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Abstract In this paper we develop a polynomial-time approximation scheme for a par-
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1 Introduction

This paper tackles a special case of the two-machine flow shop scheduling problem with
several availability constraints (holes for short) on the second machine. The objective is
to find a schedule of n given jobs that minimizes the maximum completion time (i.e., the
makespan). Each job Ji is composed by two operations (OiA and OiB ), which have to be
processed on two machines A and B. Each machine can process at most one job at a time.
Machine B is assumed to be unavailable during q holes, and the precise time of each hole
is known in advance. Three scenarios are possible when an operation is interrupted by a
hole. In the semiresumable (sr) model the operation will have to partially restart when the
machine becomes available again. In the resumable (r) model the operation can be continued
without any penalty, and in the nonresumable model (nr) the operation needs to totally
restart. In this paper all jobs are supposed to be resumable. We consider the case where the
starting time of the last hole is such that sq < C�

max where C�
max is the optimal makespan.

The problem is strongly NP-hard and will be denoted F2|h(0, q), r, sq < C�
max|Cmax.

When a scheduling problem is classified as NP-hard, research focuses on developing
approximation algorithms with some guarantees on the quality of the obtained results. In
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this respect, a ρ-approximation algorithm is a polynomial-time algorithm that constructs
a solution with a makespan that is at most ρ times the optimal one. In the same context,
a polynomial-time approximation scheme (PTAS) is a family of (1 + ε)-approximation
algorithms for ε > 0. If in addition the running time is polynomial in 1/ε, the algorithm
is said fully polynomial-time approximation scheme (FPTAS). Note that if a problem is
strongly NP-hard then it does not admit a FPTAS (unless P=NP) [3].

The F2||Cmax is the only non-trivial variant of the flow shop problem that is solvable
in polynomial time [10]. Indeed the F3||Cmax and the two-stage hybrid flow shop problem
are both strongly NP-hard [2, 9]. Furthermore, it is shown that unless P=NP, there does
not exist a ρ-approximation algorithm for the flow shop problem with ρ < 5/4 [17]. In
[16] a PTAS is proposed for the two stage hybrid flow shop problem. In the view of the
approximability hardness of the general flow shop problem, research focused on the two-
stage configurations. Therefore, the works that addressed the availability constraints have
mainly considered the two-machine flow shop problem.

The two-machine flow shop with a single hole was first considered by Lee [13, 14] who

proposed a
(

3
2

)
-approximation algorithm for F2|h(0, 1), sr|Cmax, and a 2-approximation

algorithm for F2|h(1, 0), sr|Cmax. For the nonresumable scenario, a
(

3
2

)
-approximation

algorithm has been proposed for F2|h(1, 0), nr|Cmax [7]. Furthermore, it has been shown
that the two-machine flow shop with a single hole admits a PTAS under the semiresumable
scenario [11] and a FPTAS under the resumable scenario [15].

Considering a variable number of holes, the F2|h(q, 0), r|Cmax is the only configura-

tion that may admit a fixed factor approximation. For this problem, a
(

4
3

)
-approximation

algorithm and a polynomially solvable case were proposed in [5]. It has also been shown

that it admits a PTAS [6]. Finally, a
(

4
3

)
-approximation algorithm has been proposed for

a particular case of F2|h(0, q), r|Cmax [4]. In the same context, three basic approximation
algorithms are proposed in [1] for the two-stage hybrid flow shop with several holes, and in
[8] several approximation algorithms are developed for the two-stage assembly flow shop
problem under an availability constraint.

The remainder of this paper is organized as follows. Section 2 introduces some nota-
tions. Section 3 introduces a PTAS for the F2|h(0, q), r, sq < C�

max|Cmax problem. Finally,
Section 4 provides some concluding remarks.

2 Notation

We will use the following notation.

