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Abstract Capacitated covering models aim at covering the maximum amount of cus-
tomers’ demand using a set of capacitated facilities. Based on the assumptions made
in such models, there is a unique scenario to open a facility in which each facility
has a pre-specified capacity and an operating budget. In this paper, we propose a
generalization of the maximal covering location problem, in which facilities have
different scenarios for being constructed. Essentially, based on the budget invested
to construct a given facility, it can provide different service levels to the surrounded
customers. Having a limited budget to open the facilities, the goal is locating a subset
of facilities with the optimal opening scenario, in order to maximize the total covered
demand and subject to the service level constraint. Integer linear programming
formulations are proposed and tested using ILOG CPLEX. An iterated local search
algorithm is also developed to solve the introduced problem.

Keywords Location ·Covering ·Emergency response · Iterated local search

1 Introduction

Introduced by Revelle et al. [27], the location set covering problem (LSCP) is a
basic problem in the field of location theory. Given two sets of customer and facility
vertices, the goal of the LSCP is to cover all the customers’ demand using the
minimum number of uncapacitated facilities [27]. Essentially, each facility i has a pre-
determined covering radius ri within that all of the located customers will be covered.

The maximal covering location problem (MCLP) is one of the most celebrated
problems and is close to the LSCP. Here, we seek the optimal selection of a given
number of facilities, say p, from the set of potential facilities, in order to maximize
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the total covered demand. Formulations and algorithms for both planar and network
versions of this problem have been proposed by many researchers (see [10, 21]
and [9, 14, 31] for network and planar versions, respectively). Berman et al. [5]
developed a generalization of the MCLP in which the weights corresponding to some
customer vertices could be negative in sign. They referred to several applications and
developed some formulations and heuristics to solve their developed problem [5].

The LSCP and MCLP have several practical applications in different areas
including: telecommunications, navigation and disaster management. For a complete
survey on different areas of applications, we refer the readers to the papers by
Current et al. [12], Kolen and Tamir [18] and Plastria [25].

The basic underlying assumption of the LSCP and MCLP is that the facilities are
uncapacitated. Although this assumption has many practical applications in different
areas, the capacitated version of these problems is being widely used. In this variation
of the problem, we are given a value Cj as the maximum capacity of each facility j
and we are not allowed to exceed this threshold, when assigning different customers’
demand to the facility j. Formulations and solution approaches for the capacitated
covering models have been proposed in the paper by Current and Storbeck [13].

Several variations of these two problems, i.e., LSCP and MCLP, have been
introduced by researchers. In the remainder of this section, we will focus on different
variants and some generalizations of these two classical models, followed by the
description of our developed problem.

Berman and Krass [2] introduced the idea of gradual covering in which the
assumption of “all or nothing coverage” is not valid. Essentially, the proportion of
the covered demand is a non-increasing function of the covering radius [2]. There
are also some other variants of the gradual covering in which there are two input
parameters l1 and l2 (l1 < l2). Those customers located within distance l1 of at least
one constructed facility will be fully covered, while those beyond l2 will not be
covered at all. Finally, the customers with the distance between l1 and l2 from an
already located facility, will be covered partially [3, 15].

Berman et al. [4] introduced the variable radius covering problem. In this problem,
depending on the budget invested to open a facility, it will be able to cover different
covering area. Having an unlimited amount of resources, the goal of this problem is
to minimize the cost of opening different facilities to cover all the customers’ demand
through finding the optimal number, location and coverage radii of the facilities [4].

The idea of cooperative covering refers to some applications where each facility
emits a “signal” that dissipates over the distance and each customer will receive
the aggregate signal sent from all facilities. A customer is covered, whenever, its
cumulative signals are greater than a given threshold. Exact and heuristic methods
have been developed for the planar and discrete versions of this problem [6, 8].

