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Abstract In this paper, we study a renewal input working vacations queue with
state dependent services and Bernoulli-schedule vacations. The model is analyzed
with single and multiple working vacations. The server goes for exponential working
vacation whenever the queue is empty and the vacation rate is state dependent. At
the instant of a service completion, the vacation is interrupted and the server resumes
a regular busy period with probability 1 − q (if there are customers in the queue),
or continues the vacation with probability q (0 ≤ q ≤ 1). We provide a recursive
algorithm using the supplementary variable technique to numerically compute the
stationary queue length distribution of the system. Finally, using some numerical
results, we present the parameter effect on the various performance measures.

Keywords State dependent ·Bernoulli-schedule ·Vacation interruption ·
Supplementary variable ·Working vacations

1 Introduction

In the study of vacation queues generally it is assumed that the server stops service
during vacation period. More details on vacation queues can be found in Doshi
[7], Tian and Zhang [20] and the references therein. Recently, Servi and Finn [18]
introduced a class of semi vacation policy. The server will not completely remain
inactive during the vacation period; rather he will render service to the queue with a
different rate. When a vacation ends and if there are customers in the queue, a service
period begins with the original service rate; otherwise on return from a vacation
if there are no customers in the queue, the server goes for another vacation and
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continues to do so till on return from a vacation he finds at least one customer. Such
type of vacation is called multiple working vacation (MWV). On the other hand,
under the single working vacation (SWV) policy, the server takes only one working
vacation whenever the system becomes empty. Therefore, if the system is empty on
return from a SWV, the server stays in the system waiting for customers to arrive
instead of taking another vacation; otherwise, he changes the service rate back to the
regular rate as under the MWV policy. Later Servi and Finn’s [18] work was extended
to GI/M/1 queue by Baba [1]. A finite buffer GI/M/1 queue with SWV and MWVs
have been discussed by Banik [2] and Banik et al. [3], respectively. Tian et al. [21]
have investigated an M/M/1 queue with SWV using matrix-geometric method. The
performance analysis of a GI/M/1 queue with SWV has been presented by Li and
Tian [12].

The single server queueing system with Bernoulli-schedule vacation was first
introduced by Keilson and Servi [10], wherein after each service completion during
vacation the server may take another vacation with probability q or starts regular
service with probability 1 − q, 0 ≤ q ≤ 1. The phenomena wherein the server re-
sumes the regular service without taking the remaining vacation is called vacation
interruption. The analysis of a GI/M/1 queue with working vacations and vacation
interruption has been presented by Li et al. [13]. An M/M/1 queue with Bernoulli-
schedule-controlled vacation and vacation interruption was studied by Zhang and
Shi [22]. Ramaswami and Servi [17] studied the busy period of the M/G/1 vacation
model with a Bernoulli-schedule vacation. A two-phase batch arrival queueing sys-
tem with a vacation time under Bernoulli-schedule has been described by Choudhury
and Madan [6]. Gao and Liu [8] have generalized an M/G/1 queue with SWV and
vacation interruption under Bernoulli-schedule. Madan and Anabosi [15] discussed
a single server queue with two types of services, Bernoulli-schedule server vacations
and a single vacation policy.

Queueing models with finite capacity and state dependent services are more
appropriate in queueing networks and often increase the complexity of solutions
of these systems. Chao and Rahman [4, 5] have analyzed state dependent va-
cation queues by computational algorithm and presented various types of sta-
tion vacations as special cases. An extensive work on state dependent queueing
models in emergency evacuation networks has been done by Macgregor Smith
[14]. Kijima and Makimoto [11] have studied the stationary queue length distribu-
tions of M(n)/G/1/K and GI/M(n)/1/K queues via the Neut’s method [16]. An
efficient algorithm for the state dependent services and state dependent MWV for
GI/M(n)/1/N has been presented by Goswami et al. [9].

The above literature survey clearly indicates that state dependent services are
useful to model numerous real life applications. It may be observed that except
Goswami et al. [9] no much study has been focussed on state dependent queues
with working vacations. Motivated by the above observations, this paper aims
to contribute to the theory of working vacation models with Bernoulli-schedule
vacation interruption. The aim of the paper is two fold. First to analyze the state
dependent GI/M(n)/1/N model with Bernoulli-schedule vacation interruption, and
the second one is to present computational algorithm by which one can get the queue
length distributions in a very efficient way. By introducing a parameter β, the model
is analyzed both with SWV (β = 1) and MWV (β = 0). By taking β = 0, q = 1,
[9] becomes the special case of our present model. Further, the introduction of
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Bernoulli-schedule vacation interruption brings more utility to the present model.
Using the supplementary variable technique, we have developed the steady state
system length distributions at pre-arrival and arbitrary epochs. Some performance
measures such as the blocking probability, the expected queue length, the expected
waiting time, etc., have been evaluated. Numerical results have been illustrated in
the form of tables and graphs.

