

therefore, we have

2�(v) ≤ σ 2.

This completes the proof.

Now, we present Theorem 4.9 in [24] where was assumed that cone K is defined with
N = 1.

Proposition 3 (Theorem 4.9 in [24]) Let � be the proximity function defined in Eq. 4, then
for any x, y ∈ intK,

�

((
P
(
x

1
2

)
s
) 1

2
)

≤ 1

2
(�(x)+ �(s)) .

3.4 The Generic Large-Update Interior-Point Algorithm for Cartesian P∗(κ)-SCLCPs

The algorithm works as follows. We assume that there exists a strictly feasible point (x, s)
in a τ -neighborhood of the given μ-center (�(v) ≤ τ ). Then, we will go to the outer
“while loop”. If μ satisfies rμ ≥ ε, then we decrease μ to μ+ = (1 − θ)μ, for some fixed
θ ∈ (0, 1). Then, we make use of the inner “while loop”, and the procedure is repeated until
we find a new iterate (x+, s+) that is in a τ -neighborhood of the μ+-center, i.e., �(v+) ≤ τ .
We enter an inner iteration by computing the search directions using Eqs. 9 and 11 at the
current iterates with respect to the current value of μ and apply (12) to get new iterates. This
process is repeated until μ is small enough, say until rμ < ε.

The large-update interior-point algorithm for the Cartesian P∗(κ)-SCLCP is presented in
Fig. 1.

4 Analysis and Complexity of the Algorithm

In this section, we first discuss the bound of the proximity function during an outer iteration.
Then we compute the default step size for the algorithm presented in Fig. 1. After that we
show that the default step size yields sufficient decrease of the proximity function value
during each inner iteration. Finally, we present the total number of iterations and complexity
of the algorithm.

4.1 Bound of the Proximity Function During an Outer Iteration

Note that at the start of each outer iteration of the algorithm, just before the update of μ
with the factor 1 − θ , we have �(v) ≤ τ . Due to the update of μ vector v is multiplied by
factor 1√

1−θ
, with 0 < θ < 1, which in general leads to an increase in value of �(v). Then

during the subsequent inner iterations, �(v) decreases until it passes the threshold value
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Fig. 1 Algorithm

τ again, hence during the course of the algorithm presented in Fig. 1 the largest values of
�(v) occurs just after the update of μ. So next we derive an estimate for the effect of a
μ-update on value of �(v) by using the following two lemmas, which are the same as
Lemma 3.1 and 3.2 in [20].

Lemma 4 (Lemma 3.1 in [20]) Let β ≥ 1. Then

ψ(βt) ≤ ψ(t)+ (β2 − 1)

2
t2.

Lemma 5 For any v ∈ intK, then

‖v‖2 ≤ 2(�(v)+ 2r).

Proof Since ep(t
−q−1)

pq
is positive and pq ≥ 1, the kernel function (2) has a lower bound as

follows:

ψ(t) ≥ t2 − 1

2
− 1

pq
≥ t2

2
− 2.
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This implies

1

2

N∑

ν=1

rν∑

i=1

λ2
i

(
v(ν)

)
≤

N∑

ν=1

rν∑

i=1

ψ
(
λi

(
v(ν)

))
+ 2

N∑

ν=1

rν.

This completes the proof.

The following theorem gives an upper bound for �
(

1√
1−θ

v
)

, which plays an important

role in the analysis of the algorithm presented in Fig. 1.

Theorem 2 Let θ be such that 0 < θ < 1 and v ∈ intK. If �(v) ≤ τ , then

�

(
1√

1 − θ
v

)

≤ 2

1 − θ
(τ + r).