In the capacitated p-median problem, the goal is to partition a given number of
vertices, say n, into m different clusters with a side constraint. In particular, each
cluster is represented by a certain vertex, called the facility, and the demand allocated
to each facility j, cannot exceed a given threshold Cj. The goal is to minimize the
total distance traveled by the non-facility vertices to reach their allocated facility
[20, 23, 24, 28].

The recent survey by Berman et al. [7] reviews the most recent ideas for different
classes of the covering problems and for more details we refer the interested readers
to this paper [7].
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The aim of the most presented problems is providing full coverage or maximizing
the total covered demand of the potential customers with a set of side constraints.
On the other hand, there are several problems seeking to minimize the total covered
area by locating some undesirable facilities. Locating of garbage dumps and nuclear
firms are examples of such problems. Many papers have addressed different versions
of this problem. In particular, the case of locating a single facility [1, 11, 29] or
multiple facilities [19, 22] have been introduced by different researches for which
many solution techniques, based on exact and heuristic ideas, have been developed.
For a complete survey on this problem and its variants, we refer the readers to the
paper by Erkut and Neuman [16].

The solution maximizing the total covered demand is the one in which a facility
is located at the same location of all available customers. In fact, availability of
some restrictions, e.g. resource or time constrained, makes this solution impossible
to be implemented in practice. In the most articles dealing with the MCLP and its
variations, we are given a set of facilities from which we have to select a subset of
facilities to cover the desirable amount of demand. Essentially, in some variations,
e.g. LSCP, the goal is minimizing the total located facilities while in some others,
that is opening a pre-specified number of facilities. To the best of our knowledge
and as stated in Berman et al. [4], the idea of having different scenarios to locate
the facilities with the presence of budget constraint has not yet been investigated
in the literature. For example, let us consider a situation in which we have to provide
the demand of different demand zones in an affected area by an earthquake. In such
a situation, there may be a demand zone with the small amount of demand where just
a small size facility with a minimum number of staff and resources could be sufficient
to cover the demand available in this zone. On the other hand, there may be a facility
that needs a larger amount of resources to cover the allocated demands. As a result,
we propose a model in which a subset of facilities could be constructed, each by
choosing one scenario from the set of available scenarios. Having a limited amount
of resources to construct different facilities, the goal of the problem is to maximize
the total covered demand.

The rest of the paper is organized as follows: in Section 2, we present a formal
description of the problem and some of its generalizations. Section 3 introduces the
proposed heuristic method to solve the problem, while the computational results
are provided in Section 4. Concluding remarks and future research directions are
described in Section 5.

2 Problem Statement

Suppose we are given a set V = {I ∪ J} of vertices, where, I = {1, 2, · · · , m} and
J = {1, 2, · · · , n} are the set of customers and facilities, respectively. Each customer
i ∈ I has a pre-specified demand di that must be provided by at most one facility
j ∈ J. In other words, we are not allowed to split the demand of each customer among
different facilities. Moreover, we assume that each facility j ∈ J can be constructed
using different scenarios and depending on the selected scenario, the facility could
have its own capacity and covering radius. Let us define S j =

{
1, 2, · · · , t j

}
as the

set of different scenarios to open the facility j ∈ J. We represent by Bs
j and B,

the cost corresponding to opening facility j ∈ J using scenario s ∈ S j, and the total
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available budget to open different facilities, respectively. Moreover, let Cs
j represent

the capacity of facility j ∈ J, established using scenario s ∈ S j. The goal is to open
a subset of potential facilities and to allocate a subset of the customers to the
constructed facilities, in order to maximize the covered demand.

To model the proposed problem, we introduce some variables as follows:
Let zij to be the demand percentage of customer i allocated to facility j, and assume

xs
j and yij be two binary variables, defined as follows:

xs
j =

{
1 if facility j ∈ J is located using scenario s ∈ S j,

0 otherwise.
(1)

yij =
{

1 if demand of customer i ∈ I is allocated to facility j ∈ J,

0 otherwise.
(2)

Finally, for each i ∈ I, j ∈ J and s ∈ S j, as
ij is an input parameter, taking the

value 1 if customer i is within the pre-specified covering radius of facility j which
is constructed using scenario s ∈ S j and 0, otherwise.

