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Abstract There are numerous measurement methods for process performance con-
trol. One of which, widely used in quality control programs, is process capability
(Cp) index. The advantage of this index is due to the high amount of information
extracted from it. Since Cp is independent from a particular measurement unit it can
be used to compare several quite different processes. While the relative efficiency
of the process performance based on the Cp for a period is satisfying, the process
may lose efficiency in the next period for variety of reasons and could not keep up
with the standard limits. The objective of this paper is to develop a new approach
for measuring the relative efficiency of peer decision making units (DMUs) based
upon process capability indices. A case study demonstrates the applicability of the
proposed approach.
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1 Introduction

Appropriate measurement of capability of process can be important issue in quality
management and can increase the efficiency of the whole system. Also, it brings com-
petitive advantage for a company. Although, a number of studies have been focused
on the performance evaluation of manufacturing processes based upon indices of
capability of process [23], but this sort of studies are rare in Iran. Thus, this study
wishes to fill this void.

Measurement of process capability (Cp) has been proposed in the context of sta-
tistical process control. Process capability is the long-term performance level of the
process after it has been brought under statistical control. This means process capabil-
ity is the range over which the natural variation of the process happens as determined
by the system of common causes. Process capability is also the ability of the combi-
nation of people, machine, methods, material, and evaluations to generate a product
that will constantly meet the design requirements or customer expectation. Process
capability is a scientific and a systematic method that uses control charts to iden-
tify and eliminate unnatural causes of variation until a state of statistical control is
reached.

There are a couple of reasons that the capability of process should be recognized.
Some of them can be expressed as follows [2, 17]:

• Process capability evaluation allows us to summarize process capability in terms
of meaningful percentages and metrics.

• To forecast the extent to which the process will be able to hold tolerance or cus-
tomer requirements, based on the law of probability, we can compute how often
the process will meet the specifications or the expectations of the customers.

• Process capability helps decision maker to choose the most appropriate process.
• By knowing the capability of processes, decision maker can better determine

performance requirements of new machines, parts, and processes.

The proposed discussion by Sullivan [30, 31] was the start of a movement from
Cp to Cpk . Kane [16, 17] addressed new issues in process capability with focus on
the application and statistical specification of multi-criteria process capability. Also,
he discussed various applications of Cp and Cpk in Japan and US industries. These
two indices are used in many cases such as tube-bending process [6], machining
[21], heat treatment [10], electronics manufacturing [34], medicine manufacturing
[20], and also a number of researchers discussed the estimations of process capability
indices for evaluating process quality based on one single sample [3, 17, 22, 24, 25].

Charnes et al. [5] proposed data envelopment analysis (DEA) as an evaluation
method for measuring relative efficiency of a set of homogeneous decision making
units (DMUs) with multiple inputs and multiple outputs. If the efficiency score equals
to one, the DMU under evaluation is efficient. Otherwise, it is inefficient. Since then
this method has been studied by a number of researchers in many fields. For example,
see [7, 9, 11]. In particular, DEA has been used in railways assessment [15, 19],
supplier selection [12–14, 32], airlines evaluation [27], and airports assessment [18,
33]. Table 1 describes some of advantage and disadvantage of the DEA method.

J Math Model Algor (2014) 13:493–509494



Table 1 Advantages and disadvantages of DEA method

Advantages Disadvantages

No need to explicitly specify a mathematical form Results are sensitive to the selection of inputs and

for the production function. outputs.

Proven to be useful in uncovering relationships that You cannot test for the best specification.

remain hidden for other methodologies.

Capable of handling multiple inputs and outputs. The number of efficient DMUs on the frontier

tends to increase with the number of inputs and

output variables.

Capable of being used with any input-output

measurement unit. When there is no relationship between explanatory

factors (within inputs and/or within outputs), DEA

views each DMU as unique and fully efficient and

efficient scores are very close to 1, which results in

a loss of discriminatory power of the method.

The sources of inefficiency can be analyzed and

quantified for every evaluated unit.

