
J Math Model Algor (2014) 13:191–208
DOI 10.1007/s10852-013-9227-7

A Full-Newton Step Infeasible Interior-Point Algorithm
Based on Darvay Directions for Linear Optimization

K. Ahmadi ·F. Hasani ·B. Kheirfam

Received: 21 November 2012 / Accepted: 30 April 2013 / Published online: 18 May 2013
© Springer Science+Business Media Dordrecht 2013

Abstract We present a full-Newton step primal-dual infeasible interior-point al-
gorithm based on Darvay’s search directions. These directions are obtained by
an equivalent algebraic transformation of the centering equation. The algorithm
decreases the duality gap and the feasibility residuals at the same rate. During this
algorithmwe construct strictly feasible iterates for a sequence of perturbations of the
given problem and its dual problem. Each main iteration of the algorithm consists of
a feasibility step and some centering steps. The starting point in the first iteration of
the algorithm depends on a positive number ξ and it is strictly feasible for a perturbed
pair, and feasibility steps find strictly feasible iterate for the next perturbed pair. By
using centering steps for the new perturbed pair, we obtain strictly feasible iterate
close to the central path of the new perturbed pair. The algorithm finds an ε-optimal
solution or detects infeasibility of the given problem. The iteration bound coincides
with the best known iteration bound for linear optimization problems.

Keywords Infeasible interior-point methods ·Full-Newton step ·
Darvay search directions ·Polynomial complexity

Mathematics Subject Classifications (2010) 90C05 · 90C51

1 Introduction

After the presentation of the landmark work by Karmarkar in his seminal paper [6],
the interior-point methods (IPMs) have been extensively studied, due to their
polynomial complexity and practical efficiency [15, 20]. One may distinguish between
feasible IPMs and infeasible IPMs (IIPMs). Feasible IPMs start with a strictly feasible
interior point and maintain feasibility during the solution process. Several researches
have been done in this field, some of them are [15, 20]. Darvay [4] proposed a
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new technique for finding a class of search directions. Based on this technique,
the author designed a full-Newton step primal-dual path-following interior-point
algorithm for linear optimization (LO) with iteration bound O(

√
n log n

ε
). Later on,

Achache [1], Wang and Bai [16–18], Mansouri and Pirhaji [9] and Bai et al. [3]
respectively extended Darvay’s algorithm for LO to convex quadratic optimization
(CQO), semidefinite optimization (SDO), second-order cone optimization (SOCO),
symmetric optimization (SO), monotone linear complementarity problem (MLCP)
and convex quadratic semidefinite optimization (CQSDO). IIPMs start with an
arbitrary positive point (not necessarily feasible) and feasibility is reached as we
approach to the optimal solution. The first IIPMs were proposed by Lustig [8].
Global convergence was shown by Kojima et al. [7], whereas Zhang [21] proved
an O(n2L) iteration bound for IIPMs under certain conditions. For studying more
details about IIPMs one can refer to [19]. In 2006, Roos [14] proposed a new IIPM
to solve LO problem. Although this method is a short-step method, the advantage
is that the calculation of a step size at each iteration is avoided, unlike the classical
IIPMs [7, 10, 21], while global convergence and quadratic local convergence is still
achieved. Furthermore, the iteration bound of the algorithmmatches the best known
iteration bound, namely, O(n log n

ε
), for these types of algorithms.

In this paper, inspired by Darvay’s and Roos’ works, we combine the infeasible
interior-point method for LO in [14] with a search direction proposed by Darvay,
in [4]. The difference is in the search direction. Although the idea underlying the
algorithm is the same as in [14], the new search direction makes the analysis far from
trivial. But we prove that the new search direction works well, and yields the same
iteration bound as in [14], which is currently the best known bound of IIPMs for
LO. Our algorithm, at each iteration, uses only full-Newton steps no line searches
are required. With the appropriate choice of parameters, our algorithm generates
a sequence of iterates in the small neighborhood of the central path which implies
global convergence.

The paper is organized as follows. In Section 2 we recall briefly the class of search
directions given by Darvay and its properties. Section 3 consists of a full-Newton
step infeasible IPM based on the algorithm proposed by Roos [14]. In Section 4 we
investigate the analysis of our algorithm in more details and derive the complexity
bound. In Section 5 we perform the algorithm on some numerical examples. Finally
we have some concluding remarks in Section 6.