In the following, we introduce a model which we call the single demand budget
constraint generalized MCLP.

– Single demand budget constraint generalized MCLP

max
∑

i∈I

∑

j∈J

dizij (3)

subject to:
∑

s∈S j

xs
j ≤ 1 ∀ j ∈ J (4)

∑

j∈J

∑

s∈S j

Bs
jx

s
j ≤ B (5)

yij ≤
∑

s∈S j

as
ijx

s
j ∀i ∈ I, j ∈ J (6)

zij ≤ yij ∀i ∈ I, j ∈ J (7)
∑

i∈I

dizij ≤
∑

s∈S j

Cs
jx

s
j ∀ j ∈ J (8)

∑

j∈J

yij ≤ 1 ∀i ∈ I (9)

xs
j ∈ {0, 1} ∀ j ∈ J, s ∈ S j, (10)

yij ∈ {0, 1}, 0 ≤ zij ≤ 1 ∀i ∈ I, j ∈ J. (11)

The objective function 3 is to maximize the total covered demand. For each j ∈ J,
the first set of constraints, imposes that each facility to be located using at most one
scenario s ∈ S j. Constraint 5 limits the maximum available budget (B) to construct
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different facilities. For each customer i ∈ I and facility j ∈ J, constraint set 6 assures
that we are not allowed to assign customer i to facility j, whenever, it has not yet
been located using one of the available scenarios. For each pair of customer and
facility vertices, constraint 7 models the relation between the zij and yij variables.
Particularly, the demand of customer i could be allocated to facility j, whenever,
yij is equal to 1, otherwise the allocation is not allowed. For each located facility
j, using a given scenario s ∈ S j, constraint 8 imposes that the total demand assigned
to facility j cannot exceed its corresponding capacity, Cs

j. Finally, for each customer
i ∈ I, constraint set 9 indicates that we are not allowed to split the demand of
customer i among different facilities because splitting the demand of each customer
over different facilities is not functional in reality. The decision variables are defined
in Eqs. 10 and 11.

There may be situations in which each customer could have more than one
demand type. Essentially, we assume that each customer i ∈ I to have some demands
from the set of different demand types Ki = {1, 2, · · · , li}. In the following, we
introduce a new model which is a generalization of the proposed model for the case of
single demand budget constraint generalized MCLP. Before introducing the model,
we give an updated version of some parameters and variables introduced in the latter
model.

In a situation like emergency management, some items such as drugs could have
a higher priority than some others, like blankets or tents. Based on this fact, we
have assigned a weight to the different demand types available in our problem. In
particular, for each customer i ∈ I, the demand type k ∈ Ki is associated with a profit
pk which we call it as the priority of demand type k.

We define dk
i , as the amount of the demand type k ∈ Ki of customer i and

represent by zk
ij, the demand percentage type k ∈ Ki of customer i allocated to facility

j. Moreover, yk
ij which is a generalization of the yij, is defined as follows:

yk
ij =

{
1 if demand type k ∈ Ki of customer i is allocated to facility j,
0 otherwise.

(12)

The humanitarian products could be different in size and weight. In our new model,
the weight corresponding to the demand of type k is represented by wk. The other
notations and definitions are as those introduced for the case of single demand type.
The generalization of the latter model reads as follows.

– Multi demand budget constraint generalized MCLP

max
∑

i∈I

∑

j∈J

∑

k∈K

pkdk
i zk

ij (13)

subject to:

∑

s∈S j

xs
j ≤ 1 ∀ j ∈ J (14)

∑

j∈J

∑

s∈S j

Bs
jx

s
j ≤ B (15)
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yk
ij ≤

∑

s∈S j

as
ijx

s
j ∀i ∈ I, j ∈ J, k ∈ Ki (16)

zk
ij ≤ yk

ij ∀i ∈ I, j ∈ J, k ∈ Ki (17)
∑

i∈I

∑

k∈K

wkdk
i zk

ij ≤
∑

s∈S j

Cs
jx

s
j ∀ j ∈ J (18)