Goal programming (GP) is a technique that determines a goal for each of the
objective functions. According to the priority of the multiple objectives, deviations
from the goals are minimized. This technique was first presented by Charnes et al.
[4]. In this regard, Stewart [28] and Cooper [8] have discussed the relations between
DEA and multiple criteria decision analysis (MCDA). The difference between goal
programming and DEA is that goal programming considers future planning while
the DEA evaluates past performance. Cooper [8] addressed various applications of
DEA and goal programming, and also proved that structure of additive model of
DEA is the same as goal programming. Stewart [29] extended the standard DEA
model and took into account long-term goals of top management. He developed a new
benchmarking approach in DEA context for future planning. There is no guarantee
for current efficient DMUs to remain efficient in future. Azadi et al. [1] developed a
goal directed benchmarking theory proposed by Stewart [29] for benchmarking and
selecting suppliers in the presence of fuzzy data.

This study combines the DEA and GP to measure process capability indices. Also,
this paper develops a new approach for measuring the relative efficiency of peer
DMUs based upon process capability indices. Then, a new GP model is provided.
The main contributions of this study are as follows:

• For the first time, the long-term goals are determined based on performance
capability index.

• A new equation to determine goals for producing the efficiency frontier is
developed.
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• In Stewart’s [29] work, the input goals are larger than input benchmarks and
output goals are smaller than the output benchmarks, while in this work the goals
are determined conservatively.

• For the first time, this paper proposes a new type of DEA-GP method to assess
the process capability of company based upon Cp and Cpk indices.

This paper proceeds as follows. In Section 2, the process capability index is intro-
duced. The proposed model is presented in Section 3. Numerical example is given
in Section 4. Policy implications are presented in Section 5. Section 6 concludes the
paper.

2 Process Capability Index

The Cp index was first introduced by Sullivan [30] in Japan. Advantage of this index
is high volume of information it offers and since it is independent from a particular
measurement unit, it can be used in comparison with several quite different processes.
As an example, consider Cp of 0.9 corresponding to copper layer thicknesses in
a plating process and that of 1.3 in resistance (in Ohm) of electrical components.
Although the units considered in each process are expressed in inches and Ohms, it
is quite obvious that process of manufacturing electrical parts is more capable than
plating process. The Cp index is calculated using following formula [26].

Cp = USL − LSL

6σ
(1)

where USL and LSL are respectively the upper and lower specification limits, and σ

is the standard deviation. It should be noted that USL and LSL is determined based
on standards. The Cp index can be separately discussed as follows [17].

• If Cp < 1, the process would not be able to hold the acceptable limits (Fig. 1).
• If Cp = 1, the process would almost be able to hold the acceptable limits (Fig. 2).
• If Cp > 1, the process would be able to hold the acceptable limits (Fig. 3). In

such case, if Cp >1.33, where distance between specification limits is 8σ , it is
usually considered very favorable and most companies seek it as a goal.

+3-3

Fig. 1 Distribution of parts for Cp < 1

J Math Model Algor (2014) 13:493–509496



-3 +3

Fig. 2 Distribution of parts for a capable process (Cp = 1)

In calculation of Cp index, process situation is not taken into account and only
capability of process in meeting the acceptable specifications is considered. Figure 4
shows two processes with Cp = 1; one process is set in the middle of specification
limits, and the other is close to the upper limit of specification. Figure 4a implies a
good quality product and Fig. 4b implies a low quality product.

There is another index, denoted by Cpk , which shows process situation.

Cpk = (1 − k)Cp (2)

where k in Cpk associates with factor k and is calculated by the following formula
[26].

k =
[

usl+lsl
2 − μ

]

usl−lsl
2

(3)

where μ indicates the mean of the process. It can be shown that k always takes an
amount between 0 and 1. The factors which affect capability of a process are mean
range (R) and standard deviation (σ ). It is clear that as the mean range and standard
deviation are decreased, the capability of the process is increased.

-3 +3

Fig. 3 Optimal product function at minimum costs
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-3 +3

Fig. 4 Distribution of two processes with Cp equal to 1 and different means

2.1 Mean Range (R)

The range is the size of the smallest interval which contains all the data and provides
an indication of statistical dispersion. To find the mean range, we first need to find
the lowest and highest values in the data set. The range is found by subtracting the
lowest value from the highest value. The ranges are determined mathematically as
follows:

Ri = max(Rij ) and Ri = min(Rij ) → Ri = Ri − Ri

Then

R =

n∑

i=1
Ri

n

where Ri indicates the value of data. Also, Ri and Ri indicate lower and upper values,
respectively. The R denotes mean range.

