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Abstract Kernel functions play an important role in defining new search directions
for interior-point algorithms for solving monotone linear complementarity problems.
In this paper we present a new kernel function which yields the complexity bounds
O(

√
r log r log r

ε
) and O(

√
r log r

ε
) for large-and small-update methods, respectively,

which are currently the best known bounds for such methods.
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1 Introduction

Consider the monotone symmetric cone linear complementarity problem (SCLCP)
in the standard form: Given an n-dimensional Euclidean Jordan algebra (J , ◦, 〈·, ·〉)
with rank r and its associated symmetric cone of squares K, find (x, s) ∈ K × K such
that

s = Mx + q, x ◦ s = 0, (SCLCP)

where, M ∈ Rn×n and q ∈ Rn are given data.
Primal-dual interior-point methods (IPMs) have been well known as the most

effective methods for solving wide classes of optimization problems, for example,
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the linear optimization (LO), the quadratic optimization (QOP), the semidefinite
optimization (SDO), the second-order cone optimization (SOCO), and the linear
complementarity problem (LCP). Nesterov and Todd [15] provided a theoretical
foundation for efficient primal-dual IPMs on a special class of convex optimization
problems, where the associated cone was self-scaled. Later on, it was observed that
the self-scaled cones were precisely symmetric cones [4]. The application of the
Euclidean Jordan algebra as a basic tool for analyzing complexity proofs of the IPMs
for symmetric cone optimization (SCO) and SCLCP was started by Faybusovich
[6], who extended earlier works of Nesterov and Todd, and Kojima et al. [9, 15].
Schmieta and Alizadeh [21, 22] studied primal-dual IPMs for SCO extensively under
the framework of Euclidean Jordan algebra. In addition to Faybusovich’s results
[6, 7], Rangarajan [18] proposed the first infeasible interior-point method (IIPM) for
SCLCP. Yoshise [27] was the first to analyze IPMs for nonlinear complementarity
problems over symmetric cones. Darvay [3] proposed a full-Newton step primal-dual
path-following interior-point algorithm for LO. The search direction of his algorithm
is introduced by using an algebraic equivalent transformation of the centering
equation which define the central path and then applying Newton’s method for the
new system of equations. Later on, Wang [24] generalized Darvay’s full-Newton step
primal-dual path-following interior-point algorithm for LO to the monotone SCLCP
by using Euclidean Jordan algebras. Wang and Lesaja [26] presented a full-Newton
step feasible IPM for the Cartesian P∗(κ)-SCLCP. Although this method is small-
update, the advantage is that the calculation of a step size at each iteration is avoided
while the global convergence and the quadratic local convergence is still achieved.

The so-called barrier update parameter θ in algorithms for IPMs plays an impor-
tant role in both theory and practice of IPMs. Usually, if θ is a constant independent
of the dimension of the problem, then the algorithm is called a large-update method.
If it depends on the dimension, then the algorithm is said to be a small-update
method. Large-update methods are much more efficient than small-update methods
in practice, but have a worst-case iteration bound. Such a gap between theory and
practice has been referred to as irony of IPMs [19]. Recently, many authors have
tried to reduce the gap of the worst-case iteration bound between the large-update
IPM and the small-update IPM. Using self-regular proximity functions instead of a
classical logarithmic barrier function, Peng et al. [16, 17] improved the complexity of
large-update IPMs for the LO problem, the SDO problem, and the SOCO problem.
Bai et al. [1] introduced a new class of eligible kernel functions. The class was
defined by some simple conditions on the kernel function and its derivatives. The
best iteration bound, which was given by Bai et al. [1] is O

(√
n log n log n

ε

)
. Cho

et al. [2] proposed a new primal-dual interior-point algorithm based on a new kernel
function for LO and obtained the best known results for large-update IPMs. Lee
et al. [11] extended the complexity analysis for LO [2] to P∗(κ)-LCP. Wang and
Bai [25] analyzed IPMs based on a parametric kernel function different from the
logarithmic kernel function. Lesaja et al. [14] proposed a unified analysis of the IPMs
based on the entire class of eligible kernel functions which was first introduced by
Bai et al. [1]. Recently, Kheirfam [8] proposed a new primal-dual IPM for SDO
based on a new kernel function which is not logarithmic and not necessarily self-
regular function. Vieira [23] analyzed kernel-based IPMs for SCO and presented the
iteration complexity results for ten eligible kernel functions introduced in [1]. Lesaja
and Roos extended this results for P∗(κ)-LCPs [12] and SCLCP [13].
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Motivated by their works, we define a new kernel function and propose a new
generic interior-point algorithm based on this kernel function for SCLCP. We show
that the iteration bounds are O(

√
r log r log r

ε
) and O(

√
r log r

ε
) for large-and small-

update methods, respectively, which are currently the best known bounds for such
methods.

The paper is organized as follows: In Section 2 we briefly recall some properties
of symmetric cones and their associated Euclidean Jordan algebra. In Section 3
we review the notions of central path, search directions and NT-steps for SCLCP
problems, and remember how a given kernel function defines a generic interior-point
algorithm. In Section 4 We present the generic form of the algorithm. In Section 5 we
derive some properties of the barrier and proximity functions based on a new kernel
function. In Section 6 we propose an expression for the decrease of the proximity
during an inner iteration, and derive a default value for the step size. In Section 7 the
analysis is completed by deriving the iteration complexity. Finally, we end the paper
in Section 8.

2 Euclidean Jordan Algebra

In this section, we briefly describe some concepts, properties, and results from
Euclidean Jordan algebras and symmetric cones that are needed in this paper. All
these can be found in the book [4] by Faraut and Korányi.