∑

j∈J

yk
ij ≤ 1 ∀i ∈ I, k ∈ Ki (19)

xs
j ∈ {0, 1} ∀ j ∈ J, s ∈ S j, (20)

yk
ij ∈ {0, 1}, 0 ≤ zk

ij ≤ 1 ∀i ∈ I, j ∈ J, k ∈ Ki. (21)

The objective 13 is to maximize the total weighted covered demand. Constraint
sets 14 and 15 are the same as that we have already explained for the single demand
type (i.e. constraints 4 and 5). The remaining six constraint sets 16–21 are the
generalization of constraints 6–10 in the single demand budget constraint generalized
MCLP, respectively, in which different demand types and the weight corresponding
to each unit of product k have been taken into account. Essentially, for each j ∈ J
constraint 18 shows that the weighted demand allocated to facility j ∈ J cannot
exceed its available capacity.

In the proposed models, it may lead to situations where the demand of a given
customer is not served by the closest facility in the sense that it might be that two
demands can be switched between two suppliers bringing both closer. To prevent
this situation one could apply the following closest assignment constraint proposed
by Wanger and Falkson [30] for a location-allocation model.

∑

r:dir>dij

yk
ir +

∑

s∈S j

xs
j ∀i ∈ I, j ∈ J, k ∈ Ki. (22)

in which dij is the distance between customer i and facility j. We do not apply this
set of constraints in our final experiments because we have introduced the covering
radius as an acceptable distance between any pairs of facility and customer vertices.
Moreover, tests on a set of instances show that adding this constraint set to the model,
will result in a worse objective function for some of the tested instances.

3 Iterated Local Search Algorithm

Running the instances to optimality by CPLEX was not successful in some cases
(see Section 4). So, in order to have an efficient method to face large size instances
in a reasonable CPU time, we propose a heuristic procedure for the developed
problems in Section 2. The introduced heuristic is an iterated local search (ILS)
algorithm for which the general framework is depicted in Algorithm 1. Essentially,
the ILS algorithm consists of three major parts, namely initialization, local search
and perturbation. The algorithm starts by constructing an initial feasible solution
and tries to improve it by applying different moves developed in the local search
phase. Moreover, to try to escape from the local optimum, a perturbation procedure
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Algorithm 1 The general framework of the iterated local search algorithm

is designed. The algorithm iterates until it is not able to improve the solution’s
quality for a given number of successive iterations, Maxiter. Algorithm 1 gives
the pseudocode of the proposed heuristic, while the details of each procedure are
provided in the following sections. It is worth mentioning that general metaheuristics
such as Tabu Search, genetic algorithms, variable neighborhood search, etc., could
also obtain very good results.

3.1 Initialization

To construct an initial feasible solution, facilities and their different opening
scenarios are taken into account and sorted in a non-increasing order of their
capacities. Starting from the fist facility in the ordered list, they are added to the
solution one by one until we have not exceeded the total available budget (B). Each
time a facility is added to the solution, and as long as there is enough capacity at
the facility location j ∈ J, the covered customers by j are selected as follows. An
eligible customer i ∈ I (i.e., a customer i with as

ij = 1) and one of its unsatisfied
demand types k ∈ Ki are selected, randomly, and allocated to the facility j. In this
manner, customers and their corresponding different demand types have the same
probability to be selected for being allocated to an opened facility.

3.2 Local Search

The local search consists of two main components, namely swap and extraction-
reinsertion procedures. The algorithm iteratively applies these two procedures until
no improvement could be achieved for the LK successive iterations. Moreover, the
idea of threshold accepting (TA) is applied to try to diversify the search process.
In particular, by using the TA idea, the non-improving moves are accepted if their
corresponding objective values are within α percentage gap from the best known
solution. In the following, the details of these procedures are given.