2.2 Standard Deviation

In statistics and probability theory, standard deviation shows how much variation or
dispersion exists from the average (mean), or expected value. A low standard devi-
ation indicates that the data points tend to be very close to the mean; high standard
deviation indicates that the data points are spread out over a large range of values.
The standard deviation can be calculated by following formula:

σ =
√√√√ 1

N

N∑

i=1

(xi − x)2
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where {x1, . . ., xN } are the observed values of the sample items and X is the mean
value of these observations, while the denominator N stands for the size of the
sample.

3 Proposed Model

In this section, we combine DEA and GP to include long term goals of senior man-
agement. This is due to the fact that benchmarking for inefficient DMUs is more than
a purely monitoring process, and consists of a component of future planning.

Consider DMUk (K ∈{1,. . ., n}) which its benchmark is a linear combination of
DMUs.

x∗
ik =

∑n

j=1
λjxij (4)

y∗
rk =

∑n

j=1
λjyrj (5)

where xij denotes the amount of input i consumed by DMUj and yrj denotes the
amount of output r produced by DMUj and N is the number of DMUs. The x∗

ik and
y∗
rk are the linear combinations of the inputs and outputs which these values could be

as input and output benchmarks for the DMUk . The set of inputs and outputs that are
defined for all combinations of λj are assumed to make the production possibility set
(PPS). To determine the weights of λj we may employ any of the two conventional
DEA methods with the input and output oriented forms as follows.

3.1 Input-Oriented Model

In this model the benchmark is obtained in a way that the most improvement
is achieved in the input for the DMUk with the same outputs. Model (6) is
input-oriented CCR (Charnes-Cooper-Rhodes) model proposed by Charnes et al.
[5].1

Minimize E

Subject to :∑n
j=1 λjxij ≤ Exik, (i = 1 . . .m)

∑n
j=1 λjyrj ≤ yrk, (r = 1 . . . s)

λj ≥ 0, (j = 1, . . . , n)

(6)

where E denotes efficiency measure which is between 0 and 1.

3.2 Output-Oriented Model

In this model the benchmark is obtained in a way that the most improvement
is achieved in the output for the DMUk with the same inputs. Model (7) is

1This paper assumes that DMUs have constant returns to scale. Therefore, CCR model is used. Assuming
variable returns to scale needs to develop new models based upon BCC model.
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output-oriented CCR (Charnes-Cooper-Rhodes) model proposed by Charnes et al.
[5].

Maximize F

Subject to :
∑n

j=1 λjxij ≤ xik , (i = 1 . . .m)

∑n
j=1 λjyrj ≤ Fyrk , (r = 1 . . . s)

λj ≥ 0 (j = 1, . . . , n)

(7)

where F denotes efficiency measure which is equal or bigger than 1.
At this juncture, the goals should be determined for finding out the benchmarks.

The goals could be determined according to the conditions of the DMUs and the
following expressions.

gik < x∗
ik, (i = 1, . . . , m) (8)

hrk > y∗
rk, (r = 1, . . . , s) (9)

where gik and hrk are the ith input goal and the rth output goal for DMUk , respec-
tively. According to the Eq. (8), the ith input goal should be smaller than the linear
combination set of inputs and According to the Eq. (9), the rth output goal should be
higher than linear combination set of outputs. Also it should be noted that the goals
should obtain realistic values. In other words, they should not be much far from the
efficient frontier.

The input-oriented GP model for finding appropriate weights, with respect to pre-
determined goals is as follows.

min imize θ + ε

[
m∑

i=1
δk
i +

s∑

r=1
δk
r

]

subject to
n∑

j=1
xijλj − δk

i ≥ gikθ , (i = 1, . . . , m)

n∑

j=1
yrjλj − δk

r ≥ y∗
rk , (r = 1, . . . , s)

n∑

j=1
xijλj ≤ x∗

ik , (i = 1, . . . , m)

λj ≥ 0 , (i = 1, . . . , n)

(10)

where δk
i and δk

r are respectively the input and output deviational variables which
are unconstrained in sign. The gio and hro are defined as input and output goals of
DMUk . In the first constraint of Model (10), the weights of the inputs are determined
in a way that the left handside becomes greater than or equal to the input goal. In
the second constraint, the weight of the outputs are determined in a way that the left
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handside becomes greater than or equal to the output benchmark of DMUk obtained
from the expression (5). In the third constraint, the weight of the inputs are deter-
mined in a way that the left hand side becomes less than or equal to the value of the
input benchmark of DMUk obtained from the expression (4).