This paper is organized as follows. Section 2 presents the description and analysis
of the model. Computational algorithm to compute the stationary system length dis-
tribution is presented in Section 3. Various performance measures and some special
cases of our model are presented in Sections 4 and 5, respectively. Section 6 contains
numerical results to show the effectiveness of the model parameters followed by
conclusions in Section 7.

2 Description and Analysis of the Model

Let us consider a renewal input GI/M(n)/1/N queue where N is the finite capacity
of the system. We assume that the inter-arrival times of successive arrivals are
independent and identically distributed random variables with cumulative distribu-
tion function A(x), probability density function a(x), x ≥ 0, Laplace-Stiletjes (L.-S.)
transform A∗(θ) and mean inter-arrival time 1/λ = −A∗(1)(0), where h(1)(0) denotes
the first derivative of h(θ) evaluated at θ = 0. The model is analyzed with SWV and
MWV and for that we have introduced a parameter β which is assumed 0 for MWV
and 1 for SWV. The server takes vacation whenever the system becomes empty. At
the instants of service completion, the vacation is interrupted and the server resumes
a regular busy period with probability 1 − q ( if there are customers in the queue),
or continues the vacation with probability q, 0 ≤ q ≤ 1. The vacation times follow
exponential distribution and are state dependent with rate γi, 1 − β ≤ i ≤ N. The
service times during regular busy period (vacation) are also exponentially distributed
with rates μi (ηi), 1 ≤ i ≤ N, when there are i customers present in the system before
beginning a service. After returning from SWV he remains idle in the system if no
customer is present in the queue otherwise, a regular service period resumes. The
customers are served by a single server in the order of first come first served (FCFS)
discipline. The model is denoted by GI/M(n)/1/N/BS − V I. Let μ, η, γ be the
mean service rates during regular busy period, working vacation period and mean
vacation rate, respectively, and are given by μ = ∑N

i=1 μi/N, η = ∑N
i=1 ηi/N, γ =

∑N
i=1−β γi/N. The traffic intensity is given by ρ = λ/μ.
Let us define the state of the system and the joint probabilities as

– Ns(t) = Number of customers present in the system,
– U(t) = Remaining inter-arrival time for the next arrival (supplementary

variable),
– ζ(t) = 0 (1), if the server is in working vacation (regular busy) period.

πi, j(u, t)du = Pr{Ns(t) ≤ i, u < U(t) ≤ u + du, ζ(t) = j}, u ≥ 0, j = 0, 1,

1 − β ≤ i ≤ N,
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where πi,0(u, t), 0 ≤ i ≤ N and πi,1(u, t), 1 − β ≤ i ≤ N denote the probability
of i customers in the system when the server is in working vacation and regular
service, respectively. In SWV, π0,1(u, t) denotes the dormant state of the server.

2.1 Analysis of the Model

Let us first develop the differential-difference equations that relate the distribution
of number of customers in the system at the end of vacation period and regular
service period. For this, we use the supplementary variable technique and relate the
state of the system at time epochs t and t + dt. Using probabilistic arguments, we
have the following equation for the state (0, 0).

π0,0(x − dx, t + dt) = (1 − βγ0dt)π0,0(x, t) + μ1π1,1(x, t)dt + η1π1,0(x, t)dt.

Applying Taylor’s series expansion on the left hand side of the equation, assuming
dx = dt and neglecting higher order derivatives, we obtain

(
∂

∂t
− ∂

∂x

)

π0,0(x, t) = μ1π1,1(x, t) + η1π1,0(x, t) − βγ0π0,0(x, t).