– Swap: the moves developed through the swap procedure aim at improving the
objective function by substituting an existing facility in the solution with a new
one out of the current set of visited facilities. To do so, the algorithm extracts a
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facility from the solution, and replaces it with the best feasible candidate facility.
Particularly, among all of the unvisited facilities, with their different opening
scenarios, the best feasible move with respect to the objective value is selected.
There may be a situation for which the new substitution results in a worse
solution. In this case the new solution is accepted as the current solution if its
objective value is within α percentage gap from the best known solution.

– Extraction-reinsertion: In this procedure, a given number of facilities, ExtPar,
are randomly extracted from the solution. Upon this step and in a heuristic
manner, the algorithm selects the best substitution from those unvisited facilities
having the maximum impact on the objective function. Particularly, as long as
there is enough budget and once at a time, this procedure continues to add the
new facilities to the solution from those having the most improvement in the
solution’s cost. Non-improving moves will be accepted, if their cost is within the α
percentage gap of the best solution’s cost.

The general framework of the local search procedure is given in Algorithm 2.

Algorithm 2 The general framework of the local search
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3.3 Perturbation

To escape from the local optimal solution, a perturbation phase has been designed.
Taking into account the best solution, obtained during the search process, a given
number of facilities, PertPar, are randomly extracted from the solution. Following
this step and as long as there is enough budget to add some new facilities, the
algorithm selects unvisited facilities and adds them to the solution. It is worth
mentioning that all the unvisited facilities with their different opening scenarios have
the same probability to be selected for addition into the set of visited facilities.

4 Computational Results

The multi-demand budget constraint generalized MCLP is a generalization of the
single-demand type. As a result, we have performed our computational tests on
the multi-demand version of the problem. To do so, we have designed several test
instances. Data are characterized by four major factors, namely the number of
customers (m) and facilities (n), the number of different demand types for each i ∈ I
(li), and the number of scenarios to open each facility j ∈ J (s j). To generate the
instances, a subset of Euclidean data are taken from the TSP library [26]. Particularly,
we have used three instances, namely kroA100, gil200 and d262, and using each of
these instances, some new data which are tailored according to our studied problem
are obtained. The number of the customers in each instance is a factor of the total
number of vertices. In particular, three new instances are generated by using each
of the initial datum in which the first 30 %, 50 % and 70 % of the vertices of each
datum are supposed to be the customers and the rest of the vertices are considered
as facility vertices. Moreover, four different random budget values are used as the
maximum threshold on the total budget available to open different facilities. Finally,
the number of scenarios to open each facility j ∈ J (s j), is a random integer value
taken from [1, 10]. Moreover, the profit (pk), and the weight (wk) of each product
type k is supposed to be a random integer value taken from [1, L] in which L is the
total number of demand types. We have generated two groups of instances in which
each customer could have 3 or 5 different demand types, respectively.

All experiments have been performed on a computer with an Intel Core 2 Duo
Q8400 processor (2.6 GHz) and 3.5 GB of RAM. To run the experiments, we used
CPLEX 12.1 with the default set of parameters [17], allowed to run for up to 600 s,
and the heuristic method has been implemented in C++.

In order to find the reasonable values of the parameters, used for the ILS
algorithm, we performed several runs on a set of test instances and the results are
represented in Table 1, in which different tested values and the best selected values to

Table 1 Parameters setting
for the ILS algorithm

Parameter Tested values Final value

Maxiter {100, 200} 100: 3 demand types
200: 5 demand types

LK {5, 15, 25} 25
ExtPar {10, 30, 50} 50
PertPar {30, 50, 70} 30
α {1, 2, 3} 1
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run the final experiments are given for all available parameters. Tables 2 and 3 report
the results obtained by our proposed model for the multi demand budget constraint
generalized MCLP with three and five different demand types, respectively. In these
tables, the first column gives the index of the instances, while columns named by
|V|, m and n, give the number of vertices, customers and facilities in each instance,
respectively. The next three columns represent the CPLEX results, while for each
datum, the objective function, the gap to optimality and the running time of CPLEX
(in seconds) are given. Finally, the last three columns report the heuristic results,