The output-oriented GP model for finding appropriate weights, with respect to
pre-determined goals is as follows.

max imize θ + ε

[
m∑

i=1
sk
i +

s∑

r=1
sk
r

]

subject to
n∑

j=1
xijλj − δk

i ≤ x∗
ik , (i = 1, . . . , m)

n∑

j=1
yrjλj − δk

r ≤ hrk , (r = 1, . . . , s)

n∑

j=1
yijλj ≥ y∗

ikθ , (i = 1, . . . , m)

λj ≥ 0 , (j = 1, . . . , n)

(11)

where sk
i and sk

r are respectively the input and output deviational variables which
are unconstrained in sign. In the first constraint of Model (11), the weights of
the inputs are determined in a way that the left hand side becomes less than or
equal to the input benchmark of DMUk obtained from expression (4). In the sec-
ond constraint, the weight of the outputs are determined in a way that the left
hand side becomes less than or equal to the output goal. In the third constraint,
the weight of the outputs are determined in a way that the left hand side becomes
greater than or equal to the value of the output benchmark of DMUk obtained from
expression (5).

3.3 Computational Framework

Figure 5 describes a computional flow of the proposed approach. The proposed
approach starts with primal and dual of the CCR model. The objective of the
proposed models (6) and (7) is finding the appropriate weights for inputs and
outputs of DMU under evaluation. Then for generating production possibility set
based upon chosen appropriate weights, the Eqs. (4) and (5) are applied. Next,
the inputs and outputs goals can be determined by using expressions (8) and
(9). After specifing goals, for finding appropriate inputs and outputs weights
that consider determined goals, the models (10) and (11) are run. Finally, the
new efficienct frontier regarding per-determined goals is produced by using Eqs.
(4) and (5). The proposed approach has several properties that are expressed as
follows:

• Decision maker preferences which we express in terms of goals can be imposed
on the DMUs so that they may be beyond the current PPS.

• Such preferences (goals) may be expressed in terms of inputs and/or outputs.
• Benchmarking is not restricted for only inefficient DMUs.
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Start

Use Models (6) and (7)

Use equations (4) and (5) to produce production possibility set (PPS)

Use expressions (8) and (9) to determine input and output goals

Use Models (10) and (11) for finding appropriate input and output weights 
base on determined goals 

Use equations (4) and (5) to produce new efficient frontier which is 
considered as the goals

End

Fig. 5 Summary of discussions

4 Case Study

4.1 Data Set

One of the main contributions of this paper is to develop a GP model for determining
long term goals. This study combines DEA and GP method for evaluating the perfor-
mance capability of can caps manufacturing company based on Cp and Cpk indices
in Iran during 2011. This is the first study which discusses the relationship between
DEA-GP and process capability (Cp and Cpk) indices. We select mean range (R) and
mean standard deviation (σ) as inputs and Cp and Cpk as outputs. Table 2 depicts
the dataset of external diameter of can caps manufactured in “Easy T Can” com-
pany. This company is in Hashtgerd Industrial Town, Iran. The dataset in the Table 2
are results of random sampling. The X and R are mean and range of dataset from 5
iterations, respectively.

This company is the first decision making unit (DMU1) in our case study. For the
sake of brevity, the dataset of other DMUs are not considered. The standard outside
diameter with tolerance of 0.1 is 84 mm.

4.2 Results

Notice that the values of Cpk, Cp, R, and σ are 1.11, 1.16, 0.0234, and 0.014 accord-
ing to Eqs. (1), (2) and (3), respectively. These values are listed in Table 3 as the
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Table 2 External diameter of can caps related to DMU1