Taking limit as t → ∞ in the above equation, we get the following steady state
differential-difference equation

−π(1)
0,0(x) = μ1π1,1(x) + η1π1,0(x) − βγ0π0,0(x). (1)

Similarly, we obtain the remaining equations as

− π(1)
i,0 (x) = −(γi + ηi)πi,0(x) + qηi+1πi+1,0(x) + a(x)πi−1,0(0),

1 ≤ i ≤ N − 1, (2)

−π(1)
N,0(x) = −(γN + ηN)πN,0(x) + a(x)

(
πN−1,0(0) + πN,0(0)

)
, (3)

−βπ(1)
0,1(x) = βγ0π0,0(x), (4)

−π(1)
1,1(x) = −μ1π1,1(x) + μ2π2,1(x) + γ1π1,0(x) (5)

− π(1)
i,1 (x) = −μiπi,1(x) + μi+1πi+1,1(x) + γiπi,0(x) + (1 − q)ηi+1πi+1,0(x)

+ a(x)πi−1,1(0), 2 ≤ i ≤ N − 1, (6)

−π(1)
N,1(x) = −μNπN,1(x) + γNπN,0(x) + a(x)

(
πN−1,1(0) + πN,1(0)

)
, (7)

where πi,0(0) and πi,1(0) are the respective rates of arrivals i.e., an arrival is about
to occur. Let us define the Laplace transforms of πi,0(x) and πi,1(x) as π∗

i,0(θ) =
∫ ∞

0 e−θxπi,0(x)dx, π∗
i,1(θ) = ∫ ∞

0 e−θxπi,1(x)dx, Re θ ≥ 0. Therefore, we have

πi,0 ≡ π∗
i,0(0) =

∞∫

0

πi,0(x)dx, πi,1 ≡ π∗
i,1(0) =

∞∫

0

πi,1(x)dx,
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where πi,0 (πi,1) is the joint probability that there are i customers in the system and
the server is in working vacation (dormant or in busy period) at an arbitrary epoch.

Multiplying Eqs.1–7 by e−θx and integrating with respect to x from 0 to ∞ yields

(βγ0 − θ)π∗
0,0(θ) = μ1π

∗
1,1(θ) + η1π

∗
1,0(θ) − π0,0(0), (8)

(γi + ηi − θ)π∗
i,0(θ) = A∗(θ)πi−1,0(0) + qηi+1π

∗
i+1,0(θ) − πi,0(0),

1 ≤ i ≤ N − 1, (9)

(γN + ηN − θ)π∗
N,0(θ) = A∗(θ)

(
πN−1,0(0) + πN,0(0)

) − πN,0(0), (10)

−βθπ∗
0,1(θ) = β(γ0π

∗
0,0(θ) − π0,1(0)), (11)

(μ1 − θ)π∗
1,1(θ) = μ2π

∗
2,1(θ) + γ1π

∗
1,0(θ) − π1,1(0), (12)

(μi − θ)π∗
i,1(θ) = μi+1π

∗
i+1,1(θ) + γiπ

∗
i,0(θ) + (1 − q)ηi+1π

∗
i+1,0(θ)

+A∗(θ)πi−1,1(0) − πi,1(0), 2 ≤ i ≤ N − 1, (13)

(μN − θ)π∗
N,1(θ) = γNπ∗

N,0(θ) + A∗(θ)
(
πN,1(0) + πN−1,1(0)

)

−πN,1(0). (14)

Now using Eqs. 8–14 we obtain the following important lemma.

Lemma 1
N∑

i=0

πi,0(0) +
N∑

i=1−β

πi,1(0) = λ. (15)

The left hand side denotes the mean number of entrances into the system per unit time
and is equal to the mean arrival rate λ.

Proof Adding Eqs. 8–14 and taking limit as θ → 0, we obtain the desired result using
the normalization condition

∑N
i=0 πi,0 + ∑N

i=1−β πi,1 = 1. �	

2.2 Derivations of πi, j(0) and π∗
i, j(θ)

Substituting θ = (γN + ηN) in Eq. 10, we get

πN−1,0(0) =
(

1 − A∗(γN + ηN)

A∗(γN + ηN)

)

πN,0(0). (16)

From Eq. 10, we have

π∗
N,0(θ) = (A∗(θ) − A∗(γN + ηN))

(γN + ηN − θ)A∗(γN + ηN)
πN,0(0). (17)
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Substituting θ = (γi + ηi) in Eq. 9, we get

πi−1,0(0) = −
[

qηi+1π
∗
i+1,0(γi + ηi) − πi,0(0)

A∗(γi + ηi)

]

, i = N − 1, . . . , 1. (18)

From Eq. 9, we obtain

π∗
i,0(θ) = qηi+1π

∗
i+1,0(θ) + A∗(θ)πi−1,0(0) − πi,0(0)

(γi + ηi − θ)
, i = N − 1, . . . , 1. (19)

Substituting θ = μN in Eq. 14 and θ = μi in Eq. 13, we get

πN−1,1(0) = 1 − A∗(μN)

A∗(μN)
πN,1(0) − γN

A∗(μN)
πN,0(0), (20)

πi−1,1(0) = πi,1(0)