Proof From Lemma 4 with β = 1√
1−θ

≥ 1 and Lemma 5,

�

(
1√

1 − θ
v

)

=
N∑

ν=1

rν∑

i=1

ψ

(
1√

1 − θ
λi

(
v(ν)

))

≤ �(v)+ 1

2

(
1

1 − θ
− 1

)

‖v‖2

≤ �(v)+ θ

1 − θ
(�(v)+ 2r) ≤ 2

1 − θ
(�(v)+ r) ≤ 2

1 − θ
(τ + r).

The proof is completed.

4.2 Computation of the Default Step Size

In this section, we compute feasible step size α such that the proximity function is
decreasing and is bounded for the decrease during inner iterations.

In each inner iteration after the default step, we have got new iterates (x+, s+) according
to Eq. 12. We define v+ as follows:

v+ = P (u+)x+√
μ

=
P
(
u−1+

)
s+

√
μ

,

where u+ = w
−1/2
+ such that w+ is Nesterov-Todd scaling point of x+ and s+. Now, we

consider the decrease in �(v) during an inner iteration as a function of α and define

f (α) := �(v+)− �(v).

At this stage, we invoke Proposition 3.1 in [20] where N = 1.

Proposition 4 (Proposition 5.6 in [24]) Let the proximity function be as defined in Eq. 4.
Then we have

�(v+) = �

((
P (v + αdx)

1
2 (v + αds)

) 1
2
)

.
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Proposition 3 and Proposition 4 imply that, for each ν, 1 ≤ ν ≤ N ,

�
(
v
(ν)
+
)
= �

⎛

⎝
(

P
(
v(ν) + αdx(ν)

) 1
2
(
v(ν) + αds(ν)

)) 1
2

⎞

⎠

≤ 1

2

(
�
(
v(ν) + αdx(ν)

)
+ �

(
v(ν) + αds(ν)

))
.

Taking summation over all ν, 1 ≤ ν ≤ N , we get

�(v+) ≤ 1

2
(�(v + αdx)+ �(v + αds)) .

So, we have

f (α) ≤ f1(α) := 1

2
(�(v + αdx)+�(v + αds))−�(v).

Since the linear transformation A has the Cartesian P∗(κ)-property and

A	x −	s = 0,

from Eq. 7, we obtain

(1 + 4κ)
∑

ν∈I+
〈	x(ν), 	s(ν)〉 +

∑

ν∈I−
〈	x(ν), 	s(ν)〉 ≥ 0, (13)

where I+ = {ν : 〈	x(ν), 	s(ν)〉 ≥ 0}, I− = {ν : 〈	x(ν), 	s(ν)〉 < 0}.
Since 〈dx, ds〉 = 〈	x,	s〉

μ
, using Eqs. 9, 13 can be rewritten as

(1 + 4κ)
∑

ν∈I+
〈dx(ν), ds(ν)〉 +

∑

ν∈I−
〈dx(ν), ds(ν)〉 ≥ 0. (14)

In the sequel, we use the following notations:

σ+ :=
∑

ν∈I+
〈dx(ν), ds(ν)〉, and σ− := −

∑

ν∈I−
〈dx(ν), ds(ν)〉. (15)

Lemma 6 One has

σ+ ≤ 1

4
σ 2, and σ− ≤ 1

4
(1 + 4κ)σ 2.

Proof We have

0 ≤ 1

4

∑

ν∈I+
〈dx(ν) − ds(ν), dx(ν) − ds(ν)〉

= 1

4

∑

ν∈I+
〈dx(ν) + ds(ν), dx(ν) + ds(ν)〉 −

∑

ν∈I+
〈dx(ν), ds(ν)〉.

Hence, by Eq. 15, we have

σ+ =
∑

ν∈I+
〈dx(ν), ds(ν)〉 ≤ 1

4

∑

ν∈I+
〈dx(ν) + ds(ν), dx(ν) + ds(ν)〉

≤ 1

4

N∑

ν=1

〈dx(ν) + ds(ν), dsx(ν) + ds(ν)〉 = 1

4
‖dx + ds‖2 = 1

4
σ 2.