2 Full-Newton Step for Feasible IPM Based on Darvay Direction

Before presenting our full-Newton step IIPM based on Darvay direction, we need to
recall the class of search directions given by Darvay [4], which gives a polynomial-
time path-following feasible IPM for solving (P) and (D).

2.1 Problem Background

Let A be an m× n matrix, b ∈ Rm and c ∈ Rn. Consider the standard form linear
optimization problem

min cTx
s.t. Ax = b ,

x ≥ 0,
(P)
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and its dual

max bT y

s.t. ATy+ s = c,

s ≥ 0.

(D)

We assume that the matrix A has full row rank, i.e., rank(A) = m. We call (x, y, s)
an (infeasible) interior point if x > 0 and s > 0, and a feasible interior point if in
addition Ax = b and ATy+ s = c. We denote the sets of primal and dual interior
feasible points by

F0(P) = {
x ∈ Rn : Ax = b , x > 0

}
,

and

F0(D) = {
(y, s) ∈ Rm × Rn : ATy+ s = c, s > 0

}
,

respectively. Without loss of generality, we assume that (P) and (D) satisfy the
interior point condition (IPC), i.e., there exist x0, y0 and s0 such that x0 ∈ F0(P) and
(y0, s0) ∈ F0(D). It is well-known that finding an optimal solution of (P) and (D) is
equivalent to solve the following system

Ax = b , x ≥ 0,

ATy+ s = c, s ≥ 0,

xs = 0, (1)

where, xs denotes the Hadamard product of the vectors x and s. The basic idea
of primal-dual IPMs is to replace the third equation in system (1), the so-called
complementary condition for (P) and (D), by the parameterized equation xs = μe,
with μ > 0. Thus, one may consider

Ax = b , x ≥ 0,

ATy+ s = c, s ≥ 0,

xs = μe. (2)

For each μ > 0, the system (2) has a unique solution (x(μ), y(μ), s(μ)), which is
called the μ-center of (P) and (D) [19], and these solutions form a curve parameter-
ized by μ. This curve is called the central path and most IPMs approximately follow
the central path to reach the optimal set. If μ −→ 0, then the limit of the path exists
and yields optimal solutions for (P) and (D) [15].

2.2 Definition and Properties of the Darvay Directions

For solving system (2), we want to use search directions given by Darvay [4]. To this
end, we consider the differentiable continuous function ϕ : R+ −→ R+, and suppose
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that the inverse function ϕ−1 exists, then system (2), which defines the central path,
can be written in the following equivalent form

Ax = b , x ≥ 0,

ATy+ s = c, s ≥ 0,

ϕ

(
xs
μ

)
= ϕ(e). (3)

The natural way to define search direction is to follow Newton’s approach and to
linearize the third equation in Eq. 3. This leads to the system

A�x = b − Ax,

AT�y+�s = c− ATy− s,

s
μ
ϕ

′
(
xs
μ

)
�x+ x

μ
ϕ

′
(
xs
μ

)
�s = ϕ(e)− ϕ

(
xs
μ

)
. (4)

If (x, y, s) is a primal-dual feasible point, then b − Ax = 0 and c− ATy− s = 0,
hence the system (4) reduces to

A�x = 0,

AT�y+�s = 0,

s
μ
ϕ

′
(
xs
μ

)
�x+ x

μ
ϕ

′
(
xs
μ

)
�s = ϕ(e)− ϕ

(
xs
μ

)
, (5)

which gives the Darvay’s direction for feasible primal-dual IPMs. The new iterate is
obtained by taking a full-Newton step as follows:

x+ = x+�x,

y+ = y+�y,

s+ = s+�s. (6)

Through the first two equations of the system (5), we have

(�x)T�s = 0.

Defining

dx := v�x
x

, ds := v�s
s

, v =
√
xs
μ
, (7)

the system (5) turns to

Ādx = 0,

ĀT �y
μ

+ ds = 0,

dx + ds = ϕ(e)− ϕ(v2)

vϕ
′
(v2)

:= pv , (8)
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where, Ā = AV−1X,V = diag(v),X = diag(x). Since the matrix ĀT Ā is positive
definite, we can conclude that the system (8) has a unique solution. Recently, Peng
et al. [11–13] introduced a class of search directions based on self-regular kernel
functions and Bai et al. [2] also defined a class of new search directions by using
the so-called eligible kernel functions. By choosing the function ϕ(t) appropriately,
the above system can be used to define the new search directions. We observe
that ϕ(t) = t yields pv = v−1 − v , and obtain the standard primal-dual interior-point
algorithm [15]. For ϕ(t) = √

t, we get pv = 2(e− v). The search directions dx and ds
obtained from system (8) with pv = 2(e− v), due to Darvay [4].