Sample Iterations

1 2 3 4 5 X R

1 84.030 84.002 84.019 83.992 84.008 84.010 0.038

2 83.995 83.992 84.001 84.011 84.004 84.001 0.019

3 83.988 84.024 84.021 84.005 84.002 84.008 0.036

4 84.002 83.996 83.993 84.015 84.009 84.009 0.022

5 83.992 84.007 84.015 83.989 84.014 84.003 0.026

6 84.009 83.994 83.997 83.985 83.993 83.996 0.024

7 83.995 84.006 83.994 84.000 84.005 84.000 0.012

8 83.985 84.003 83.993 84.015 83.998 83.997 0.030

9 84.008 83.995 84.009 84.005 84.004 84.004 0.014

10 83.998 84.000 83.990 84.007 83.995 83.998 0.017

11 83.994 83.998 83.994 83.995 83.990 83.994 0.008

12 84.004 84.000 84.007 84.000 83.996 84.001 0.011

13 83.983 84.002 83.998 83.997 84.012 83.998 0.029

14 84.006 83.967 83.994 84.000 83.984 83.990 0.039

15 84.012 84.014 83.998 83.999 84.007 84.006 0.016

16 84 83.984 84.005 83.998 83.996 83.997 0.021

17 83.994 84.012 83.986 84.005 84.007 84.001 0.026

18 84.006 84.010 4.0188 84.003 84.000 84.007 0.018

19 83.984 84.002 84.003 84.005 83.997 83.998 0.021

20 84 84.010 84.013 84.020 84.003 84.009 0.020

21 83.988 84.001 84.009 84.005 83.996 84.000 0.033

22 84.004 83.999 83.990 84.006 84.009 84.002 0.019

23 84.010 83.989 83.990 84.009 84.014 84.002 0.025

24 84.015 84.008 83.993 84.000 84.010 84.005 0.022

25 83.982 83.984 83.995 84.017 84.013 84.006 0.035

26 84.012 84.015 84.030 83.986 84.000 84.009 0.044

27 83.995 84.010 83.990 84.015 84.001 84.002 0.025

28 83.987 83.999 83.985 84.000 83.990 83.992 0.015

29 84.008 84.010 84.003 83.991 4.0068 84.004 0.019

30 84.003 84.000 84.001 83.986 83.997 83.997 0.017

X = 74.0018 R = 0.0234

inputs and outputs of DMU1. Similarly, for other 29 companies (DMUs) the same
process is repeated. The values of σ and R are considered as inputs and the val-
ues of Cp and Cpk are considered as outputs. Obviously, as the values of R and σ

are decreased the associated DMU gets more capability. The results indicate that the
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Table 3 The dataset obtained from 30 DMUs

DMU Inputs Outputs

R σ Cp Cpk

1 0.0234 0.014 1.16 1.11

2 0.0450 0.019 0.87 0.71

3 0.0410 0.017 0.95 0.94

4 0.0550 0.023 0.70 0.56

5 0.0470 0.020 0.82 0.74

6 0.0500 0.021 0.79 0.39

7 0.0480 0.022 0.75 0.30

8 0.0350 0.015 1.1 0.94

9 0.0390 0.016 0.99 0.70

10 0.0430 0.018 0.90 0.54

11 0.0490 0.021 0.79 0.63

12 0.0580 0.024 0.67 0.53

13 0.0351 0.015 1.1 0.99

14 0.0399 0.017 0.98 0.86

15 0.0420 0.018 0.95 0.70

16 0.0400 0.017 0.97 0.89

17 0.0510 0.021 0.76 0.76

18 0.0480 0.020 0.81 0.32

19 0.0600 0.025 0.66 0.51

20 0.0540 0.023 0.72 0.70

21 0.0420 0.018 0.95 0.57

22 0.0430 0.019 0.87 0.57

23 0.0630 0.027 0.61 0.36

24 0.0600 0.025 0.66 0.26

25 0.0500 0.021 0.78 0.46

26 0.0330 0.014 1.17 1.14

27 0.0550 0.023 0.70 0.26

28 0.0460 0.019 0.85 0.34

29 0.0660 0.028 0.58 0.58

30 0.0410 0.017 0.95 0.57

Average 0.85 0.63

average Cp and Cpk for all DMUs are 0.85 and 0.63, respectively. It means all the
DMUs have a weak performance capability.2

2If Cp < 1, the process would not be able to hold the acceptable limits (see Section 2).
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Now, for instance, consider the DMU10 depicted in Table 4. The input and output
benchmarks are determined by Models (6) and (7). The goals of DMU10 should be
according to Eqs. (8) and (9). The Models (10) and (11) are run for finding appro-
priate input and output weights with respect to determined goals. To produce new
efficiency frontier for DMU10, the Eqs. (4) and (5) are used. Therefore, the calcu-
lated values (R, σ̂ , Cp, and Cpk) of goal-based benchmarks in Table 4, indicate new
efficiency frontier of DMU10. In other words, if DMU10 reduces the values of R and
σ̂ from 0.043 to 0.029 and 0.018 to 0.012 and also increases Cp and Cpk from 0.9
to 1.27 and 0.054 to 1, respectively, it could be concluded that the DMU10 would
remain efficient in the next period.