Table 2 Computational results for the budget constraint generalized MCLP with three different
demand types

Index |V| m n CPLEX ILS

Objective Gap Time Objective Gap Time

1 100 30 70 42.33 0.00 0.02 42.33 0.00 0.08
2 100 30 70 25.00 0.00 0.02 25.00 0.00 0.09
3 100 30 70 35.67 0.00 0.00 35.67 0.00 0.08
4 100 30 70 36.00 0.00 0.02 36.00 0.00 0.10
5 100 50 50 20.00 0.00 0.02 20.00 0.00 0.04
6 100 50 50 23.50 0.00 0.00 23.50 0.00 0.05
7 100 50 50 228.17 0.12 600.00 228.17 0.00 1.00
8 100 50 50 215.83 0.95 600.00 215.83 0.00 0.87
9 100 70 30 57.00 0.00 0.00 57.00 0.00 0.06
10 100 70 30 62.00 1.51 600.00 62.00 0.00 0.06
11 100 70 30 171.80 0.80 600.00 171.80 0.00 0.39
12 100 70 30 287.33 0.50 600.00 287.33 0.00 0.92
13 200 60 140 74.50 3.87 600.00 74.50 0.00 0.38
14 200 60 140 71.00 1.26 600.00 71.00 0.00 0.38
15 200 60 140 78.00 1.62 600.54 78.00 0.00 0.30
16 200 60 140 462.00 0.16 600.54 462.00 0.00 12.62
17 200 100 100 49.00 0.00 0.03 49.00 0.00 0.17
18 200 100 100 49.33 0.00 0.03 49.33 0.00 0.19
19 200 100 100 58.00 5.17 600.00 58.00 0.00 0.16
20 200 100 100 333.00 0.38 600.00 333.00 0.00 4.98
21 200 140 60 133.00 0.34 600.00 133.00 0.00 0.36
22 200 140 60 107.00 0.41 600.00 107.00 0.00 0.26
23 200 140 60 135.33 0.68 600.00 135.33 0.00 0.46
24 200 140 60 317.00 0.07 600.00 317.00 0.00 2.92
25 262 78 184 97.00 0.07 600.00 97.00 0.00 0.58
26 262 78 184 95.00 0.00 0.11 95.00 0.00 0.70
27 262 78 184 93.00 0.59 600.00 93.00 0.00 0.82
28 262 78 184 104.50 0.00 0.12 104.50 0.00 0.88
29 262 131 131 73.33 1.09 600.00 73.33 0.00 0.34
30 262 131 131 62.00 2.69 600.00 62.00 0.00 0.26
31 262 131 131 59.00 2.95 600.00 59.00 0.00 0.29
32 262 131 131 69.67 0.00 0.05 69.67 0.00 0.35
33 262 184 78 34.67 0.00 0.02 34.67 0.00 0.15
34 262 184 78 33.00 0.00 0.00 33.00 0.00 0.13
35 262 184 78 345.33 0.16 600.00 345.33 0.00 4.10
36 262 184 78 309.00 0.54 600.00 309.00 0.00 3.31

Average 123.51 0.72 366.68 123.51 0.00 1.08



J Math Model Algor (2014) 13:301–313 311

Table 3 Computational results for the budget constraint generalized MCLP with five different
demand types