We define the proximity measure to the central path as follows

δ(x, s;μ) := δ(v) = 1

2
‖pv‖ = ‖e− v‖, (9)

where, v defined as in Eq. 7. Using the third equation of system (8) and dT
x ds = 0, we

have

‖pv‖2 = ‖dx + ds‖2 = ‖dx‖2 + ‖ds‖2.

Furthermore, we obtain

δ(v) = 0 ⇔ v = e ⇔ dx = ds = 0 ⇔ xs = μe.

Defining

qv = dx − ds,

we have

‖qv‖2 = ‖dx − ds‖2 = ‖dx‖2 + ‖ds‖2 = ‖dx + ds‖2 = ‖pv‖2.

As a consequence we have the following important property that after a full Newton
step, strict feasibility is still maintained.

Lemma 1 (Lemma 5.1 in [4]) If δ(x, s;μ) < 1, then x+ > 0 and s+ > 0.

The following property provides the effect of the full-Newton step on the
duality gap.

Lemma 2 (Lemma 5.3 in [4]) After a primal-dual Newton step one has

(
x+

)T
s+ = μ

(
n− δ2

)
,

hence

(x+)Ts+ ≤ nμ.
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Assume that a primal feasible x0 > 0 and a dual feasible pair (y0, s0) with s0 > 0
are given that are ‘close to’ μ-centers x(μ) and (y(μ), s(μ)), respectively, for
some μ = μ0. Then, one can find an ε-solution in O(

√
n log( nμ

0

ε
)) iterations of the

Algorithm 1.

Algorithm 1 Primal-dual feasible IPM
Input:

Accuracy parameter ε > 0;
barraier update parameter θ, 0 < θ < 1;
feasible (x0, y0, s0) with (x0)Ts0 = nμ0, δ(x0, s0;μ0) < 1

2 .
begin

x := x0; y := y0; s := s0; μ := μ0;
while xTs > ε do
begin

μ := (1 − θ)μ;
substitute ϕ(t) = √

t in (5) and compute;
(x, y, s) := (x, y, s)+ (�x,�y,�s);

end
end.

The following lemma is crucial in the analysis of the algorithm, which state that the
Newton process is quadratically convergent. We recall it without proof.

Lemma 3 (Lemma 5.2 in [4]) If δ = δ(x, s, μ) < 1, then

δ
(
x+, s+, μ

) ≤ δ2

1 +√
1 − δ2

.

Thus δ(x+, s+, μ) ≤ δ2, which means the quadratic convergence of the full-Newton
step.

The following lemma provides an iteration bound O(
√
n log nμ0

ε
) for the algorithm.

Lemma 4 (Lemma 5.7 in [4]) If θ = 1
2
√
n , n ≥ 4, then the algorithm requires at most

2
√
n log

nμ0

ε

iterations. The output is a primal-dual pair (x, s) such that xTs ≤ ε.

3 A Full-Newton Step IIPM

In the case of an infeasible method, we call the triple (x, y, s) an ε-solution of (P) and
(D) if the norms of the residual vectors rp = b − Ax and rd = c− ATy− s do not
exceed ε, and also xTs ≤ ε. In what follows, we present an infeasible-start algorithm
that generates an ε-solution of (P) and (D), if it exists, or establishes that no such
solution exists.
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3.1 The Perturbed Problems

We assume (P) and (D) have an optimal solution (x∗, y∗, s∗) with (x∗)Ts∗ = 0. As
usual for IIPMs, we start the algorithm with (x0, y0, s0) = ξ(e, 0, e) and μ0 = ξ 2,
where ξ is a positive number such that

‖x∗ + s∗‖∞ ≤ ξ. (10)

The initial values of the primal and dual residual vectors are r0
p = b − Ax0, r0

d = c−
ATy0 − s0. In general, r0

p �= 0 and r0
d �= 0. The iterates generated by the algorithm

will be infeasible for (P) and (D), but they will be feasible for perturbed versions
of (P) and (D) that we introduce below. For any ν with 0 < ν ≤ 1, we consider the
perturbed problem (Pν) defined by

min
(
c− νr0

d

)T
x

s.t. b − Ax = νr0
p,

x ≥ 0,

(Pν)

and its dual problem (Dν) which is given by

max
(
b − νr0

p

)T
y

s.t. c− ATy− s = νr0
d,

s ≥ 0.