J Math Model Algor (2014) 13:537–556 547



It follows immediately from Eq. 14 that

(1 + 4κ)σ+ − σ− ≥ 0.

Then

σ− ≤ (1 + 4κ)σ+ ≤ 1

4
(1 + 4κ)σ 2.

This proves the lemma.

Lemma 7 One has

‖dx‖2 + ‖ds‖2 ≤ (1 + 2κ)σ 2.

Proof From Eq. 14, we have

σ 2 = ‖dx + ds‖2 = ‖dx‖2 + ‖ds‖2 + 2(σ+ − σ−) ≥ ‖dx‖2 + ‖ds‖2 − 8κ

1 + 4κ
σ−.

Thus by Lemma 6, we have

‖dx‖2 + ‖ds‖2 ≤ σ 2 + 8κ

1 + 4κ
σ− ≤ (1 + 2κ)σ 2.

The proof is completed.

The following lemma is derived from Lemma 14 in [5] and Lemma 7.

Lemma 8 For any α ∈
(

0, λmin(v)√
1+2κσ

)
,

λmin(v + αdx) ≥ λmin(v)− α
√

1 + 2κσ,

λmin(v + αds) ≥ λmin(v)− α
√

1 + 2κσ.

Proof Choose α ∈
(

0, λmin(v)√
1+2κσ

)
arbitrarily. From Lemma 14 in [5],

λmin(v + αdx) ≥ λmin(v)− α‖dx‖,
and

λmin(v + αds) ≥ λmin(v)− α‖ds‖.
By Lemma 7, we have

‖dx‖ ≤ √
1 + 2κσ, and ‖ds‖ ≤ √

1 + 2κσ.

Thus

λmin(v + αdx) ≥ λmin(v)− α
√

1 + 2κσ,

and

λmin(v + αds) ≥ λmin(v)− α
√

1 + 2κσ.

The proof is completed.

In the same way as Proposition 3.2 in [20], we have the following result.
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Proposition 5 Suppose that the functions ψ(x) and �(x) are defined by Eqs. 2 and 4,

respectively. Then, for any α ∈
(

0, λmin(v)√
1+2κσ

)
,

f ′
1(α) =

1

2

N∑

ν=1

(
Tr
(
ψ ′ (v(ν) + αdx(ν)

)
◦ dx(ν)

)
+ Tr

(
ψ ′ (v(ν) + αds(ν)

)
◦ ds(ν)

))
,

f ′′
1 (α) ≤ 3

2
max

{
	ψ ′ (λi

(
v̂(ν)x (α)

)
, λj

(
v̂(ν)x (α)

))
|1 ≤ ν ≤ N, 1 ≤ i, j ≤ rν

}
‖dx‖2

+3

2
max

{
	ψ ′ (λi

(
v̂(ν)s (α)

)
, λj

(
v̂(ν)s (α)

))
|1≤ ν ≤N, 1≤ i, j ≤ rν

}
‖ds‖2,

where v̂(ν)x (α) = v(ν) + αdx(ν) and v̂
(ν)
s (α) = v(ν) + αds(ν)

	ψ ′(λi(·), λj (·)) =
{
ψ ′′(λi(·))
ψ ′(λi (·))−ψ ′(λj (·))

λi(·)−λj (·)

λi (·) = λj (·),
λi(·) �= λj (·).

The following lemma gives an upper bound for the second derivative of f1(α) in terms
of σ and ψ ′′(t). This plays an important role in the analysis of the algorithm presented in
Fig. 1.

Proposition 6 For any α ∈
(

0, λmin(v)√
1+2κσ

)
,

f ′′
1 (α) ≤

3

2
(1 + 2κ)σ 2ψ ′′(λmin(v)− α

√
1 + 2κσ).