Index |V| m n CPLEX ILS

Objective Gap Time Objective Gap Time

1 100 30 70 66.59 0.00 0.01 66.59 0.00 0.23
2 100 30 70 43.33 0.00 0.02 43.33 0.00 0.16
3 100 30 70 56.80 0.00 0.00 56.80 0.00 0.21
4 100 30 70 56.00 0.93 600.00 56.00 0.00 0.21
5 100 50 50 31.00 0.00 0.00 31.00 0.00 0.13
6 100 50 50 53.75 0.00 0.00 53.75 0.00 0.11
7 100 50 50 223.00 0.78 600.00 223.00 0.00 1.81
8 100 50 50 213.00 0.00 0.06 213.00 0.00 1.20
9 100 70 30 106.73 0.00 0.02 106.73 0.00 0.17
10 100 70 30 309.00 0.00 0.03 309.00 0.00 0.65
11 100 70 30 229.00 0.93 600.00 229.00 0.00 0.73
12 100 70 30 312.50 0.48 600.00 312.50 0.00 1.37
13 200 60 140 101.95 0.60 600.00 101.95 0.00 0.76
14 200 60 140 122.83 1.11 600.00 122.83 0.00 0.99
15 200 60 140 157.00 0.62 0.08 157.00 0.00 1.07
16 200 60 140 126.80 0.16 0.08 126.80 0.00 0.84
17 200 100 100 73.00 1.92 600.00 73.00 0.00 0.53
18 200 100 100 75.46 0.84 600.00 75.46 0.00 0.41
19 200 100 100 117.00 0.00 0.05 117.00 0.00 0.48
20 200 100 100 90.25 0.00 0.05 90.25 0.00 0.42
21 200 140 60 199.25 0.12 600.00 199.25 0.00 1.00
22 200 140 60 174.40 0.00 0.04 174.40 0.00 0.94
23 200 140 60 226.00 0.93 600.00 226.33 0.00 0.91
24 200 140 60 232.00 0.00 0.06 232.00 0.00 1.19
25 262 78 184 151.60 0.00 0.12 151.60 0.00 1.43
26 262 78 184 148.00 0.29 600.00 148.00 0.00 2.27
27 262 78 184 176.87 0.00 0.13 176.87 0.00 1.56
28 262 78 184 134.00 0.55 600.00 134.00 0.00 2.14
29 262 131 131 89.40 0.00 0.08 89.40 0.00 0.72
30 262 131 131 144.27 0.00 0.28 142.70 1.09 0.84
31 262 131 131 154.32 0.19 600.00 154.32 0.00 1.20
32 262 131 131 70.50 0.00 0.23 69.32 1.67 0.97
33 262 184 78 74.00 0.00 0.01 74.00 0.00 0.31
34 262 184 78 59.00 0.00 0.02 59.00 0.00 0.36
35 262 184 78 53.75 0.00 0.02 53.75 0.00 0.30
36 262 184 78 64.70 0.00 0.02 64.70 0.00 0.38

Average 132.62 0.25 205.75 130.95 0.08 0.81

including the objective value, the gap with respect to the best found solution by
CPLEX, and the total running time of the ILS algorithm (in seconds).

Based on the results reported in Tables 2 and 3, CPLEX could reach the optimal
solutions in 49 % of the instances within 600 s of CPU time, while in the remaining
data the gap is below 5.17 %. Moreover, the proposed heuristic method could obtain
the best found solutions in 100 % and 94 % of the instances for the case of three and
five demand types, respectively.
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From the computing time point of view, the heuristic method performs very
rapidly. Particularly, the average running time of the ILS algorithm, over the
instances with three and five demand types, is 1.08 and 0.81 s, respectively, while this
is 366.68 and 205.75 s corresponding to the results obtained by CPLEX, respectively.

5 Conclusions and Future Research

Some generalizations of the maximal covering location problem introduced and
integer linear programming models were developed. Assuming the total budget to
locate different facilities is available in advance, the goal was to open a subset of
facilities to maximize the total covered demand of customers. Moreover, the idea
in opening facilities is that they could be located using different scenarios, leading
to different covering radii and service levels with direct relation with the amount
of the budget invested for this purpose. An iterated local search algorithm was
proposed to solve the problem. Comparing the results of the developed algorithm
with those obtained by CPLEX, clearly indicated the effectiveness of the method in
obtaining good quality solutions within a very short running time. As future research,
we propose developing a dynamic or multi-period version of this model in which
the whole budget to locate different facilities is available for different time periods
and depending on the period at which we are located the selected scenarios to open
different facilities could be changed.
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