(Dν)

Note that if ν = 1, then x = x0 and (y, s) = (y0, s0) yield strictly feasible solutions
of (Pν) and (Dν), respectively. We conclude that if ν = 1, both (Pν) and (Dν) are
strictly feasible, which means that both perturbed problems (Pν) and (Dν) satisfy the
IPC. More generally, one has the following lemma (Lemma 3.1 in [14]).

Lemma 5 The original problems, (P) and (D), are feasible if and only if for each ν
satisfying 0 < ν ≤ 1, the perturbed problems (Pν) and (Dν) satisfy the IPC.

Assuming that (P) and (D) are both feasible, it follows from Lemma 5 that the
problems (Pν) and (Dν) satisfy the IPC, for each ν ∈ (0, 1]. Then, their central paths
exist, meaning that the system

b − Ax = νr0
p, x ≥ 0, (11)

c− ATy− s = νr0
d, s ≥ 0, (12)

ϕ

(
xs
μ

)
= ϕ(e), (13)

has a unique solution, for any μ > 0. For ν ∈ (0, 1] and μ = νμ0, we denote this
unique solution as (x(μ, ν), y(μ, ν), s(μ, ν)). These are the μ-centers of the perturbed
problems (Pν) and (Dν). By taking ν = 1, one has (x(μ0, 1), y(μ0, 1), s(μ0, 1)) =
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(x0, y0, s0) = (ξe, 0, ξe) and x0s0 = μ0e. Hence, x0 is the μ0-center of the perturbed
problem (P1) and (y0, s0) is the μ0-center of the perturbed problem (D1).

3.2 An Iteration of our Algorithm

We just established that if ν = 1 and μ = μ0, then (x0, y0, s0) is the μ-center of the
problems (Pν) and (Dν). We measure proximity to the μ-center of the perturbed
problems by the quantity δ(x, s;μ) as defined in Eq. 9.

Initially, we have δ(x, s;μ) = 0. In the sequel, we assume that at the start of
each iteration, just before the μ-and ν-update, δ(x, s;μ) ≤ τ , where τ is a positive
threshold value. This certainly holds at the start of the first iteration. Since we then
have δ(x, s;μ) = 0.

Now, we describe one main iteration of our algorithm. The algorithm begins with
an infeasible interior-point (x, y, s) such that (x, y, s) is feasible for the perturbed
problems (Pν) and (Dν), with μ = νμ0 and such that xTs ≤ nμ and δ(x, s;μ) ≤ τ .
We reduce ν to ν+ = (1 − θ)ν, with θ ∈ (0,1), and find new iterate (x+, y+, s+) that is
feasible for the perturbed problems (Pν+) and (Dν+), and such that δ(x+, s+;μ+) ≤ τ.
Every iteration consists of a feasibility step, a μ-update and a few centering steps,
respectively. First, we find a new point (x f , y f , s f ) which is feasible for the perturbed
problems with ν+ := (1 − θ)ν. Then, μ is decreased to μ+ := (1 − θ)μ. Generally,
there is no guarantee that δ(x f , s f ;μ+) ≤ τ . So, a limited number of centering steps is
applied to produce a new point (x+, y+, s+) such that δ(x+, s+;μ+) ≤ τ . This process
is repeated until the algorithm terminates. We now summarize the steps of the
algorithm as Algorithm 2 below.

Algorithm 2 A full-Newton step IIPM based on Darvay directions
Input:

accuracy parameter ε > 0;
barraier update parameter θ, 0 < θ < 1;
and threshold parameter 0 < τ ≤ h < 1 (default h = 1√

2
).

begin
x := ξe; y := 0; s := ξe; μ := μ0 = ξ 2; ν = 1;
while max

(
xTs, ‖b − Ax‖, ‖c− ATy− s‖) > ε do

feasibility step:
(x, s, y) := (x, s, y)+ (� f x, � f s, � f y);

μ and ν−update:
μ := (1 − θ)μ, ν = (1 − θ)ν;

centering step:
while δ(x, s;μ) ≥ τ do

(x, y, s) := (x, y, s)+ (�x,�y,�s)
end while

end while
end.