A Euclidean Jordan algebra is a triple (J , ◦, 〈·, ·〉) where (J , 〈·, ·〉)is a finite di-
mensional inner product space over R and (x, y) �→ x ◦ y : J × J → J is a bilinear
mapping satisfying the following conditions:

1. x ◦ y = y ◦ x for all x, y ∈ J ,
2. x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ J where x2 = x ◦ x and
3. 〈x ◦ y, z〉 = 〈y, x ◦ z〉 for all x, y, z ∈ J .

In addition, we assume that there is a unique element e ∈ J (called the identity
element) such that x ◦ e = e ◦ x = x for all x ∈ J . The set K = {x2 : x ∈ J } is called
the cone of squares of Euclidean Jordan algebra (J , ◦, 〈·, ·〉). A cone is symmetric if
and only if it is the cone of squares of some Euclidean Jordan algebra. For x ∈ J , we
define

m(x) := min{k > 0 : {e, x, x2, · · · , xk} is linearly dependent}

and rank of J by r = max{m(x) : x ∈ J }. An element c ∈ J is an idempotent if c2 =
c; it is a primitive idempotent if it is nonzero and cannot be expressed as a sum of two
nonzero idempotents. We say a finite set {c1, c2, . . . , ck} of primitive idempotents in
J is a Jordan frame if ci ◦ c j = 0, for any i 
= j and

∑k
i=1 ci = e.

Theorem 1 (Theorem III.1.2 in [4]) Let (J , ◦, 〈·, ·〉) be a Euclidean Jordan algebra
with rank(J ) = r. Then for any x ∈ J , there exists a Jordan frame {c1, c2, . . . , cr}
and real numbers λ1(x), λ2(x), . . . , λr(x) such that x = ∑r

i=1 λi(x)ci. The numbers λi(x)

(with their multiplicities) are the eigenvalues of x.
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Now, it is possible to extend the definition of any real-valued function ψ(·) to
elements of the Euclidean Jordan algebra via their eigenvalues:

ψ(x) :=
r∑

i=1

ψ(λi(x))ci.

Particulary, we have some examples as follows:

• the square root: x
1
2 =

r∑

i=1

√
λi(x)ci, wherever x ∈ K, and undefined otherwise,

• the inverse: x−1 = ∑r
i=1 λi(x)−1ci, wherever λi 
= 0, for all i = 1, 2, . . . , r, and

undefined otherwise.
• the square: x2 =

r∑

i=1
λ2

i (x)ci.

Let us denote by ψ ′(x) the vector-valued function induced by the derivative ψ ′(t) of
the function ψ(t):

ψ ′(x) :=
r∑

i=1

ψ ′(λi(x))ci.

In the Jordan algebra, we define the determinant of x and the trace of x as follows:

det(x) = �r
i=1λi(x), tr(x) =

r∑

i=1

λi(x).

Since J is a Euclidean Jordan algebra, 〈x, s〉 = tr(x ◦ s) is a scalar product on J
(Proposition III.1.5 in [4]). For x ∈ J , with eigenvalues λi(x), 1 ≤ i ≤ r, the Frobe-

nius norm can be defined as ‖x‖F := √〈x, x〉 =
√∑r

i=1 λi(x)2. In a Euclidean Jordan
algebra J , we define the corresponding Lyapunov transformation L(x) : J → J by
L(x)y = x ◦ y. We say that elements x and y operator commute if L(x) and L(y)

commute, i.e., L(x)L(y) = L(y)L(x). It is known that x and y operator commute if
and only if x and y have their spectral decompositions with respect to a common
Jordan frame (Lemma X.2.2 in [4]). For each x ∈ J , define

P(x) := 2L(x)2 − L(x2),

where, L(x)2 = L(x)L(x). The map P(x) is called the quadratic representation of J .
Another important decomposition of an element x ∈ J used in the paper is the

Peirce decomposition. It is based on the fact that, for the idempotent c ∈ J , the
only eigenvalues of L(c) are 0, 1

2 and 1 (Proposition III.1.3 in [4]). Furthermore, the
eigenspaces corresponding to these eigenvalues are

J (c, λ) := {x ∈ J : L(x)c = c ◦ x = λx}, λ ∈
{

0,
1

2
, 1

}
.

Hence, J is the direct sum of the corresponding subspaces J (c, 1),J (c, 1
2 ) and

J (c, 0). The decomposition

J = J (c, 1) ⊕ J
(

c,
1

2

)
⊕ J (c, 0),

is called the Peirce decomposition of J with respect to the idempotent c.
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Theorem 2 (Theorem IV.2.1 in [4]) Let x ∈ J with the spectral decomposition as
def ined in Theorem 1. Then, we have

J = ⊕i≤mJim,

where,

Jii = {x : x ◦ ci = x} and Jim =
{

x : x ◦ ci = 1

2
x = x ◦ cm

}
, 1 ≤ i ≤ m ≤ r,

are Peirce spaces of J , and there exist xi ∈ R, ci ∈ Jii and xim ∈ Jim(i < m) such that

x =
r∑

i=1

xici +
∑

i<m

xim.

Theorem 3 (Lemma 1 in [10]) Let G(x) = ∑r
i=1 f (λi(x))ci. If f is continuously

differentiable in D, then G(x) is continuously differentiable at x and

DxG(x) =
r∑

i=1

f ′(λi(x))xici +
∑

i<m

f (λi(x)) − f (λm(x))

λi(x) − λm(x)
xim, 1 ≤ i ≤ m ≤ r.