A∗(μi)
− μi+1π

∗
i+1,1(μi)

A∗(μi)
− (1 − q)ηi+1π

∗
i+1,0(μi)

A∗(μi)
− γiπ

∗
i,0(μi)

A∗(μi)
,

i = N − 1, . . . , 1 − β, (21)

where π∗
i,1(θ) are given by the following:

π∗
N,1(θ) = γNπ∗

N,0(θ) + A∗(θ)(πN−1,1(0) + πN,1(0)) − πN,1(0)

(μN − θ)
, (22)

π∗
i,1(θ) = γiπ

∗
i,0(θ) + μi+1π

∗
i+1,1(θ) + (1 − q)ηi+1π

∗
i+1,0(θ)

(μi − θ)

+ A∗(θ)πi−1,1(0) − πi,1(0)

(μi − θ)
, i = N − 1, . . . , 1. (23)

For θ = γi + ηi (1 ≤ i ≤ N), π∗
i,0(θ) are given by

π∗
N,0(θ) = −A∗(1)(θ)

(
πN−1,0(0) + πN,0(0)

)
, (24)

π∗
i,0(θ) = −

(
qηi+1π

∗(1)
i+1,0(θ) + A∗(1)(θ)πi−1,0(0)

)
, 1 ≤ i ≤ N − 1. (25)

For θ = μi (1 − β ≤ i ≤ N), π∗
i,1(θ) are given by

π∗
N,1(θ) = −

(
γNπ∗(1)

N,0 (θ) + A∗(1)(θ)(πN−1,1(0) + πN,1(0))
)

, (26)

π∗
i,1(θ) = −

(
γiπ

∗(1)
i,0 (θ) + μi+1π

∗(1)
i+1,0(θ) + (1 − q)ηi+1π

∗(1)
i+1,0(θ)

+A∗(1)(θ)πi−1,1(0)
)

, 1 − β ≤ i ≤ N − 1. (27)

2.3 Relation Between Steady State Distribution at Pre-arrival and Arbitrary Epochs

Let π−
i, j, 1 − β ≤ i ≤ N, j = 0, 1 denote the pre-arrival epoch probabilities, that is, an

arrival finds i customers in the system and the server is in state j at an arrival epoch.
Applying Bayes’ theorem, we have

π−
i, j = lim

t→∞
P[Ns(t) = i, ζ(t) = j, U(t) = 0]

P[U(t) = 0] .
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Further, using Eq. 15 in the above expression, we obtain

π−
i, j =

πi, j(0)

λ
, 1 − β ≤ i ≤ N, j = 0, 1. (28)

From the above set of expressions one can evaluate the pre-arrival epoch probabili-
ties. To obtain the steady state probabilities at arbitrary epochs, we develop a relation
between pre-arrival and arbitrary epoch probabilities. Setting θ = 0 in Eqs. 8–14 and
using Eq. 28, we obtain

πN,0 = λ

γN + ηN
π−

N−1,0, (29)

πi,0 = λ

γi + ηi

(

π−
i−1,0 +

(
(q − 1)ηi+1 − γi+1

γi+1 + ηi+1

)

π−
i,0

+
N−1∑

j=i+1

(
(q − 1)η j+1 − γ j+1

γ j+1 + η j+1

) j∏

k=i+1

(
qηk

γk + ηk

)

π−
j,0 ,

1 − β ≤ i ≤ N − 1, (30)

πN,1 = λ

μN

[(
γN

γN + ηN

)

π−
N−1,0 + π−

N−1,1

]

, (31)

πi,1 = λ

μi

⎡

⎣π−
i−1,1 +

γi

γi + ηi
π−

i−1,0 −
N−1∑

j=i

(
(q − 1)η j+1 − γ j+1

γ j+1 + η j+1

)

×
j∏

k=n

qk−i ηk

γk + ηk
π−

j,0

⎤

⎦ , 1 ≤ i ≤ N − 1. (32)

If β = 0, that is, for MWV

π1,1 = λ

μ1

⎡

⎣ γ1

γ1 + η1
π−

0,0 −
(

(q − 1)η2 − γ2

γ2

γ1

γ1 + η1
+ γ2

γ1 + η1

)

π−
1,0

+
N−1∑

j=2

(
(q−1)η j+1−γ j+1

γ j+1 + η j+1

) j∏

k=2

(
ηk

γk + ηk

)(
qγ1

γ1 + η1
− qk−2

)

π−
j,0

⎤

⎦ , (33)

π0,0 = 1 −
N∑

i=1

(πi,0 + πi,1). (34)