J = {J1, . . . , Jn}: Set of jobs.
ai, bi : Processing times for Ji ∈ J on A and B respectively.
π = 〈Jπ(1), . . . , Jπ(n)〉: Job permutation, where Jπ(i) is the ith job in π .
q: Number of holes.
sk, tk : Start and finish time of hole k, 1 ≤ k ≤ q . We assume that s1 < s2 < · · · < sq .
hk = tk − sk : Length of hole k, 1 ≤ k ≤ q .
Sij (π) and Cij (π): Start and finish time of operation Oij , i ∈ {1, . . . , n}, j ∈ {A, B} in

schedule π .
Cmax(π): Makespan of π .
π�: An optimal schedule.
C�

max: Optimal makespan.
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3 Approximation Scheme

This section introduces a PTAS for F2|h(0, q), r, sq < C�
max|Cmax. Recall that the best

approximation algorithm known for this problem guarantees a relative worst-case error

Fig. 1 Possible configurations for the makespan

We also define a(Q) = ∑
Jk∈Q ak , b(Q) = ∑

Jk∈Q bk for a non-empty set Q of jobs.
For a given job Jz in π , we define Hz(π) = ∑

I hk , where I = {hk | sk > SzB }. The
reference to schedule π will be dropped whenever no confusion can arise. Furthermore, all
operations are assumed to start as early as possible.

We now recall the following rules for the two-machine flow shop problem.

Johnson’s rule [10]: Ji precedes Jj if min(ai, bj ) ≤ min(aj , bi).
Ratio rule (RR): Ji precedes Jj if bi/ai > bj/aj . If bi/ai = bj/aj break tie arbitrarily.

As explained before, it is assumed that

sq < C�
max. (1)

This will guarantee that the last hole will affect all schedules including the optimal ones.
As C�

max is unknown, it is possible to use instead a lower bound LB. We give here two

possible values for LB. The first one is given by LB = b(J )+∑q−1
i=1 hi . For the second one,

schedule the n jobs according to Johnson’s rule and consider the corresponding makespan
(without considering the holes).

Note that it is sufficient to consider permutation schedules [12]. In order to determine the
makespan of a given schedule π , we have to search for the job Jz = Jπ(u) which starts the
last busy period on machine B. One of the following two conditions must be realized (see
Fig. 1):

(Condition 1) SzB = CzA. Hence

Cmax(π) = CzA +
n∑

i=u

bπ(i) + Hz(π)

=
u∑

i=1

aπ(i) +
n∑

i=u

bπ(i) + Hz(π). (2)

(Condition 2) There exists a hole hr such that sr ≤ CzA < tr . Hence

Cmax(π) = tr +
n∑

i=u

bπ(i) + Hz(π). (3)
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bound of 4/3 [4]. The proposed PTAS is inspired from the one introduced in [6] for the
F2|h(q,0), r|Cmax problem.

Given any fixed ε > 0, we will designate by a big job, a job Ji such that ai ≥ εC�
max.

The rest of the jobs will be referred as small jobs. Furthermore, the set of all big jobs will
be denoted J = {

Ji |ai ≥ εC�
max

}
and r = |J |.

The idea of the algorithm consists on testing all possible placements for the big jobs.
More specifically, for each r-permutation σ = 〈σ(1), σ (2), . . . , σ (r)〉 of r elements from
the set {1, 2, . . . , n}, the jobs of J will be scheduled in positions σ(i), 1 ≤ i ≤ r . The rest
of the jobs will be scheduled in the (n − r) left positions according to RR. Considering all
possible n!

(n−r)! r-permutations, we will obtain the desired solution.

Assume that ε < 1 and that the number of jobs is sufficiently large, e.g., n > � 1
ε
�. The

PTAS is described in Algorithm 1.

As an illustration, consider an example with n = 5 and ε = 1/2 where the jobs are
indexed according to RR (i.e. π0 = 〈J1, J2, J3, J4, J5〉). Suppose that J1 and J3 are such
that a1 ≥ a3 ≥ ai for i ∈ {2, 4, 5}.

For p = 1 we get S = {J1}. Steps (ii) and (iii) generate the following sched-
ules: 〈J1, J2, J3, J4, J5〉, 〈J2,J1, J3, J4, J5〉, 〈J2, J3,J1, J4, J5〉, 〈J2, J3, J4,J1, J5〉, and
〈J2, J3, J4, J5,J1〉.