4.3 Correlation Between Indices

The purpose of this subsection is to describe relationship between input and output
variables. Table 5 provides correlation coefficients between each pair of measures.
For instance, the σ̂ is statistically correlated with R which the correlation coefficient
between two measures is 0.764. This implies that any increase or decrease in the
amount of R will cause the increase or decrease in the amount of σ̂ . On the other
hand, negative correlations represent the inverse relationship between variables. For
instance, the inverse correlation between Cp and σ̂ indicates that any decrease in the
amount of σ̂ causes the amount of process capability index to be increased which
finally leads to the improvement of the production process efficiency.

5 Policy Implications

One of the main objectives of this study is to evaluate the two measures of Cp and
Cpk of a sample. Since we divided the capability performance into the Cp and Cpk ,
one can easily recognize how an activity can be improved. Given that the average of
Cp and Cpk of 30 samples are 0.85 and 0.63 respectively, the Fig. 6 is divided into
four subsections. The dots in Fig. 6 are samples obtained from the Table 3.

The samples that are in the upper-left quadrant (the DMUs 20, 17, and 5) describe
lower Cp and higher Cpk index respect to other samples. An appropriate policy impli-
cation for these samples is that they need to improve Cp without worsening the Cpk

index. The samples placed in the lower-right quadrant (the DMUs 22, 10, and 30)

Table 4 Goal-based benchmarks for DMU10

DMU10 R σ̂ CP Cpk

Current performance 0.043 0.018 0.9 0.54

Input-oriented benchmarks 0.039 0.01 – –

Output-oriented benchmarks – – 1 0.81

Goals 0.030 0.008 1.2 1

Goals-based benchmarks 0.029 0.012 1.27 1
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Table 5 Correlation coefficients between indices

R σ̂ Cp

σ̂ 0.764 – –

Cp −0.697 −0.977 –

Cpk −0.710 −0.974 0.978

have higher Cp but lower Cpk . The proper policy for these samples is that they need
to improve Cpk without worsening the Cp index. Those samples placed in the lower-
left quadrant, have both low Cp and Cpk . The proper policy for these samples is
that they need to improve Cp and Cpk , simultaneously. Finally, the best samples are
located in the upper-right quadrant. These samples can be considered as benchmarks
for other samples.

6 Concluding Remarks

This study discussed a combined use of DEA and GP to measure performance capa-
bility index. In this work, the process performance of various DMUs was studied. In
order to remain efficient DMU in the next period, the long-term goals were deter-
mined, and then the new GP model based on pre-determined goals was proposed.
In this model, a DMU could have higher process performance in the next period by
determining appropriate goals. As well, a problem solving algorithm was presented.
The results of proposed approach indicated that the DMU10 should reduce the values
of R and σ̂ from 0.043 to 0.029 and 0.018 to 0.012 and also increases Cp and Cpk

from 0.9 to 1.27 and 0.054 to 1, respectively, in order to remain efficient in the next

Fig. 6 Cp vs. Cpk index
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period. To improve the performance of the company, the sources of poor performance
should be identified.

Further researches can be done based on the results of this paper. Some of them
are as follows:

• Similar research can be repeated in the presence of stochastic data.
• Similar research can be repeated in the presence of dual-role factor.

Acknowledgment The authors wish to thank the three anonymous reviewers for their valuable sugges-
tions and comments.

Appendix

To give an idea about the calculations, consider the DMU10:
At first, input and output benchmarks should be determined by the Models (6)

and (7).