The following lemma shows the existence and uniqueness of a scaling point w

corresponding to any points x, s ∈ intK such that P(w) takes s into x.

Lemma 4 (Lemma 3.2 in [7]) Let x, s ∈ intK. Then, there exists a unique w ∈ intK
such that x = P(w)s. Moreover,

w = P(x
1
2 )
(

P(x
1
2 )s
)− 1

2
[

= P(s− 1
2 )
(

P(s
1
2 )x
) 1

2
]
.

The point w is called the NT-scaling point of x and s. Note that P(w)
1
2 and P(w)− 1

2

are automorphisms of intK. Let x, y ∈ J . We say that two elements x and y are
similar, as denoted by x ∼ y, if and only if x and y share the same set of eigenvalues.
In what follows, we list some results regarding similarity.

Lemma 5 (Proposition 21 in [22]) Let x, s, u ∈ intK. Then

(i) P(x
1
2 )s ∼ P(s

1
2 )x.

(ii) P
(
(P(u)x)

1
2

)
P(u−1)s ∼ P(x

1
2 )s.

Lemma 6 (Proposition 3.2.4 in [23]) Let x, s ∈ intK, and w be the scaling point of x
and s. Then

(
P(x

1
2 )s
) 1

2 ∼ P(w
1
2 )s.

3 The Central Path

The basic idea of IPMs is to replace the second equation in (SCLCP), the
so-called complementarity condition for SCLCP, by the parameterized equation
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x ◦ s = μe, where e is the identity element and μ > 0. Thus, we have the following
system:

s = Mx + q, x, s ∈ intK,

x ◦ s = μe. (1)

We assume that there exists strictly positive x and s that satisfy (SCLCP). For each
μ > 0, the system (1) has a unique solution (x(μ), s(μ)) (under given assumptions),
the so-called μ-center of SCLCP. The set of μ-centers (with μ running through all
positive real numbers) gives a homotopy path, which is called the central path of
SCLCP [5]. If μ → 0, then the limit of the central path exists, and since the limit
points satisfy the complementarity condition, the limit yields a solution of SCLCP.

At a given feasible iterate (x, s) with x, s ∈ intK, we are to find displacements �x
and �s such that

−M�x + �s = 0,

x ◦ �s + s ◦ �x = μe − x ◦ s. (2)

Due to the fact that x and s are not operator commutable in general, i.e., L(x)L(s) 
=
L(s)L(x), this system does not always have a unique solution. The scaling scheme is
based on the following fact (Lemma 28 in [22]): Let u ∈ intK. Then

x ◦ s = μe ⇔ P(u)x ◦ P(u−1)s = μe.

Now, replacing the second equation of system (1) by P(u)x ◦ P(u−1)s = μe and
applying the Newton’s method we obtain the system

− M�x + �s = 0,

P(u−1)s ◦ P(u)�x + P(u)x ◦ P(u−1)�s = μe − P(u)x ◦ P(u−1)s.
(3)

By choosing u appropriately, this system can be used to define the search directions.
Here, we focus on the scaling point u = w− 1

2 , which w is the NT-scaling point of x
and s as defined in Lemma 4. For the formulation and analysis of the generic IPM
for SCLCP, the introduction of the following variance vector is critical:

v := P(w)− 1
2 x√

μ

[
= P(w)

1
2 s√

μ

]
. (4)

Using the variance vector v the following scaled search directions are introduced:

dx := P(w)− 1
2 �x√

μ
, ds := P(w)

1
2 �s√
μ

. (5)

Using Eq. 5 the system (3) can be rewritten as

− Mdx + ds = 0,

dx + ds = v−1 − v, (6)

where

M := P(w)
1
2 MP(w)

1
2 .

Let v =
r∑

i=1
λi(v)ci be the spectral decomposition of v with respect to the Jordan frame

{c1, . . . , cr}. A crucial observation is that the right-hand side v−1 − v in the second
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equation of system (6) is the negative gradient of the classical logarithmic barrier
function 	c(v), that is,

dx + ds = −∇	c(v),

where

	c(v) :=
r∑

i=1

ψc(λi(v)), ψc(t) = t2 − 1

2
− log(t).

Since 	c(v) is strictly convex and ∇	c(e) = 0, it follows that 	c(v) attains its minimal
value at v = e, with 	c(e) = 0. Thus,

	c(e) = 0 ⇔ ∇	c(e) = 0 ⇔ v = e ⇔ x ◦ s = μe.

Hence, we see that the μ-center (x(μ), s(μ)) can be characterized as the minimizer of
the function 	c(v). Thus, we can replace 	c(v) by any strictly convex barrier function
	(v), v ∈ intK such that

	(v) = 0 ⇔ ∇	(v) = 0 ⇔ v = e.