For p = 2 we get S = {J1, J3}. There are 20 2-permutations from the set {1, 2, 3, 4, 5}.
Consequently, steps (ii) and (iii) generate the following schedules:

〈J1,J3, J2, J4, J5〉, 〈J1, J2,J3, J4, J5〉, 〈J1, J2, J4,J3, J5〉, 〈J1, J2, J4, J5,J3〉,
〈J3,J1, J2, J4, J5〉, 〈J3, J2,J1, J4, J5〉, 〈J3, J2, J4,J1, J5〉, 〈J3, J2, J4, J5,J1〉,
〈J2,J1,J3, J4, J5〉, 〈J2,J1, J4,J3, J5〉, 〈J2,J1, J4, J5,J3〉,
〈J2,J3,J1, J4, J5〉, 〈J2,J3, J4,J1, J5〉, 〈J2,J3, J4, J5,J1〉,
〈J2, J4,J1,J3, J5〉, 〈J2, J4,J1, J5,J3〉,
〈J2, J4,J3,J1, J5〉, 〈J2, J4,J3, J5,J1〉,
〈J2, J4, J5,J1,J3〉and〈J2, J4, J5,J3,J1〉.
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Steps (ii) and (iii) can be executed in O(n) and have to be repeated n!
(n−p)! < np times

for 1 ≤ p ≤ � 1
ε
�. This means that the number of operations is bounded by O(n)

∑� 1
ε �

p=1 np .

Therefore, the time complexity of Algorithm Hε is O(n� 1
ε �+1).

Given a schedule πk generated by Hε, we designate by a block of jobs, a sequence of big
jobs directly succeeding each other. A big job is said to be introductory if it is the first in a
block of jobs.

Before giving the worst-case error bound of Hε, we establish the following two lemmas
which will be used in the subsequent analysis.

Lemma 1 Given an optimal solution π�, and supposing that J 	= ∅, there exists a schedule
π generated by Hε such that:

(i) The big jobs appear in the same order as that in π�.
(ii) Every big job Jx verifies SxA(π�) ≤ SxA(π) < CxA(π�).

(iii) Every introductory job Jy = Jπ(v) of π realizes one of the following two conditions:

– Jy is the first job in π�.
– Sπ(v−1)A(π) < SyA(π�) ≤ SyA(π).

Proof Since a(J ) is a lower bound on C�
max, and by definition of J , we have that r = |J | ≤

� 1
ε
�. As Algorithm Hε tests all possible values of 1 ≤ p ≤ � 1

ε
�, then necessarily it will

get a configuration where S = J . That configuration is considered in the reminder of the
present proof (i.e., p = r = |J |).

Considering that Algorithm Hε tests all p-permutations for the positions of jobs in S, it
follows that there will be

(
n
p

) = n!
p!(n−p)! solutions in which the order of the big jobs will be

the same as in π� which satisfies (i). We now establish that one of these solutions realizes
conditions (ii) and (iii).

Consider solution π = 〈J\S, S〉 where S is composed by the jobs of S scheduled in the
same order as in π�, and J\S is composed by the jobs of J\S sequenced according to RR.
This schedule is clearly one of the solutions that are generated by Hε. In the following, we
are going to rearrange the jobs of S starting from the beginning of the subsequence.

Let Jy be the first job in S. If Jy is scheduled in the first position in π� then we consider
the solution π ′ obtained from π by placing Jy in the first position and by shifting forwards
all the jobs initially scheduled before Jy in π . Otherwise, let Jπ(v) be the first job in π

such that Sπ(v)A(π) ≥ SyA(π�) (see Fig. 2). Consider the solution π ′ obtained from π by
scheduling Jy in position v and by shifting forwards the jobs initially scheduled between
Jπ(v−1) and Jy in π . In this case schedule π ′ is such that Sπ ′(v−1)A(π ′) = Sπ(v−1)A(π) <

SyA(π�) ≤ Sπ(v)A(π) = SyA(π ′). In either cases the obtained solution π ′ is generated by
Hε, and Jy verifies (iii) (note that Jy is an introductory job). Let π = π ′.