If β = 1, that is, for SWV

π0,1 = 1 −
N∑

i=0

πi,0 −
N∑

i=1

πi,1. (35)

As the state probabilities at pre-arrival epochs are known from Eq. 28, we can
evaluate the arbitrary epoch probabilities using Eqs. 29–35.
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3 Computational Algorithm

In this section, we give a computational algorithm for evaluation of pre-arrival and
arbitrary epoch probabilities. The algorithm is based on the analysis of Section 2, that
is, we compute arrival rates πi, j(0), 0 ≤ i ≤ N, j = 0; 1 − β ≤ i ≤ N, j = 1 in terms
of πN,0(0). We determine πN,0(0) using Eq. 15. After computing the probabilities
πi, j(0), we can evaluate pre-arrival epoch and the arbitrary epoch probabilities.

Step 1: Calculate πi,0(0) and π∗
i,0(θ) in terms of πN,0(0) as follows.

Using the Eqs. 16 and 18 we get

πi,0(0) = ψiπN,0(0), 0 ≤ i ≤ N.

– Calculate ψi (1 ≤ i ≤ N) as

ψN = 1, ψN−1 = 1 − A∗(δN)

A∗(δN)
, ψi−1 = ψi − qηi+1ζi+1,δi

A∗(δi)
,

From Eqs. 17 and 19 we compute

π∗
i,0(θ) = ζi,θπN,0(0), 1 ≤ i ≤ N.

The lth derivatives are obtained using Eqs. 24 and 25 where l = 1, 2, . . . ,

π∗(l)
i,0 (θ) = ζ (l)

i,θ πN,0(0), 1 ≤ i ≤ N,

where ζi,θ and ζ (l)
i,θ are given below.

– Calculate ζi,θ (0 ≤ i ≤ N) as follows
if i = N then

if θ = δN then

ζN,θ = −A∗(1)(θ)(ψN−1 + ψN)

else

ζN,θ = A∗(θ)(ψN−1 + ψN) − ψN

δN − θ

end if
else if 0 ≤ i ≤ N − 1 then

if θ = δi

ζi,θ = −
(

A∗(1)(θ)ψi−1 + qηi+1ζ
(1)
i+1,θ

)

else

ζi,θ = A∗(θ)ψi−1 + qηi+1ζi+1,θ − ψi

δi − θ

end if
end if

– Calculate ζ (l)
n,θ as follows

if i = N then
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if θ = δN then

ζ (l)
N,θ = − A∗(l+1)(θ)(ψN−1 + ψN)

l + 1

else

ζ (l)
N,θ = A∗(l)(θ)(ψN−1 + ψN) + lζ (l−1)

N,θ

δN − θ

end if 0 ≤ i ≤ N − 1 then
if θ = δi then

ζ (l)
i,θ = − A∗(l+1)(θ)ψi−1 + qηi+1ζ

(l+1)
i+1,θ

l + 1

else

ζ (l)
i,θ = A∗(l)(θ)ψi−1 + qηi+1ζ

(l)
i+1,θ + lζ (l−1)

i,θ

δi − θ

end if
end if

Step 2: Using Eqs. 20 and 21, find πi,1(0) in terms of πN,0(0) and πN,1(0) as

πi,1(0) = tiπN,0(0) + diπN,1(0), 1 − β ≤ i ≤ N,

where ti, di are computed as follows.
– Calculate ti and di for 1 − β ≤ i ≤ N

tN = 0, dN = 1, tN−1 = −γNζN,μN

A∗(μN)
, dN−1 = 1 − A∗(μN)

A∗(μN)
,

ti−1 = ti − μi+1ei+1,μi − (1 − q)ηi+1ζi+1,μi − γiζi,μi

A∗(μi)
,

di−1 = di − μi+1 fi+1,μi

A∗(μi)
.

Using Eqs. 22 and 23 we evaluate π∗
i,1(θ) in terms of πN,0(0) and

πN,1(0) as

π∗
i,1(θ) = ei,θπN,0(0) + fi,θπN,1(0), 1 − β ≤ i ≤ N,

The lth(l ≥ 1) derivatives are obtained using Eqs. 26 and 27.

π∗(l)
i,1 (θ) = e(l)

i,θπN,0(0) + f (l)
i,θ πN,1(0), 1 − β ≤ i ≤ N.