Hence, the value of 	(v) can be considered as a proximity measure for closeness
with respect to the μ-center (x(μ), s(μ)). In what follows, we define the norm-based
proximity measure δ(v) as

δ(v) := 1

2
‖∇	(v)‖F . (7)

Since 	(v) is strictly convex and minimal at v = e, we have

	(v) = 0 ⇔ δ(v) = 0 ⇔ v = e. (8)

The new barrier function determines the calculation of the search directions as

− Mdx + ds = 0,

dx + ds = −∇	(v). (9)

By taking a step along the search direction, with the step size α defined by some line
search rules, one constructs a new pair (x+, s+) according to

x+ := x + α�x, s+ := s + α�s. (10)

4 Algorithm

Suppose that the current iterate (x, s) is known and is in the τ -neighborhood of the
corresponding μ-center, that is, 	(v) ≤ τ . Next, the value of μ is reduced by the
factor 1 − θ with 0 < θ < 1, which changes the value of v according to Eq. 4 and
defines a new μ-center (x(μ), s(μ)). This cause that 	(v) ≥ τ . Now, we start the
inner iteration by calculating new iterate (10) where �x and �s are calculated from
system (9) and Eq. 5 and the step size α is chosen appropriately with the goal of
reducing the value of barrier function 	(v). If necessary, the procedure is repeated
until we find the iterate that again belongs to the τ -neighborhood of the current
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μ-center, that is, until 	(v) ≤ τ. At this point, we start a new outer iteration by
reducing the value of μ again. This process is repeated until μ is small enough, say
until rμ ≤ ε for a certain accuracy parameter ε, at this stage we have found an ε-
approximate solution of SCLCP. The generic IPM outlined above is summarized in
the following.

Algorithm Generic IPM for SCLCP

Input : Accuracy parameter ε > 0;
barrier update parameter θ, 0 < θ < 1;
threshold parameter τ ≥ 1;

a starting point x0, s0 ∈ intK, such that 	(x0, s0, μ0) = 	(v0) ≤ τ

begin :
x := x0, s := s0, μ := μ0;

while rμ ≥ ε do
begin

μ := (1 − θ)μ;
while 	(v) > τ do

begin
Solve the system (9) and use Eq. 5 for �x, �s;
Determine a step size α;

x := x + α�x;
s := s + α�s;

v = P(w)− 1
2 x√

μ

(
= P(w)

1
2 s√

μ

)

end
end

end

The aim of this paper is to investigate a new kernel function, namely

ψ(t) = t2 − 1

2
+ ep( f (t)−1) − 1

pq
,

where f (t) = e
4q
π

cot(h(t)), h(t) = π t
t + 1

, p, q ≥ 1, t > 0 (11)

and to show that the IPMs based on this function have the best known complexity
results.

5 Properties of the New Kernel Function

Here, we present some useful properties of the kernel function ψ(t) as defined by
(11), that are used in the analysis of the algorithm.
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5.1 Some Technical Results

For ψ we have the first three derivatives as follows:

ψ ′(t) = t − 4

π
h′(t)

(
1 + cot2(h(t))

)
f (t)ep( f (t)−1), (12)

ψ ′′(t) = 1 − 4

π

(
h′′(t) −

(
2 cot(h(t)) + 4q

π
(1 + cot2(h(t)))(1 + pf (t))

)
h′(t)2

)

× (
1 + cot2(h(t))

)
f (t)ep( f (t)−1), (13)

ψ ′′′(t) = − 4

π

[
h′′′(t) − g′(t)h′(t)2 − 2g(t)h′(t)h′′(t) − (

h′′(t) − g(t)h′(t)2
)

×
(

2 cot(h(t)) + 4q
π

h′(t)
(
1 + cot2(h(t))

)
(1 + pf (t))

)]

× (
1 + cot2(h(t))

)
f (t)ep( f (t)−1), (14)

where

g(t) = 2 cot(h(t)) + 4q
π

(
1 + cot2(h(t))

)
(1 + pf (t)),

and

g′(t) = −
(

2

(
1 + 4q

π
cot(h(t))

)
+ 4pq

π

(
2 cot(h(t)) + 4q

π
(1 + cot2(h(t)))

)
f (t)

)

× h′(t)
(
1 + cot2(h(t))

)
.

Lemma 7 (Lemma 4 in [8]) For the function h(t) def ined in (11), we have

h′′(t) − 2h′(t)2 cot(h(t)) < 0, t > 0.

The next lemma shows that the new kernel function (11) is eligible.

Lemma 8 Let ψ(t) be as def ined in (11) and t > 0. Then

ψ ′′(t) > 1, (15)

tψ ′′(t) + ψ ′(t) > 0, t < 1 (16)

tψ ′′(t) − ψ ′(t) > 0, t > 1 (17)

ψ ′′′(t) < 0. (18)

Proof From Eq. 13, Lemma 7 and f (t) ≥ 0, we get ψ ′′(t) > 1. This proves (15). By
using Eqs. 12 and 13, we have

tψ ′′(t) + ψ ′(t)

= 2t − 4

π

(
th′′(t) −

(
2 cot(h(t)) + 4q

π

(
1 + cot2(h(t))

)(
1 + pf (t)

))
th′(t)2 + h′(t)

)

× (
1 + cot2(h(t))

)
f (t)ep( f (t)−1). (19)
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Defining w(t) = th′′(t) −
(

2 cot(h(t)) + 4q
π

(
1 + cot2(h(t))

)(
1 + pf (t)

))
th′(t)2 + h′(t),

since p, q ≥ 1 and f (t) ≥ 0, we obtain

w(t) ≤ th′′(t) − 2th′(t)2 cot(h(t)) + h′(t)

= −2π t
(1 + t)3

− 2π2t
(1 + t)4

cot(h(t)) + π

(1 + t)2

= −2π2t
(1 + t)4

(
t

2π
− 1

2π t
+ cot(h(t))

)
.

Define

c(t) = cot(h(t)) + t
2π

− 1

2π t
.