Consider now the first job Jx of the subsequence S\{Jy } and let Jπ(v) be the first job in
π such that Sπ(v)A(π) ≥ SxA(π�). Two cases arise:

If Jπ(v−1) is a big job, then consider solution π ′ obtained from π by scheduling Jx in the
end of the block of jobs containing Jπ(v−1). In this case, Jx is not an introductory job and
verifies the first inequality of condition (ii) as SxA(π ′) ≥ Sπ(v)A(π) ≥ SxA(π�).

Otherwise Jπ(v−1) is a small job, then consider π ′ obtained from π by scheduling Jx in
position v which gives Sπ ′(v−1)A(π ′) = Sπ(v−1)A(π) < SxA(π�) ≤ Sπ(v)A(π) = SxA(π ′).
In this case Jx is a introductory job and verifies (iii). Let π = π ′.
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Fig. 2 Rescheduling the big jobs on π

By proceeding in the same way with the other big jobs in S\{Jx, Jy}, we will obtain a
solution π generated by Hε satisfying (iii) and the first inequality of (ii). We now prove that
the generated solution π verifies the second inequality of (ii). Let Jx = Jπ(w) be a big job
and let Jy = Jπ(v) be the introductory job of the block to which Jx belongs.

Note that SxA(π) = SyA(π) + ∑w−1
i=v aπ(i). Given that the big jobs have the same partial

order in both π and π� then CxA(π�) ≥ SyA(π�) + ∑w
i=v aπ(i).

If Jy is first in π and π� (i.e. SyA(π) = SyA(π�) = 0), then CxA(π�) ≥ SxA(π) + ax >

SxA(π). Otherwise, from (iii) we obtain SyA(π�) > Sπ(v−1)A(π) = SyA(π) − aπ(v−1)

which gives CxA(π�) ≥ SxA(π) + ax − aπ(v−1) > SxA(π) as Jπ(v−1) is a small job.

Lemma 2

(i) Let π be a schedule that verifies Lemma 1, and let Jz = Jπ(u) be the job which
starts the last busy period on machine B in π . Given the job Jπ�(u′) of π� such that
Sπ�(u′)A(π�) ≤ SzA(π) < Cπ�(u′)A(π�), then

n∑
i=u

bπ(i) + Hπ(u) ≤
n∑

i=u′
bπ�(i) + Hπ�(u′).

(ii) Suppose that |J | = 0. Let Jz = Jπ0(u) be the job which starts the last busy period on
machine B in π0, and let Jπ�(u′) be the job of π� such that Sπ�(u′)A(π�) ≤ SzA(π0) <

Cπ�(u′)A(π�), then

n∑
i=u

bπ0(i) + Hπ0(u) ≤
n∑

i=u′
bπ�(i) + Hπ�(u′).

Proof (i) Let E = {Jπ(i) | u ≤ i ≤ n}, F = {Jπ�(i) | u′ ≤ i ≤ n} and G = E ∩ F (see
Fig. 3). By assumption Sπ�(u′)A(π�) ≤ SzA(π), hence a(E) ≤ a(F ) and

a(E\G) ≤ a(F\G). (4)
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Fig. 3 Sets E and F

b(E\G) ≤
∑

Ji∈E\G
ai

(
bi

ai

)

≤
∑

Ji∈E\G
ai

(
bz′

az′

)

≤
∑

Ji∈F\G
ai

(
bz′

az′

)

≤
∑

Ji∈F\G
ai

(
bi

ai

)
≤ b(F\G),

We first establish that E ∩ J = F ∩ J . For that the two following cases are
considered:

Case 1. Jz is a small job.
Let Jx ∈ F be a big job and suppose that Jx /∈ E, hence CxA(π) ≤

SzA(π). From Lemma 1(ii) we have SxA(π�) ≤ SxA(π) and then
CxA(π�) ≤ CxA(π). Consequently CxA(π�) ≤ SzA(π). As Jx ∈ F then
Cπ�(u′)A(π�) ≤ CxA(π�), and consequently Cπ�(u′)A(π�) ≤ SzA(π) which
leads to a contradiction. Thus if Jx ∈ F then Jx ∈ E.