Proof Since ψ ′′(t) is a decreasing function on t ∈ (0, ∞), using Lemma 8 and the mean
value theorem, we have

max
{
	ψ ′ (λi

(
v(ν) + αdx(ν)

)
, λj

(
v(ν) + αdx(ν)

))
| ν = 1, . . . , N, i, j = 1, . . . , rν

}

≤ ψ ′′ (λmin (v + αdx)) ≤ ψ ′′ (λmin(v)− α
√

1 + 2κσ
)
,

and

max
{
	ψ ′ (λi

(
v(ν) + αds(ν)

)
, λj

(
v(ν) + αds(ν)

))
| ν = 1, . . . , N, i, j = 1, . . . , rν

}

≤ ψ ′′ (λmin (v + αds)) ≤ ψ ′′ (λmin(v)− α
√

1 + 2κσ
)
.

Thus, by Proposition 5 and Lemma 7,

f ′′
1 (α) ≤ 3

2
ψ ′′(λmin(v)− α

√
1 + 2κσ)

(
‖dx‖2 + |ds‖2

)

≤ 3

2
(1 + 2κ)σ 2ψ ′′(λmin(v)− α

√
1 + 2κσ),

which completes the proof of the lemma.

Lemma 9 If the step size α ∈
(

0, λmin(v)√
1+2κσ

)
satisfies

−ψ ′(λmin(v)− α
√

1 + 2κσ)+ ψ ′(λmin(v)) ≤ σ

3
√

1 + 2κ
, (16)

then, f ′
1(α) ≤ 0.
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Proof Proposition 5 gives, by Eq. 11,

f ′
1(0) = 1

2
Tr(ψ ′(v) ◦ (dx + ds)) = −1

2
Tr(ψ ′(v) ◦ ψ ′(v))

= −1

2
‖ψ ′(v)‖2 = −σ 2

2
.

Thus, by Proposition 6, we have

f ′
1(α) = f ′

1(0)+
∫ α

0
f ′′

1 (ξ )dξ

≤ −σ 2

2
+ 3

2
(1 + 2κ)σ 2

∫ α

0
ψ ′′(λmin(v)− ξ

√
1 + 2κσ)dξ

= −σ 2

2
− 3

2

√
1 + 2κσ

(
ψ ′(λmin(v)− α

√
1 + 2κσ)− ψ ′(λmin(v))

)

≤ −σ 2

2
+ 3

2

√
1 + 2κσ

σ

3
√

1 + 2κ
= 0.

This proves the lemma.

In the following lemma, we compute the feasible step size α such that the proximity
function is decreasing when we take a new iterate for fixed μ.

Lemma 10 Let ρ : [0, ∞) → (0, 1] denote the inverse function of the restriction of −ψ ′(t)
in interval (0, 1]. Then the largest step size α that satisfies (16) is given by

α∗ = 1√
1 + 2κσ

(

ρ(σ)− ρ

((

1 + 1

3
√

1 + 2κ

)

σ

))

. (17)

Proof We want to compute the step size α such that (16) holds with α as large as possible.
Since ψ ′′(t) is monotonically decreasing, the derivative of the left hand side in Eq. 16 with
respect to α is √

1 + 2κσψ ′′(λmin(v)− α
√

1 + 2κσ) > 0.

So the largest possible value of α satisfying (16) occurs when

− ψ ′(λmin(v)− α
√

1 + 2κσ)+ ψ ′(λmin(v)) = σ

3
√

1 + 2κ
. (18)

The derivative of the left hand side in Eq. 16 with respect to λmin(v) is

−ψ ′′(λmin(v)− α
√

1 + 2κσ)+ ψ ′′(λmin(v)) < 0.