– Calculate ei,θ and fi,θ as follows
if i = N then

if θ = μN , then

eN,θ = −γNζ (1)
N,θ − A∗(1)(θ)tN−1

fN,θ = −A∗(1)(θ) (dN−1 + dN)



292 J Math Model Algor (2014) 13:283–299

else

eN,θ = γNζN,θ + A∗(θ)(tN−1 + tN) − tN

μN − θ

fN,θ = A∗(θ)(dN−1 + dN) − dN

μN − θ

end if
else if 1 − β ≤ i ≤ N − 1 then

if θ = μi then

ei,θ = −
(
γiζ

(1)
i,θ + μi+1e(1)

i+1,θ + (1 − q)ηi+1ζ
(1)
i+1,θ + A∗(1)(θ)ti−1

)

fi,θ = −
(
μi+1 f (1)

i+1,θ + A∗(1)(θ)di−1

)

else

ei,θ = γiζi,θ + μi+1ei+1,θ + (1 − q)ηi+1ζi+1,θ + A∗(θ)ti−1 − ti
μi − θ

fi,θ = μi+1 fi+1,θ + A∗(θ)di−1 − di

μi − θ

end if
end if

– Calculate e(l)
i,θ and f (l)

i,θ as follows
if i = N then

if θ = μN , then

e(l)
N,θ = −γNζ (l+1)

N,θ + A∗(l+1)tN−1

l + 1

f (l)
N,θ = − A∗(l+1)(dN−1 + dN)

l + 1

else

e(l)
N,θ = −γNζ (l)

N,θ + A∗(l)(tN−1 − tN) + le(l−1)
N,θ

μN − θ

f (l)
N,θ = A∗(l)(θ)(dN−1 − dN) + l f (l−1)

N,θ

μN − θ

end if
else if 1 − β ≤ i ≤ N − 1 then

if θ = μi, then

e(l)
i,θ = −γiζ

(l+1)
i,θ + μi+1e(l+1)

i+1,θ + (1 − q)ηi+1ζ
(l+1)
i+1,θ + A∗(l+1)(θ)ti−1

l + 1

f (l)
i,θ = −μi+1 f (l+1)

i+1,θ + A∗(l+1)(θ)di−1

l + 1
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else

e(l)
i,θ = γiζ

(l)
i,θ + μi+1e(l)

i+1,θ + (1 − q)ηi+1ζ
(l)
i+1,θ + A∗(l)(θ)ti−1 + le(l−1)

i,θ

μi − θ

f (l)
i,θ = μi+1 f (l)

i+1,θ + A∗(l)(θ)di−1 + l f (l−1)
i,θ

μi − θ

end if
end if

Step 3: Using Eqs. 12 and 8 we compute πN,1(0) in terms of πN,0(0) as
πN,1(0) = kπN,0(0), where

k =
(

μ2e2,μ1 + γ1ζ1,μ1 − t1
d1 − μ2 f2,μ1

)

, if β = 0,

k =
(

ψ0 − η1ζ1,γ0 − μ1e1,γ0

μ2 f1,γ0

)

, if β = 1.

Step 4: For 1 − β ≤ i ≤ N, calculate πi,1(0) in terms of πN,0(0) as follows

πi,1(0) = (ti + kdi)πN,0(0), 1 − β ≤ i ≤ N.

Step 5: Determine πN,0(0) from Eq. 15 as

πN,0(0) = λ

⎡

⎣
N∑

i=0

ψn +
N∑

i=1−β

(ti + kdi)

⎤

⎦

−1

.

Step 6: Compute the pre-arrival epoch probabilities using the relation (28).
Step 7: For β = 1, the arbitrary epoch probabilities πi, j are determined

from Eqs. 29–32 and 35. We use Eqs. 29–34 for β = 0.

4 Performance Measures

In this section, we discuss some operating characteristics such as the average number
of customers in the queue (Lq), average number of customers in the system (Ls),
probability that the server is in idle period (Pidle), probability that the server is in
regular busy period (Pb ), probability that the server is in working vacation period
(Pwv) and the blocking probability of the server (Ploss). They are given by:

Lq =
N∑

i=1

(i − 1)πi,0 +
N∑

i=1

(i − 1)πi,1; Ls =
N∑

i=1

iπi,0 +
N∑

i=1

iπi,1;

Pidle = π0,1; Pb =
N∑

i=1

πi,1; Pwv =
N∑

i=0

πi,0; Ploss = π−
N,0 + π−

N,1.

The average waiting time of a customer in the queue (Wq) using Little’s rule is given
by Wq = Lq/λ̂, where λ̂ = λ(1 − Ploss) is the effective arrival rate.
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5 Special Cases

In this section, some special cases of our model have been derived by taking some
particular values of the parameters.