Using sin(x) ≤ x for x ≥ 0, we have

c′(t) = −h′(t)
(
1 + cot2(h(t))

)+ 1

2π
+ 1

2π t2

= −h′(t)
sin2(h(t))

+ 1

2π
+ 1

2π t2

= −π

(1 + t)2 sin2(h(t))
+ 1

2π
+ 1

2π t2

≤ −π

(1 + t)2h(t)2
+ 1

2π
+ 1

2π t2

= −1

π t2
+ 1

2π
+ 1

2π t2
= t2 − 1

2π t2
< 0.

This implies that c(t) is strictly decreasing and hence c(t) > c(1) = 0 and w(t) < 0.
Therefore

tψ ′′(t) + ψ ′(t) = 2t − 4

π
w(t)

(
1 + cot2(h(t))

)
f (t)ep( f (t)−1) ≥ 2t > 0.

This implies (16). To prove (17), considering the first two derivatives of ψ(t) we have

tψ ′′(t) − ψ ′(t) = 4

π

(
h′(t) − th′′(t) + 2th′(t)2 cot(h(t))

+ 4q
π

t
(
1 + cot2(h(t))

)(
1 + pf (t)

)
h′(t)2

)

× (
1 + cot2(h(t))

)
f (t)ep( f (t)−1). (20)

Define

k(t) = h′(t) − th′′(t) + 2th′(t)2 cot(h(t)) + 4q
π

t
(
1 + cot2(h(t))

)(
1 + pf (t)

)
h′(t)2.

Since p, q ≥ 1 and f (t) ≥ 0, we get

k(t) ≥ h′(t) − th′′(t) + 2th′(t)2 cot(h(t))

= h′(t) − t
(

h′′(t) − 2h′(t)2 cot(h(t))
)
,
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the last expression is positive, by h′(t) > 0 and Lemma 7. Therefore

tψ ′′(t) − ψ ′(t) = 4

π
k(t)

(
1 + cot2(h(t))

)
f (t)ep( f (t)−1) > 0.

This completes the proof of (17).
The (18) holds due to Eq. 14, Lemma 7, g(t) > 0 and g′(t) < 0. This completes the

proof. ��

Note that ψ ′(1) = ψ(1) = 0, and ψ ′′(t) > 0 imply that ψ(t) is a nonnegative strictly
convex such that ψ(t) achieves its minimum at t = 1, i.e., ψ(1) = 0. This implies that,
since ψ(t) is twice differentiable, it is completely determined by its second derivative:

ψ(t) =
∫ t

1

∫ ξ

1
ψ ′′(ζ )dζdξ. (21)

The next lemma is very useful in the analysis of interior-point algorithms based on
the kernel functions (see for example [1, 16]).

Lemma 9 (Lemma 2.1.2 in [16]) Let ψ(t) be a twice dif ferentiable function for t > 0.
Then the following three properties are equivalent:

(i) ψ(
√

t1t2) ≤ 1
2 (ψ(t1) + ψ(t2)) for t1, t2 > 0.

(ii) ψ ′(t) + tψ ′′(t) ≥ 0, t > 0.
(iii) ψ(eξ ) is convex.

The third property is called exponentially convexity, or shortly e-convexity.
Therefore, Lemma 9 and (16) show that the our new kernel function (11) is e-convex
for t > 0.

As a consequence of Lemma 9, we have the following lemma, which is crucial for
the analysis of the algorithm.

Lemma 10 (Theorem 4.3.2 in [23]) If x, s ∈ intK, one has

	
(
(P(x)

1
2 s)

1
2

)
≤ 1

2
(	(x) + 	(s)).

The proof of the following lemma is similar to the proof of Lemma 2.6 in [1], and
therefore is omitted.

Lemma 11 If t ≥ 1, then

ψ(t) ≤ 2 + (1 + p)q
2

(t − 1)2.

Lemma 12 (Lemma 8 in [8]) For t ≥ 1, one has

ψ ′(t) ≥ ψ(t)
t

.

Lemma 13 (Lemma 9 in [8]) For ψ(t), as def ined in (11), we have

1

2
(t − 1)2 ≤ ψ(t) ≤ 1

2
ψ ′(t)2.

481J Math Model Algor (2014) 13:471–491



Lemma 14 Let � : [0, ∞) → [1,∞) be the inverse function of ψ(t) for t ≥ 1. Then

√
1 + 2s ≤ �(s) ≤ 1 + √

2s.

Proof The inverse function of ψ(t) for t ≥ 1 is obtained by solving t from

ψ(t) = t2 − 1

2
+ ep( f (t)−1) − 1

pq
= s, t ≥ 1.

Defining ψb (t) = ep( f (t)−1)−1
pq , one has

ψ ′
b (t) = −

(
2

(1 + t) sin(h(t))

)2

f (t)ep( f (t)−1) ≤ 0.

Therefore, ψb (t) is monotonically decreasing for t ≥ 1, i.e., ψb (t) ≤ ψb (1), and since
ψb (1) = 0 we get

t2 − 1

2
≥ s,

this implies that t = �(s) ≥ √
1 + 2s. This proves the first inequality. For the proof of

second inequality, by Lemma 13, we have

s = ψ(t) ≥ 1

2
(t − 1)2,

whence

t = �(s) ≤ 1 + √
2s.

This completes the proof. ��

At the start of each outer iteration, just before the update of μ with the factor
1 − θ , we have 	(v) ≤ τ . Due to the update of μ the vector v is divided by the factor√

1 − θ , with 0 < θ < 1, which in general leads to an increase in the value of 	(v).
It is important to estimate that increase, which the result is based on the following
theorem. This is due to the fact that ψ(t) satisfies (17) and (18).

Theorem 15 (Theorem 5.9.1 in [23]) If v ∈ intK and β ≥ 1, then

	(βv) ≤ rψ
(

β�

(
	(v)

r

))
.