Let Jx ∈ E be a big job, and let Jy = Jπ(v) be the first introductory
job scheduled after Jz in π . We have SzA(π) ≤ Sπ(v−1)A(π). Note that
Jy cannot be the first job in π� for otherwise Jy is also the first job in π

which is not possible as Jy is scheduled after Jz and this latter is assumed
to be a small job. From Lemma 1(iii) we have Sπ(v−1)A(π) < SyA(π�) and
consequently SzA(π) ≤ SyA(π�). By definition Sπ�(u′)A(π�) ≤ SzA(π),
hence Sπ�(u′)A(π�) ≤ SyA(π�) and Jy ∈ F . Besides, the big jobs have the
same order in π and π�, so, Jx is scheduled after Jy in π� and consequently
Jx ∈ F . therefore if Jx ∈ E then Jx ∈ F .

Case 2. Jz is a big job.
Note that given Lemma 1(ii), Jπ�(u′) = Jz. Knowing that the big jobs

appear in the same partial order in both π and π� then E ∩ J = F ∩ J .
Considering the previous two cases, we conclude that E ∩ J = F ∩ J .

As the jobs in π , except those of J , are scheduled according to RR, and
considering Jz′ the first job of E\G, we have bz′/az′ ≥ bi/ai ∀Ji ∈ E\G,
and bz′/az′ ≤ bi/ai ∀Ji ∈ F\G. Using (4), we derive that
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and so

n∑
i=u

bπ(i) ≤
n∑

i=u′
bπ�(i). (5)

As Jz starts a busy period on machine B, then (5) implies that
Sπ�(u′)B(π�) ≤ SzB(π), for otherwise π� is not optimal. Hence Hπ(u) ≤
Hπ�(u′) and

n∑
i=u

bπ(i) + Hπ(u) ≤
n∑

i=u′
bπ�(i) + Hπ�(u′).

(ii) Given that all jobs in π0 are scheduled according to RR, and using a similar argument
as in (i), it should be easy to show the result.

The worst-case performance of Algorithm Hε is given by Theorem 1.

Theorem 1 For the F2|h(0, q), r, sq < C�
max|Cmax problem and a given ε > 0, the relative

worst-case error bound of Algorithm Hε is given by CH /C�
max ≤ (1 + ε).

Proof As explained in the proof of Lemma 1, 0 ≤ |J | ≤ � 1
ε
�. Two cases have to be

discussed.

Case 1: |J | = 0.
Consider schedule π0 and let Jz = Jπ0(u) be the job which starts the last

busy period on machine B. Let Jπ�(u′) be the job in π� such that Sπ�(u′)A(π�) ≤
SzA(π0) < Cπ�(u′)A(π�).

If Jz satisfies (Condition 1), then (2) and Lemma 2(ii) imply that

Cmax(π0) = CzA(π0) +
n∑

i=u

bπ0(i) + Hπ0(u)

≤ SzA(π0) + az +
n∑

i=u′
bπ�(i) + Hπ�(u′)

≤ Cπ�(u′)A(π�) + az +
n∑

i=u′
bπ�(i) + Hπ�(u′). (6)

Given the position of Jπ�(u′) in π�, we have Cπ�(u′)A(π�) + ∑n
i=u′ bπ�(i) +

Hπ�(u′) ≤ C�
max. Hence, (6) gives Cmax(π0) ≤ C�

max + az ≤ (1 + ε)C�
max as by

assumption az < εC�
max.

If Jz satisfies (Condition 2), two cases have to be considered (see Fig. 4).