4 Analysis of the Feasibility Step

First, we describe the feasibility step in detail. The analysis will follow in the sequel.
Suppose that we have strictly feasible iterate (x, y, s) for (Pν) and (Dν). This means
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that (x, y, s) satisfies Eqs. 11 and 12 with μ = νξ 2. We need displacements� f x,� f y
and� f s such that

x f := x+� f x, y f := y+� f y, s f := s+� f s, (14)

are feasible for (Pν+) and (Dν+). One may easily verify that (x f , y f , s f ) satisfies
Eqs. 11 and 12, with ν replaced by ν+, only if the first two equations in the following
system are satisfied.

A� f x = θνr0
p,

AT� f y+� f s = θνr0
d,

s
μ
ϕ

′
(
xs
μ

)
� f x+ x

μ
ϕ

′
(
xs
μ

)
� f s = ϕ(e)− ϕ

(
xs
μ

)
. (15)

The third equation is inspired by the third equation in the system (5) that we used to
define search directions for the feasible case.

According to system (15), after the feasibility step the iterates satisfy the affine
equations in Eqs. 11 and 12, with ν replaced by ν+. The hard part in the analysis will
be to guarantee that x f , s f are positive and to guarantee that the new iterate satisfies
δ(x f , s f ;μ+) ≤ h < 1, where h is an arbitrary constant.

Let (x, y, s) denote the iterate at the start of an iteration with xTs ≤ nμ and
δ(x, s;μ) ≤ τ . At the start of the first iteration this is certainly true, because (x0)Ts0 =
nμ0 and δ(x0, s0;μ0) = 0. Defining

d f
x := v� f x

x
, d f

s := v� f s
s

, (16)

one can easily check that the system (15), which defines the search directions
� f x,� f y and � f s, can be expressed in terms of the scaled search directions d f

x and
d f
s as follows

Ād f
x = θνr0

p,

ĀT �
f y
μ

+ d f
s = θνvs−1r0

d,

d f
x + d f

s = pv . (17)

Defining ϕ(t) = t yields pv = v−1 − v which gives the classical search directions has
been studied by Roos in [14]. Here, we let ϕ(t) = √

t which gives pv = 2(e− v), and
propose an infeasible interior-point algorithm based on these search directions which
is exactly an extension of feasible interior-point algorithm for LO by Darvay [4]. To
get the search directions � f x and � f s in the original x and s-space we use Eq. 16,
which gives

� f x = xv−1d f
x , � f s = sv−1d f

s .
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The new iterates are obtained by taking a full step, as given by Eq. 14. Hence, we
have

x f = x+� f x = x
v

(
v + d f

x

)
,

s f = s+� f s = s
v

(
v + d f

s

)
. (18)

Moreover, from pv = 2(e− v), we have

v + 1

2
pv = e =⇒ v2 + pvv = e− 1

4
p2
v . (19)

Let us introduce the notation

p̃v := d f
x − d f

s . (20)

In that case, we have

d f
x d

f
s = p2

v − p̃2
v

4
.

Using Eqs. 14, 16, 19 and 20, we get

x f s f = xs+ (
x� f s+ s� f x

) +� f x� f s

= μv2 + μv
(
d f
x + d f

s

) + μd f
x d

f
s

= μ
(
v2 + pvv + d f

x d
f
s

)

= μ

(
e− 1

4
p2
v +

1

4

(
p2
v − p̃2

v

))

= μ

(
e− 1

4
p̃2
v

)
. (21)

Lemma 6 The iterates (x f , y f , s f ) are strictly feasible if and only if ‖ p̃v
2 ‖∞ < 1.

Proof Note that if x f and s f are positive then by Eq. 21 we have e− 1
4 p̃

2
v > 0, this

implies ‖ p̃v
2 ‖∞ < 1. For proving the converse of implication, we introduce a step

length α ∈ [0, 1] and define

xα = x+ α� f x = x
v

(
v + αd f

x

)
, sα = s+ α� f s = s

v

(
v + αd f

s

)
.
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We thus have x0 = x, x1 = x f , s0 = s, s1 = s f and x0s0 = xs > 0. From Eqs. 7, 19 and
the third equation in Eq. 17, we have

xαsα = xs
v2

(
v + αd f

x

) (
v + αd f

s

) = μ
(
v2 + αv

(
d f
x + d f

s

) + α2d f
x d

f
s

)

= μ

(
v2 + αvpv + α2

4

(
p2
v − p̃2

v

))

= μ

(
(1 − α) v2 + α

(
e− p2

v

4

)
+ α2

4

(
p2
v − p̃2

v

))
.