This implies that with σ fixed if λmin(v) gets smaller, then α gets smaller. Note that

σ = ‖ψ ′(v)‖ ≥ |ψ ′(λmin(v))| ≥ −ψ ′(λmin(v)). (19)

The equality holds if and only if λmin(v) is the only coordinate which is different from 1
and λmin(v) < 1, i.e., ψ ′(λmin(v)) < 0. Hence, the worst situation for the largest step size
occurs when λmin(v) satisfies

− ψ ′(λmin(v)) = σ. (20)
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In the worst case by Eq. 20 and the definition of ρ,

λmin(v) = ρ(σ). (21)

From Eqs. 18 and 20,

− ψ ′(λmin(v)− α
√

1 + 2κσ) =
(

1 + 1

3
√

1 + 2κ

)

σ. (22)

Thus by the definition of ρ and Eq. 20, the largest step size α of the worse case is given as
follows:

α∗ = 1√
1 + 2κσ

(

ρ(σ)− ρ

((

1 + 1

3
√

1 + 2κ

)

σ

))

. (23)

This completes the proof.

Let x, s ∈ intK and α̂ ∈ (0, α∗], we want to prove that x+ ∈ intK and s+ ∈ intK
and Eq. 16 is satisfied for all α̂ ∈ (0, α∗]. We know that x+ = √

μP(u−1)(v + α̂dx) and
s+ = √

μP(u)(v+ α̂ds). By the definition of ρ and Eq. 19, we have

λmin(v) ≥ ρ(σ). (24)

So we obtain

α̂ ≤ α∗ = 1√
1 + 2κσ

(

ρ(σ)− ρ

((

1 + 1

3
√

1 + 2κ

)

σ

))

≤ λmin(v)√
1 + 2κσ

. (25)

By Lemma 8 and Eq. 25, we have v+ α̂dx ∈ intK and v+ α̂ds ∈ intK. Thus by Proposition
2, we obtain x+ ∈ intK and s+ ∈ intK. Since the left-hand side of inequality (16) is
increasing in α and decreasing in λmin(v). Thus we obtain

−ψ ′(λmin(v)− α̂
√

1 + 2κσ)+ ψ ′(λmin(v))

≤ −ψ ′(λmin(v)− α∗√1 + 2κσ)+ ψ ′(λmin(v))

≤ −ψ ′(ρ(σ)− α∗√1 + 2κσ)+ ψ ′(ρ(σ))

=
(

1 + 1

3
√

1 + 2κ

)

σ − σ = σ

3
√

1 + 2κ
.

Now, we compute the lower bound for α∗ in Lemma 10. It can be easily obtained by
using the following result.

Lemma 11 (Lemma 3.6 in [20]) Let σ ≥ 1. Then, for 0 < t ≤ ρ
(

4
3σ
)

,

ψ ′′(t) ≤ 1 + 3σ(1 + pq + q)

(

1 + 1

p
log 3σ

) q+1
q

.

Theorem 3 Let α∗ be as defined in Eq. 23, Then

α∗ ≥ 1

3(1 + 2κ)ψ ′′
(
ρ
((

1 + 1
3
√

1+2κ

)
σ
)) .

Proof Due to the definition of ρ, we have

−ψ ′(ρ(σ)) = σ.

J Math Model Algor (2014) 13:537–556 551



Taking the derivative of σ at both sides, we get

ρ′(σ) = − 1

ψ ′′(ρ(σ))
< 0.

Hence ρ is monotonically decreasing. Moreover, we have

α∗ = 1√
1 + 2κσ

∫ σ

(
1+ 1

3
√

1+2κ

)
σ

ρ′(ξ )dξ = 1√
1 + 2κσ

∫
(

1+ 1
3
√

1+2κ

)
σ

σ

1

ψ ′′(ρ(ξ))
dξ

≥ 1√
1 + 2κσ

⎡

⎣ ξ

ψ ′′
(
ρ
((

1 + 1
3
√

1+2κ

)
σ
))

⎤

⎦

(
1+ 1

3
√

1+2κ

)
σ

σ

= 1

3(1 + 2κ)ψ ′′
(
ρ
((

1 + 1
3
√

1+2κ

)
σ
)) ,

where the inequality follows from ρ and ψ ′′ are monotonically decreasing.