Lemma 16 Let 0 ≤ θ < 1 and v+ = v√
1−θ

. If 	(v) ≤ τ , then

	(v+) ≤ 2 + (1 + p)q
2(1 − θ)

(√
rθ + √

2τ
)2

.
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Proof Since 1√
1−θ

≥ 1 and �(	(v)

r ) ≥ 1, we have �( 	(v)
r )√

1−θ
≥ 1. Using Theorem 15 with

β = 1√
1−θ

, Lemmas 11 and 14, we have

	(v+) ≤ rψ

(
�
(

	(v)

r

)

√
1 − θ

)

≤ 2 + (1 + p)q
2

r

(
�
(

	(v)

r

)

√
1 − θ

− 1

)2

= r(2 + (1 + p)q)

2(1 − θ)

(
�

(
	(v)

r

)
− √

1 − θ

)2

≤ r(2 + (1 + p)q)

2(1 − θ)

(

1 +
√

2	(v)

r
− √

1 − θ

)2

≤ r(2 + (1 + p)q)

2(1 − θ)

(

1 +
√

2τ

r
− √

1 − θ

)2

≤ r(2 + (1 + p)q)

2(1 − θ)

(

θ +
√

2τ

r

)2

= 2 + (1 + p)q
2(1 − θ)

(√
rθ + √

2τ
)2

, (22)

the last inequality follows by 1 − √
1 − θ ≤ θ, 0 ≤ θ < 1. ��

Define

	̃0 = 2 + (1 + p)q
2(1 − θ)

(√
rθ + √

2τ
)2

, (23)

then 	̃0 is an upper bound for 	(v) during the process of the algorithm.

Remark 17 For the large-update methods with τ = O(r) and θ = �(1), we have
	̃0 = O(r), and for small-update methods with τ = O(1) and θ = �( 1√

r ), we have

	̃0 = O((1 + p)q).

The following theorem gives a lower bound for δ(v) in terms of 	(v). This is due
to the fact that ψ(t) satisfies (18).

Theorem 18 (Theorem 5.9.12 in [23]) If v ∈ intK, then

δ(v) ≥ 1

2
ψ ′(�(	(v))).

Lemma 19 If 	(v) ≥ τ ≥ 1, then

δ(v) ≥ 1

6

√
	(v).
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Proof By using Theorem 18 and Lemma 12, we obtain

δ(v) ≥ 1

2
ψ ′
(
�(	(v))

)
≥ 1

2

ψ
(
�(	(v))

)

�(	(v))
= 	(v)

2�(	(v))
.

Now, by the second inequality of the Lemma 14, we have

�(	(v)) ≤ 1 +√
2	(v) ≤ √

	(v) +√
2	(v) < 3

√
	(v).

Therefore, we obtain

δ(v) ≥ 	(v)

6
√

	(v)
= 1

6

√
	(v).

��

6 Analysis of the Algorithm

In this section, we show how to compute a feasible step size α of a NT-step with the
decrease of the barrier function. In each inner iteration, we first compute the search
directions dx and ds from the system (9) and then the original directions �x and �s
calculated using Eq. 5. After a step size α is determined, the new iterate (x+, s+) is
calculated from (10). Using Eqs. 4, 5 and (10), we obtain

x+ = x + α�x = √
μP(w

1
2 )(v + αdx),

s+ = s + α�s = √
μP(w− 1

2 )(v + αds). (24)

Since P(w
1
2 ) and its inverse P(w− 1

2 ) are automorphisms of intK (Theorem III.2.1 in
[4]), x+ and s+ will belong to intK if and only if v + αdx and v + αds belong to intK.
Note that during an inner iteration the parameter μ is fixed. Hence, after the default
step the new scaled vector v+, according to Eqs. 4 and using (24), is given by

v+ = P(w
− 1

2+ )x+√
μ

= P(w
− 1

2+ )P(w
1
2 )(v + αdx) = P(w

1
2+)P(w− 1

2 )(v + αds),

where

w+ = P(x
1
2+)(P(x

1
2+)s+)−

1
2 .

Lemma 20 (Proposition 5.9.3 in [23]) One has

v+ ∼ (
P(v + αdx)

1
2 (v + αds)

) 1
2 .

This Lemma shows that the eigenvalues of v+ are precisely the same as those of

v̄+ = (
P(v + αdx)

1
2 (v + αds)

) 1
2 .
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By Lemma 10, this implies that

	(v+) = 	(v̄+) ≤ 1

2

(
	(v + αdx) + 	(v + αds)

)
.

Now, we consider the decrease in 	(v) as a function of α and define

f (α) := 	(v+) − 	(v).

Furthermore, we define

f1(α) := 1

2

(
	(v + αdx) + 	(v + αds)

)− 	(v).

It follows that f (α) ≤ f1(α) and f (0) = f1(0) = 0. Taking the derivative of f1(α) to
α, we get

f ′
1(α) = 1

2

(
Tr(	 ′(v + αdx) ◦ dx) + Tr(	 ′(v + αds) ◦ ds)

)
. (25)

This gives, using (7) and the second equation in system (9),

f ′
1(0) = −1

2
Tr(∇	(v) ◦ ∇	(v)) = −1

2
‖∇	(v)‖2 = −2δ(v)2 < 0. (26)

Furthermore, we have the following upper bound on f ′′
1 (α) [23]:

f ′′
1 (α) ≤ 1

2

(
r∑

i=1

ψ ′′(ηi)d2
xi +

∑

i<m

ψ ′′(ηm)Tr(d2
xim)

)

+ 1

2

(
r∑

i=1

ψ ′′(γi)d2
si +

∑

i<m

ψ ′′(γm)Tr(d2
sim)

)

, (27)

where ηi = λi(v + αdx) and γi = λi(v + αds), i = 1, 2, . . . , r.
In what follows, we use the short notation δ := δ(v) and state four important

lemmas without proofs. These are due to the fact that ψ ′′(t) is monotonically
decreasing.