Case 1-1: Sπ�(u′)B(π�) ≥ tr . In this case tr + ∑n
i=u′ bπ�(i) + Hπ�(u′) ≤ C�

max.
Using (3) and Lemma 2(ii), we obtain Cmax(π0) = tr +∑n

i=u bπ0(i)+
Hπ0(u) ≤ C�

max.
Case 1-2: Sπ�(u′)B(π�) < sr . Let δ = sr − Sπ�(u′)B(π�). Note that by construc-

tion δ ≤ az ≤ εC�
max and that both π0 and π� are affected by the
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a b

Fig. 4 Solution π0 and π�

same holes. Hence, and given the position of Jπ�(u′) in π�, we have
tr + ∑n

i=u′ bπ�(i) + Hπ0(u) − δ ≤ C�
max. Consequently, and using (3),

Cmax(π0) = tr +
n∑

i=u

bπ0(i) + Hπ0(u)

≤ tr +
n∑

i=u′
bπ�(i) + Hπ0(u)

≤ C�
max + δ ≤ (1 + ε)C�

max. (7)

Case 2: |J | 	= 0.
Consider a permutation π verifying Lemma 1. Let Jz = Jπ(u) be the job

which starts the last busy period on machine B, and let Jπ�(u′) be such that
Sπ�(u′)A(π�) ≤ SzA(π) < Cπ�(u′)A(π�). The following two sub-cases are
considered.

Case 2-1: Jz /∈ J .
Using exactly the same argument as in case 1, we derive

Cmax(π) ≤ C�
max + az ≤ (1 + ε)C�

max.
Case 2-2: Jz ∈ J .

Let Jy = Jπ(v) be the introductory job of the block to which Jz

belongs. Suppose that Jz follows (Condition 1). If Jy is the first job
in π then it is also first in π� (i.e. v = 1). Recall that all the big jobs
scheduled between Jy and Jz in π are scheduled in the same order in
π�. Thus, and given the position of Jy in π�, we have

∑u
i=1 aπ(i) +∑n

i=u′ bπ�(i) + Hπ�(u′) ≤ C�
max. Then (2) and Lemma 2(i) imply that

Cmax(π) = CzA(π) +
n∑

i=u

bπ(i) + Hπ(u)

≤
u∑

i=1

aπ(i) +
n∑

i=u′
bπ�(i) + Hπ�(u′) ≤ C�

max. (8)
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Fig. 5 Schedule π satisfying condition of case 2-2-1

If Jy is not first in π then it is preceded by the small job Jπ(v−1)

(see Fig. 5). Using (2) and Lemma 2(i) we derive

Cmax(π) = CzA(π) +
n∑

i=u

bπ(i) + Hπ(u)

≤ Sπ(v−1)A(π) + aπ(v−1) +
u∑

i=v

aπ(i)

+
n∑

i=u′
bπ�(i) + Hπ�(u′). (9)

Recall that all the big jobs scheduled between Jy and Jz in π are scheduled in
the same order in π�. Thus, and given the position of Jy in π� we have SyA(π�)+∑u

i=v aπ(i) + ∑n
i=u′ bπ�(i) + Hπ�(u′) ≤ C�

max. As Jy is an introductory job, then
Lemma 1(iii) implies that Sπ(v−1)A(π) < SyA(π�). Consequently (9) gives

Cmax(π) ≤ C�
max + aπ(v−1) ≤ (1 + ε)C�

max. (10)

If Jz follows (Condition 2), then as in Case 1, two configurations are to be
considered:

Case 2-2-1: Sπ�(u′)B(π�) ≥ tr . As in Case 1-1, tr + ∑n
i=u′ bπ�(i) + Hπ�(u′) ≤

C�
max. Using (3) and Lemma 2(i) we get Cmax(π) = tr +∑n
i=u bπ(i) + Hπ(u) ≤ C�

max.

Case 2-2-2: Sπ�(u′)B(π�) < sr . Let δ = sr − Sπ�(u′)B(π�).
Note that given Lemma 1(ii) then necessarily Jπ�(u′) = Jz.

Knowing that all the big jobs scheduled between Jy and Jz in π

appear in the same order in π�; then SzA(π)−SyA(π) ≤ SzA(π�)−
SyA(π�) and

δ = sr − SzB(π�)

≤ CzA(π) − CzA(π�)

≤ SzA(π) − SzA(π�) ≤ SyA(π) − SyA(π�). (11)
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