Since ψ ′′(t) is monotonically decreasing, Theorem 3 and Lemma 11 imply that

α∗ ≥ 1

3(1 + 2κ)

(

1 + 3σ(1 + pq + q)
(

1 + 1
p

log 3σ
) q+1

q

) .

In the sequel we define the ᾱ as follows:

ᾱ = 1

3(1 + 2κ)

(

1 + 3σ(1 + pq + q)
(

1 + 1
p

log 3σ
) q+1

q

) , (26)

and we will use ᾱ as the default step size in the algorithm for the Cartesian P∗(κ)-SCLCPs.

4.3 Decrease of the Proximity Function During an Inner Iteration

In what follows, we will show that proximity function � in each inner iteration with the
default step size ᾱ, as defined by Eq. 26, is decreasing. It can be easily established by using
the following technical result.

Lemma 12 (Lemma 3.12 in [25]) Let h(t) be a twice differentiable convex function with
h(0) = 0, h′(0) < 0 and let h(t) attain its (global) minimum at t∗ > 0. If h′′(t) is increasing
for t ∈ [0, t∗], then

h(t) ≤ th′(0)
2

, 0 ≤ t ≤ t∗.

By Lemma 12, we have the following lemma, which gives an upper bound for the
decreasing value of the proximity function � in each inner iteration.
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Lemma 13 If the step size α is such that α ≤ α∗, then

f (α) ≤ −α

4
σ 2.

Proof By Proposition 6, we have

f1(α) = f1(0)+ f ′
1(0)α +

∫ α

0

∫ ξ

0
f ′′

1 (ζ )dζdξ

≤ h(α) := f1(0)+ f ′
1(0)α

+ 3

2
(1 + 2κ)σ 2

∫ α

0

∫ ξ

0
ψ ′′(λmin(v)− ζ

√
1 + 2κσ)dζdξ.

We can easily verify that

h(0) = f1(0) = 0, h′(0) = f ′
1(0) = −σ 2

2
.

Taking α ≤ α∗, we derive

h′(α) = −σ 2

2
− 3

2

√
1 + 2κσ

(
ψ ′(λmin(v)− α

√
1 + 2κσ)− ψ ′(λmin(v))

)

≤ −σ 2

2
+ 3

2

√
1 + 2κσ

σ

3
√

1 + 2κ
= 0.

The last inequality holds due to the definition of α∗, which guarantees that if α ≤ α∗ then
inequality (16) holds. Since ψ ′′′(t) < 0 for t > 0, h′′(α) is increasing in α. Therefore h(α)

is satisfying assumptions of Lemma 12,

f (α) ≤ f1(α) ≤ h(α) ≤ αh′(0)
2

= −α

4
σ 2.

The result follows.

Theorem 4 With ᾱ being the default step size as given by Eq. 26, one has

f (ᾱ) ≤
(

− 1

6(1 + 2κ)

) √
�

1 + 3
√

2(1 + pq + q)
(

1 + 1
p

log 3
√

2�0

) q+1
q

,

where �0 is the value of �(α) after μ-update in outer iteration.

Proof Using Lemma 13 with α = ᾱ and Eq. 26, we have

f (ᾱ) ≤ − ᾱ

4
σ 2 =

(

− 1

12(1 + 2κ)

)
σ 2

1 + 3σ(1 + pq + q)
(

1 + 1
p

log 3σ
) q+1

q

.
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Since the last expression is monotonically decreasing in σ , we can express the decrease in
terms of � = �(v) by Lemma 3 as follows:

f (ᾱ) ≤
(

− 1

6(1 + 2κ)

)
�

1 + 3
√

2�(1 + pq + q)
(

1 + 1
p

log 3
√

2�
) q+1

q

≤
(

− 1

6(1 + 2κ)

) √
�
√
�

√
� + 3

√
2�(1 + pq + q)

(
1 + 1

p
log 3

√
2�0

) q+1
q

=
(

− 1

6(1 + 2κ)

) √
�

1 + 3
√

2(1 + pq + q)
(

1 + 1
p

log 3
√

2�0

) q+1
q

,

where the inequality follows from �0 ≥ � ≥ τ ≥ 1. The proof of the theorem is
completed.