Lemma 21 (Lemma 5.2 in [13]) One has

f ′′
1 (α) ≤ 2δ2ψ ′′(λmin(v) − 2αδ).

Lemma 22 (Lemma 5.3 in [13]) If the step size α satisf ies

− ψ ′(λmin(v) − 2αδ) + ψ ′(λmin(v)) ≤ 2δ, (28)

then

f ′
1(α) ≤ 0.

Lemma 23 (Lemma 5.4 in [13]) Let ρ : [0, ∞) → (0, 1] denote the inverse function of
the restriction of − 1

2ψ ′(t) on the interval (0, 1], the largest possible value of the step size
of α satisfying (28) is given by

ᾱ := ρ(δ) − ρ(2δ)

2δ
.
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Lemma 24 (Lemma 5.5 in [13]) Let ᾱ be as def ined in Lemma 23. Then

ᾱ ≥ 1

ψ ′′(ρ(2δ))
.

For the purpose of finding an upper bound of f (α), we need a default step size α̃

that is the lower bound of the ᾱ and consists of δ.

Lemma 25 One has

1

ψ ′′(ρ(2δ))
≥ 1

1 + 16
π

(
2 + π

(
π
2q log γ + 4q

π

(
1 + π2

16q2 log2 γ
)
(1 + pγ )

))
(4δ + 1)

,

where γ = 1 + p−1 log π(4δ + 1).

Proof To obtain the inverse function t = ρ(s) of − 1
2ψ ′(t), we need to solve the

equation

−ψ ′(t) = −t + 4

π
h′(t)

(
1 + cot2(h(t))

)
f (t)ep( f (t)−1) = 2s.

By setting t = ρ(2δ), we have

−ψ ′(t) = 4δ.

Hence, we have

h′(t)
(
1 + cot2(h(t))

)
f (t)ep( f (t)−1) = π

4
(4δ + t) ≤ 4δ + 1, 0 < t ≤ 1.

This implies

f (t)ep( f (t)−1) ≤ 4δ + 1

h′(t)
(
1 + cot2(h(t))

)

= (4δ + 1)(1 + t)2

π
sin2(h(t))

≤ (4δ + 1)(1 + t)2

π

(
π t

1 + t

)2

= π(4δ + 1)t2 ≤ π(4δ + 1). (29)

By taking the logarithm of both sides of (29), we obtain

p( f (t) − 1) + 4q
π

cot(h(t)) ≤ log π(4δ + 1). (30)

For 0 < t ≤ 1, 0 < h(t) ≤ π
2 and we have cot(h(t)) ≥ 0. Thus, we obtain

f (t) ≤ 1 + p−1 log π(4δ + 1). (31)

Taking the logarithm of both sides of (31), we get

4q
π

cot(h(t)) ≤ log
(

1 + p−1 log(π(4δ + 1))
)
,
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and hence

cot(h(t)) ≤ π

4q
log
(

1 + p−1 log(π(4δ + 1))
)
. (32)

Using h′(t) = π
(1+t)2 ≤ π, h′′(t) = −2π

(1+t)3 ≥ −2π , Eq. 13, (29), (31) and (32) we have

1

ψ ′′(ρ(2δ)
)

≥ 1

1 + 16
π

(
2 + π

(
π
2q log γ + 4q

π

(
1 + π2

16q2 log2 γ
)
(1 + pγ )

))
(4δ + 1)

. (33)

This completes the proof. ��

In the sequel, we use the notation

α̃ = 1

1 + 16
π

(
2 + π

(
π
2q log γ + 4q

π

(
1 + π2

16q2 log2 γ
)
(1 + pγ )

))
(4δ + 1)

, (34)

as the default step size. By Lemma 24, ᾱ ≥ α̃.

Lemma 26 (Lemma 5.6 in [13]) If the step size α is such that α ≤ ᾱ, where ᾱ is def ined
in Lemma 23, then

f (α) ≤ −αδ2.

Theorem 27 If α̃ is the default step size as given by Eq. 34 and 	 ≥ τ ≥ 1, then

f (α̃) ≤ −√
	

1536
π

(
2 + π

(
π
2q log γ0 + 4q

π

(
1 + π2

16q2 log2 γ0
)
(1 + pγ0)

)) ,

where, γ0 = 1 + p−1 log π( 2
3

√
	0 + 1).

Proof Using Lemma 26 with α = α̃ and Eq. 34, we have

f (α̃) ≤ −α̃δ2

≤ −δ2

1 + 16
π

(
2 + π

(
π
2q log γ + 4q

π

(
1 + π2

16q2 log2 γ
)
(1 + pγ )

))
(4δ + 1)

.