If ‖ p̃v
2 ‖∞ < 1, then we have

0 < e− 1

4
p̃2
v = e− 1

4
p2
v +

1

4

(
p2
v − p̃2

v

)
,

and this implies that

1

4

(
p2
v − p̃2

v

)
> −e+ 1

4
p2
v . (22)

Therefore, we get

xαsα > μ

(
(1 − α) v2 + α

(
e− p2

v

4

)
+ α2

(
−e+ 1

4
p2
v

))

= μ

(
(1 − α) v2 + α (1 − α)

(
e− p2

v

4

))

= μ
(
(1 − α) v2 + α (1 − α)

(
2v − v2

))

= μ (1 − α)
(
(1 − α) v2 + 2αv

)
. (23)

Since (1 − α)μ
[
(1 − α)v2 + 2αv

] ≥ 0, it follows that xαsα > 0, for α ∈ [0, 1]. Hence,
none of the entries of xα and sα vanishes, for α ∈ [0, 1]. Since x0 and s0 are positive,
and xα and sα depend linearly on α, this implies that xα > 0 and sα > 0 for α ∈ [0, 1].
Hence, x1 and s1 must be positive, proving the ‘if’ part of the statement in the
lemma. ��

In the sequel, we denote

wi(v) := 1

2

√
|d f

xi |2 + |d f
si |2,

and

w(v) := ||(w1(v), . . . , wn(v))||.

This implies ||d f
x || ≤ 2w(v) and ||d f

s || ≤ 2w(v). Moreover,

| (d f
x

)T
d f
s | ≤ ||d f

x ||||d f
s || ≤

1

2

(||d f
x ||2 + ||d f

s ||2
) = 2w(v)2, (24)
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and for i = 1, . . . ,n,

|d f
xid

f
si | = |d f

xi ||d f
si | ≤

1

2

(|d f
xi |2 + |d f

si |2
) = 2wi(v)

2 ≤ 2w(v)2. (25)

We proceed by deriving an upper bound for δ(x f , s f , μ+). Recall from definition (9)
that

δ(x f , s f ;μ+) := δ(v f ) = ‖e − v f‖, where v f =
√
x f s f

μ+ . (26)

Lemma 7 If ‖ p̃v
2 ‖∞ < 1, then one has

δ(v f ) ≤ δ2 + 2w(v)2 + θ
√
n

1 − θ + √
(1 − θ)(1 − δ2 − 2w(v)2)

.

Proof Using Eq. 21, after division both sides by μ+ = (1 − θ)μ, we get

(
v f )2 = e− 1

4 p̃
2
v

1 − θ
. (27)

On the other hand side, we have

δ
(
v f )2 = ‖e− v f‖2 =

n∑

i=1

(
1 − v

f
i

)2 =
n∑

i=1

(
1 − v

f
i

)2

(
1 + v

f
i

)2

(
1 + v

f
i

)2

≤ 1
(

1 + min
i

v
f
i

)2

n∑

i=1

(
1 −

(
v
f
i

)2
)2

. (28)

For each i, by Eq. 27, we have

min
i

(
v
f
i

)2 = min
i

1 − 1
4 ( p̃v)

2
i

1 − θ
≥ 1

1 − θ

(
1 − 1

4
‖ p̃v‖2

∞

)

≥ 1

1 − θ

(
1 − 1

4
‖ p̃v‖2

)

= 1

1 − θ

(
1 − 1

4
‖pv‖2 + (

d f
x

)T
d f
s

)

≥ 1

1 − θ

(
1 − 1

4
‖pv‖2 − 2w(v)2

)

= 1

1 − θ

(
1 − δ2 − 2w(v)2

)
. (29)
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The last inequality follows from Eq. 24 and ‖pv‖2 = ‖ p̃v‖2 + 4(d f
x )

Td f
s . By substitu-

tion Eq. 29 into Eq. 28 and using Eqs. 24 and 27, we get

δ
(
v f )2 ≤ 1 − θ

(√
1 − δ2 − 2w(v)2 +√

1 − θ
)2

n∑

i=1

(
1
4 ( p̃v)