Case I: If β = 0, q = 1, our model reduces to GI/M(n)/1/MWV, Goswami et al.
[9].

Case II: If β = 0, q = 1, ηi = η, γi = γ, μi = μ for all i, which means the model
with constant services. Our results match with Banik et al. [3]. If q = 0,
our model reduces to constant services with vacation interruption i.e.,
GI/M/1/MWV − V I. If β = 1, q = 1, our results match with Banik [2].
If q = 0, i.e., GI/M/1/SWV − V I queue results.

Case III: If β = 0, μi = μ, γi = γ, ηi → 0 for all i, our results match with Tian et al.
[19]. β = 1 yields constant services with SV, Tian and Zhang [20].

Case IV: If β=0, 1. q = 0 and q = 1, μi = μ, η → 0, γi → ∞, for 1 ≤ i ≤ N. The
model reduces to GI/M/1/N queue without vacations and our results
match with the results available in literature.

6 Numerical Results

The model we consider has certain implications in practice. For example, in a packet-
switched network, the router is an interconnection device that attaches two or more
networks. It takes charge of receiving packets and forwarding them to the next hop,
according to the some routing information in its routing table. If the routes are
available in the routing table, router will serve the packets depending on the number
of packets which is termed as state dependent routing. This procedure routes the
packets to the least loaded disks. This offers significant throughput benefits over
state independent routing. To collect the complete routing information, the router
may exchange its routing information with the other routers. The router is in idle
state when the last packet is served and no packet arrives. To keep the router
functioning well some special maintenance such as routing information backup and
virus scan are performed in idle state. This maintenance duration of the router can
be seen as vacation periods. Meanwhile, under the maintenance, the router can
serve the packet at the slower speed which can economize the system. In queueing
terminology router, routing at slower speed, state dependent routing correspond
to the server, working vacation, state dependent services. Therefore, the queueing
systems with working vacation and vacation interruption are used to reconfigure the
communication networks.

In order to validate the computational algorithm of Section 3, some numerical
computations are carried out some of which are presented in the form of tables
and graphs. Let us assume that μi = ln[i + 0.6], ηi = ln[i + 0.3] for 1 ≤ i ≤ N, γi =
ln[i + 0.4] for 1 − β ≤ i ≤ N, ρ = 0.7, λ = ρμ and N = 10 with mean rates μ =
1.66449, η = 1.59224 and γ = 1.61722. The comparisons and effect of accuracy are
derived from numerical results.

Tables 1 and 2 present the sensitivity analysis for varying values of λ and μ
(mean service rate during busy period) for state dependent queue. We present the
comparison among multiple vacation (MV) (single vacation (SV)), multiple (single)
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Table 1 Sensitivity analysis of M/M(n)/1/10 queue with MWV with and without vacation interrup-
tion, multiple vacations (MV) and no vacations (NV)

μ λ MWV MWV-VI MV NV

1.64128 0.5 Ls 1.25209 1.23316 1.46694 1.19148
Ploss 0.00000 0.00000 0.00010 0.00000
Ws 2.50419 2.46633 2.9339 2.38297

1.75023 1.0 Ls 2.33157 2.29244 2.56892 2.19155
Ploss 0.00121 0.00118 0.00156 0.00112
Ws 2.33441 2.29517 2.57294 2.19402

1.84497 1.5 Ls 3.76780 3.72893 3.96347 3.62598
Ploss 0.01587 0.01566 0.01759 0.01517
Ws 2.5524 2.52553 2.68963 2.45458

working vacation with and without vacation interruption (MWV-VI (SWV-VI),
MWV(SWV)) and no vacation (NV). The inter-arrival time is exponentially distrib-
uted. It is observed that for a fixed μ, the performance measures Ls, Ploss and Ws are
least for no vacation models, but with working vacations, the vacation interruption is
always recommended. Further, the SWV-VI is better than the corresponding MWV-
VI model, with the gap being widening with decreasing values of λ and μ. As μ and
λ increase the performance measures also increase.

Figure 1 depicts the effect of mean service rate during vacation (η) on the expected
queue length (Lq) for vacation rates γ = 1.64128, 1.75023, 1.84497 (by taking γi =
ln[i + 0.5], γi = ln[i + 1.0], γi = ln[i + 1.5]) for exponential inter-arrival times. The
other parameters are as considered above with μ = 1.66449. We observe that as η
increases the expected queue length Lq decreases. Further, we observe that as γ
increases, the Lq decreases up to a certain level (near the point 1.66449 where η
crosses μ) and then reverses its trend. This is due to the fact that with increase of η
and γ the number of customers getting service during vacation increases resulting in
the decrease of Lq. However, when η coincides with that of the regular service rate μ,
it is beneficial to render regular service. Therefore, working vacation queue utilizes
the idle time effectively when η ≤ μ.