4.4 Iteration Bound

For the analysis of the algorithm presented in Fig. 1, we need to count how many inner
iterations are required to return to the situation where �(v) ≤ τ after a μ-update. We denote
the value of �(v) ≤ τ after a μ-update as �0, the subsequent values in the same outer
iteration are denoted as �k, k = 1, 2, . . . , K, where K denotes the total number of inner
iterations in the outer iteration. Then we have

�0 ≤ 2

1 − θ
(τ + r) = O(r), �k−1 > τ, 0 ≤ �k ≤ τ,

where the inequality and equality follow from Theorem 2 with τ = O(r) and θ = �(1).
According to decrease of f (ᾱ) obtained in Theorem 4,

�k+1 ≤ �k − 1

(1 + 2κ)

(

6 + 18
√

2(1 + pq + q)
(

1 + 1
p

log 3
√

2�0

) q+1
q

)
√
�.

At this stage, we invoke Lemma 14 in [25].

Lemma 14 (Lemma 14 in [25]) Let t0, t1, . . . , tK be a sequence of positive numbers such
that

tk+1 ≤ tk − βt
1−γ
k , k = 0, 1, . . . , K − 1,

where β > 0 and 0 < γ ≤ 1. Then

K ≤ t
γ

0

βγ
.

Letting tk = �k, β = 1

(1+2κ)

(

6+18
√

2(1+pq+q)
(

1+ 1
p

log 3
√

2�0

) q+1
q

) and γ = 1
2 , we can

get the following lemma from Lemma 4. This gives an upper bound for the number of
iterations of the algorithm presented in Fig. 1.
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Lemma 15 Let K be the total number of inner iterations in outer iteration. Then we have

K ≤ 2(1 + 2κ)

⎛

⎝6 + 18
√

2(1 + pq + q)

(

1 + 1

p
log 3

√
2�0

) q+1
q

⎞

⎠�
1
2
0 ,

where �0 is the value of �(α) after μ-update in outer iteration.

After some elementary reductions, we have the following theorem, which yields the
iterations bound of the algorithm for the Cartesian P∗(κ)-SCLCPs.

Theorem 5 If τ ≥ 1 and 0 < θ < 1, the total number of iterations is not more than
⎡

⎢
⎢
⎢

2(1 + 2κ)

⎛

⎝6 + 18
√

2(1 + pq + q)

(

1 + 1

p
log 3

√
2�0

) q+1
q

⎞

⎠�
1
2
0

⎤

⎥
⎥
⎥

⌈
1

θ
log

r

ε

⌉

.

Remark 1 If one takes p = log r and q = 1 (when τ = O(r) and θ = �(1)), it shows
clearly that gives the currently best known iteration bound for the large-update methods,
namely

O
(
(1 + 2κ)

√
r log r log

( r

ε

))
.

5 Concluding Remarks

In this paper we have extended a new complexity analysis of primal-dual interior-point
algorithms for SOP based on the parametric kernel function ψ(t) defined by Eq. 2 pro-
posed in [20] to Cartesian P∗(κ)-SCLCPs. By using Euclidean Jordan algebraic techniques,
we derived the iteration bound that match the currently best known iteration bound for
large-update methods. Some interesting topics remain for further research. First, the search
directions used, are all based on NT-symmetrization scheme. It may be possible to design
similar algorithms using other symmetrization schemes to obtain polynomial-time iteration
bounds. Second, the numerical test is an interesting topic for investigating the behavior of
the algorithm so as to be compared with other approaches.
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