This expresses the decrease in one inner iteration in terms of δ. Since the right-hand
side of this expression is monotonically decreasing in δ, we can express the decrease
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in terms of 	 := 	(v) by Lemma 19 and after some elementary reductions as
follows:

f (α̃) ≤ −δ

256
π

(
2 + π

(
π
2q log γ + 4q

π

(
1 + π2

16q2 log2 γ
)
(1 + pγ )

))

≤ −√
	

1536
π

(
2 + π

(
π
2q log γ0 + 4q

π

(
1 + π2

16q2 log2 γ0
)
(1 + pγ0)

)) , (35)

where, the last inequality follows from 	0 ≥ 	. This proves the theorem. ��

7 Iteration Complexity

We denote the value of 	(v) after the μ-update as 	0. The subsequent values in the
same outer iteration are denoted as 	k, k = 1, 2, . . . , K, where K is the total number
of inner iterations in the outer iteration.

According to decrease of f (α̃), for k = 1, 2, . . . , K − 1, we obtain

	k+1 ≤ 	k −
√

	k

1536
π

(
2 + π

(
π
2q log γ0 + 4q

π

(
1 + π2

16q2 log2 γ0
)
(1 + pγ0)

)) . (36)

Lemma 28 (Lemma 14 in [17]) Suppose t0, t1, . . . , tK be a sequence of positive
numbers such that

tk+1 ≤ tk − βt1−ξ

k , k = 0, 1, . . . , K − 1,

where β > 0 and 0 < ξ ≤ 1. Then K ≤ � tξ0
βξ

�.

Letting tk = 	k, ξ = 1
2 and

β = 1

1536
π

(
2 + π

(
π
2q log γ0 + 4q

π

(
1 + π2

16q2 log2 γ0
)
(1 + pγ0)

)) ,

we can get the following theorem from Lemma 28.

Theorem 29 Let K be the total number of inner iterations in the outer iteration. Then
we have

K ≤ 3072
π

(
2 + π

(
π
2q log γ0 + 4q

π

(
1 + π2

16q2 log2 γ0
)
(1 + pγ0)

))
	

1
2

0 ,

where, 	0 is the value of 	(v) after the μ-update in outer iteration.

488 J Math Model Algor (2014) 13:471–491



Table 1 Number of iterations
with parameters

p θ

0.1 0.3 0.5 0.7

1 24 22 21 19
2 30 24 28 21
5 24728 19164 13651 3261
q = 1

According to the proof of Lemma 14, it is clear that ψ(t) ≤ t2−1
2 for t ≥ 1. Applying

Theorem 15 and Lemma 14, we obtain

	0 ≤ rψ
(

�( τ
r )√

1 − θ

)
≤ rψ

⎛

⎝
1 +

√
2τ
r√

1 − θ

⎞

⎠ ≤ 2τ + θr + √
8rτ

2(1 − θ)
.

The number of outer iterations is bounded above by 1
θ

log( r
ε
) (Lemma I I.17 in [20]).

By multiplying the number of outer iterations and the number of inner iterations we
get an upper bound for the total number of iterations, namely,

3072
π

(
2+π

(
π
2q log γ0+ 4q

π

(
1+ π2

16q2 log2 γ0

)
(1+pγ0)

))

θ

√
2τ + θr + √

8rτ
2(1 − θ)

log r
ε
.

Large-update methods use θ = �(1) and τ = O(r). As a consequence we then have

	0 ≤ 2τ + θr + √
8rτ

2(1 − θ)
= O(r).

Choosing

p = log π

⎛

⎝1 + 2

3

√
2τ + θr + √

8rτ
2(1 − θ)

⎞

⎠ = O(log r), (37)

and

q = log γ0, (38)

the iteration bound becomes

O
(√

r log r log
r
ε

)
.

For small-update methods one has θ = �( 1√
r ) and τ = O(1). For get the improved

iteration bound, using Eq. 23 we have

	0 ≤ 2 + q(p + 1)

2(1 − θ)

(√
rθ + √

2τ
)2

.

Using this upper bound for 	0, we get the following iteration bound:

3072
π

(
2+π

(
π
2q log γ0+ 4q

π

(
1+ π2

16q2 log2 γ0

)
(1+pγ0)

))

θ √
2+q(p+1)

2(1−θ)

(√
rθ + √

2τ
)

log r
ε
.
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Note that now 	0 = O(pq) and the iteration bound becomes

O
(√

pqr log
r
ε

)
.

If q and p are bounded above by constants which are independent of r, this is the
best known bound for small-update methods.

Example 1 We consider the following LCP problem:

M =

⎡

⎢⎢
⎢⎢⎢
⎢
⎣

0.0368 0.0188 0.0920 0.0211 0.0332 0.0162
0.0188 0.0393 0.0634 0.0176 0.0300 0.0248
0.0920 0.0634 0.4293 0.0617 0.1355 0.1124
0.0211 0.0176 0.0617 0.0203 0.0239 0.0107
0.0332 0.0300 0.1355 0.0239 0.0513 0.0480
0.0162 0.1248 0.0124 0.0107 0.0480 0.0824

⎤

⎥⎥
⎥⎥⎥
⎥
⎦

, q =

⎡

⎢⎢
⎢⎢⎢
⎢
⎣

0.1630
−0.2820

0.4500
−0.3560

0.2420
−0.2489

⎤

⎥⎥
⎥⎥⎥
⎥
⎦

,

with x0 = (2, 2, 3, 2, 2, 2)T and s0 = (0.6912, 0.1692, 2.6679, 0.0163, 1.0213, 0.3525)T ,
as the initial point. We used τ = 2 and ε = 10−8 in all experiments.

Table 1 gives the total number of iterations of the algorithm based on kernel
function.

8 Conclusion

In this paper we have analyzed large and small-update methods of primal-dual
interior-point algorithm based on a new kernel function for SCLCP. We obtained
the best available iteration bounds for such methods.
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