Figure 2 provides a comparative effect of arrival rate (λ) on Lq among
the models: (i) E2/M(n)/1/10/SWV − V I, (ii) E2/M/1/10/SWV − V I, (iii)
E2/M(n)/1/10/SWV (iv) E2/M/1/10/SWV (v) E2/M(n)/1/10/SV and (vi)

Table 2 Sensitivity analysis of M/M(n)/1/10 queue with SWV with and without vacation interrup-
tion, for single vacation (SV) and no vacation (NV)

μ λ SWV SWV-VI SV NV

1.64128 0.5 Ls 1.24290 1.18331 1.43412 1.19148
Ploss 0.00000 0.00000 0.00010 0.00000
Ws 2.48581 2.36663 2.86827 2.38297

1.75023 1.0 Ls 2.32181 2.25141 2.54816 2.19155
Ploss 0.00120 0.00116 0.00153 0.00112
Ws 2.32462 2.25405 2.55208 2.19402

1.84497 1.5 Ls 3.76160 3.70335 3.95156 3.62598
Ploss 0.01584 0.01557 0.01750 0.01517
Ws 2.54812 2.50796 2.68131 2.45458
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Fig. 1 Effect of η on Lq
for SWV-VI
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E2/M/1/10/SV. Clearly, Lq increases as the arrival rate increases. Further, we
observe that the model with state dependent services and vacation interruption i.e.,
model (i) performs best among all models. Similar effect is observed among the
models with MWV and vacation interruption from Fig. 3. We observe from Figs. 2
and 3 that state dependent models are better as compared to the corresponding state
independent models.

Figure 4 illustrates the effect of λ on Wq for different inter-arrival time dis-
tributions. It can be observed that Wq increases with λ. Further, for a fixed
λ, HE2 distribution yields highest and deterministic distribution the lowest av-
erage waiting times. The expected queue lengths of the following models: (i)
M/M(n)/1/10/SWV − V I (ii) M/M(n)/1/10/SWV (iii) M/M(n)/1/10/MWV −
V I and (iv) M/M(n)/1/10/MWV are compared in Fig. 5. Intuitively, the expected
queue length increases as the arrival rate increases. Moreover, the models with vaca-
tion interruption give us better results than the models without vacation interruption.

Fig. 2 Effect of λ on Lq
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Fig. 3 Effect of λ on Lq
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Fig. 4 Effect of λ on Wq
for various distributions
in SWV (β = 1)
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Fig. 5 Effect of λ on Lq

0.6 0.62 0.64 0.66 0.68 0.7 0.72

0.65

0.7

0.75

0.8

0.85

0.9

Arrival rate (λ)

E
xp

ec
te

d 
qu

eu
e 

le
ng

th
 (

L
q)

MWV−VI
SWV−VI
SWV
MWV



298 J Math Model Algor (2014) 13:283–299

Finally, from the figures and tables we can observe that:

– The expected queue length decreases with increase of η and γ for state depen-
dent queueing models.

– The queue lengths in state dependent models are better than those of state
independent models.

– For better service we can consider working vacation models with vacation inter-
ruption that utilizes the server more and decreases the waiting lines effectively.

– Among the four models considered, model (iv) performs best.

7 Conclusions

This paper presents the analysis of single server state dependent queue with working
vacations and Bernoulli-schedule vacation interruption. The model is analyzed
both for single and multiple working vacations. The inter-arrival time is arbitrarily
distributed while the service times during regular busy period, during working
vacation and vacation times are exponentially distributed and are state dependent.
The paper also establishes the explicit relations between pre-arrival and arbitrary
queue length distributions. Further, the theoretical results have been presented in
a very tractable algorithmic form so that numerical computations can be carried
out directly. By taking particular parameters of the model say β and q, the present
model reduces to earlier works as special cases, as pointed out in Section 5. This
paper extends the earlier works by the introduction of Bernoulli-Schedule vacation
interruption for both MWV and SWV models. Our study may be helpful in many
areas like restaurants, ATM center, setting traffic management strategies, railway
routes, modeling circulation systems in buildings, pedestrian/vehicular circulation
systems, etc. The recursive algorithm may be helpful to analyze more complicated
models such as GI/M(a,b)/1, GI/M/c queues with various vacation policies that are
left for future investigations.
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