Input oriented :
min E

0.0234∗λ1 + 0.0450∗λ2 + 0.0410∗λ3 + . . . + 0.0410∗λ30 ≤ 0.0430∗E,

0.0140∗λ1 + 0.0190∗λ3 + 0.0170∗λ3 + . . . + 0.0170∗λ30 ≤ 0.0180∗E,

1.16∗λ1 + 0.87∗λ2 + 0.95∗λ3 + . . . + 0.95∗λ30 ≥ 0.90,

1.11∗λ1 + 0.71∗λ2 + 0.94∗λ3 + . . . + 0.57∗λ30 ≥ 0.54
E : URS

Results: λ∗
8 = 0.3963∗10−3, λ∗

25 = 0.1247∗10−1, λ∗
30 = 0.9367

Output oriented :
max F

0.0234∗λ1 + 0.0450∗λ2 + 0.0410∗λ3 + . . . + 0.0410∗λ30 ≤ 0.0430,

0.0140∗λ1 + 0.0190∗λ3 + 0.0170∗λ3 + . . . + 0.0170∗λ30 ≤ 0.0180,

1.16∗λ1 + 0.87∗λ2 + 0.95∗λ3 + . . . + 0.95∗λ30 ≥ 0.90∗F,

1.11∗λ1 + 0.71∗λ2 + 0.94∗λ3 + . . . + 0.57∗λ30 ≥ 0.54∗F
F : URS

Results: λ∗
8 = 0.3963∗10−3, λ∗

25 = 0.1870∗10−1, λ∗
30 = 1.41

Now, the obtained results from the Models (6) and (7) should be placed in the
Models (4) and (5) as follows:

x∗
1 = 0.3565 ∗ 10−4 ∗ 0.0350 + 0.1247 ∗ 10−1 ∗ 0.500 + 0.9367 ∗ 0.0410 ⇒ x∗

1 = R = 0.39
x∗

2 = 0.3565 ∗ 10−4 ∗ 0.015 + 0.1247 ∗ 10−1 ∗ 0.021 + 0.9367 ∗ 0.017 ⇒ x∗
2 = σ = 0.01

y∗
1 = 0.3963 ∗ 10−3 ∗ 1.1 + 0.1387 ∗ 10−1 ∗ 0.78 + 1.041 ∗ 0.95 ⇒ y∗

1 = Cp ≈ 1
y∗

2 = 0.3963 ∗ 10−3 ∗ 0.94 + 0.1387 ∗ 10−1 ∗ 0.46 + 1.041 ∗ 0.57 ⇒ y∗
2 = Cpk = 0.81
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After determining long term goals by decision maker, the Models (10) and (11)
are run:

min = f + 0.0001 ∗ (s1 + s2 + s3 + s4);
0.0334 ∗ λ1 + 0.0450 ∗ λ2 + 0.0410 ∗ λ3 + . . . + 0.041 ∗ λ30 − s1 ≥ 0.030,

0.014 ∗ λ1 + 0.019 ∗ λ2 + 0.017 ∗ λ3 + . . . + 0.017 ∗ λ30 − s2 ≥ 0.008,

1.16 ∗ λ1 + 0.87 ∗ λ2 + 0.95 ∗ λ3 + . . . + 0.57 ∗ λ30 + s4 ≥ 0.81,

0.0334 ∗ λ1 + 0.0450 ∗ λ2 + 0.0410 ∗ λ3 + . . . + .041 ∗ λ30 ≤ 0.039 ∗ f,
0.014 ∗ λ1 + 0.019 ∗ λ2 + 0.017 ∗ λ3 + . . . + 0.017 ∗ λ30 ≤ 0.01 ∗ f;
f : URS

max = f + 0.0001 ∗ (s1 + s2 + s3 + s4);
0.0334 ∗ λ1 + 0.0450 ∗ λ2 + 0.0410 ∗ λ3 + . . . + 0.041 ∗ λ30 − s1 ≤ 0.039,

0.014 ∗ λ1 + 0.019 ∗ λ2 + 0.017 ∗ λ3 + . . . + 0.017 ∗ λ30 − s2 ≤ 0.01,

1.16 ∗ λ1 + 0.87 ∗ λ2 + 0.95 ∗ λ3 + . . . + 0.95 ∗ λ30 + s3 ≤ 1.2,

0.11 ∗ λ1 + 0.71 ∗ λ2 + 0.95 ∗ λ3 + . . . + 0.57 ∗ λ30 + s4 ≤ 1,

0.0334 ∗ λ1 + 0.0450 ∗ λ2 + 0.0410 ∗ λ3 + . . . + 0.041 ∗ λ30 ≥ 0.030 ∗ f;
0.014 ∗ λ1 + 0.019 ∗ λ2 + 0.017 ∗ λ3 + . . . + 0.017 ∗ λ30 ≥ 0.008 ∗ f;
f : URS

Again, the obtained results from the Models (10) and (11) should be placed in the
Models (4) and (5) for determining goal-based benchmark as follows:

x∗
1 = R = 0.29

x∗
2 = σ = 0.012

y∗
1 = Cp = 1.27

y∗
2 = Cpk = 1
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