2
i − θ

1 − θ

)2

= 1

(1 − θ)
(√

1 − δ2 − 2w(v)2 +√
1 − θ

)2

n∑

i=1

(
1

4
( p̃v)

2
i − θ

)2

≤ 1
(√

(1 − θ)
(
1 − δ2 − 2w(v)2

) + 1 − θ
)2

((‖ p̃v‖
2

)2

+ θ
√
n

)2

= 1
(√

(1 − θ)
(
1 − δ2 − 2w(v)2

) + 1 − θ
)2

((‖pv‖
2

)2

− (
d f
x

)T
d f
s + θ

√
n

)2

≤ 1
(√

(1 − θ)
(
1 − δ2 − 2w(v)2

) + 1 − θ
)2

(
δ2 + 2w(v)2 + θ

√
n
)2
. (30)

This completes the proof. ��

Because we need to have δ(v f ) < 1, it follows from Lemma 7 that it suffices to
have

δ2 + 2w(v)2 + θ
√
n

1 − θ +
√
(1 − θ)

(
1 − δ2 − 2w(v)2

) < 1. (31)

At this stage, we decide to choose

τ = 1

8
, θ = α

2
√
n
, α ≤ 1. (32)

The left-hand side of Eq. 31 is monotonically increasing with respect to w(v)2, then
for n ≥ 1 and δ(v) ≤ τ , one can verify that

w(v) ≤ 1

2
√

2
⇒ δ(v f ) ≤ 1√

2
< 1. (33)

4.1 Upper Bound for w(v)

In this section, we want to find an upper bound for w(v), then we can find a default
value for θ . For this purpose, consider the system (17). Let us define

D := X
1
2 S−

1
2 ,
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where X
1
2 denotes the symmetric square root of X . From definition of Ā, we deduce

that Ā = AV−1X = √
μAD. Therefore, by eliminating d f

s from the system (17), we
obtain

√
μADd f

x = θνr0
p,

−(
√
μAD)T

� f y
μ

+ d f
x = pv − θνvs−1r0

d. (34)

Let (x̄, ȳ, s̄) be such that Ax̄ = b and AT ȳ+ s̄ = c. Then, we have

r0
p = A(x̄− x0), r0

d = AT(ȳ− y0)+ s̄− s0. (35)

Substituting system (35) into Eq. 34 after some computations, we obtain (for more
details see [14])

‖d f
x ‖2 + ‖d f

s ‖2 ≤ 2‖pv‖2 + 3θ2ν2

μ

(
‖D−1(x̄− x0)‖2 + ‖D(s̄− s0)‖2

)
.

On the other hand, we have

‖pv‖ = ‖2(e− v)‖ = 2δ(v).

Therefore, we have

‖d f
x ‖2 + ‖d f

s ‖2 ≤ 8δ(v)2 + 3θ2ν2

μ

(
‖D−1(x̄− x0)‖2 + ‖D(s̄− s0)‖2

)
. (36)

Taking x̄ = x∗ and s̄ = s∗, by Eq. 10 and considering the initial iterate (x0, y0, s0), we
have

0 ≤ x0 − x̄ ≤ ξe, 0 ≤ s0 − s̄ ≤ ξe.

Thus, it follows that

‖D−1
(
x̄− x0

) ‖2 + ‖D (
s̄− s0

) ‖2 ≤ ξ 2
(‖De‖2 + ‖D−1e‖2

)

= ξ 2eT
(x
s
+ s

x

)
= ξ 2eT

(
x2 + s2

xs

)

≤ ξ 2 e
T

(
x2 + s2

)

μmini
(
v2
i

) ≤
(
eT(x+ s)

)2

ν (1 − δ(v))2
, (37)

where, the last inequality follows from Eq. 9, μ = νξ 2 and a2 + b 2 ≤ (a+ b )2 for
a,b ≥ 0.



J Math Model Algor (2014) 13:191–208 205

The proof of the following lemma is the same as the proof of Lemma 4.3 in [5].

Lemma 8 Let x and (y, s) be feasible for (Pν) and (Dν) respectively, with ξ as def ined
in Eq. 10 and (x0, y0, s0) = (ξe, 0, ξe). We then have

eT (x+ s) ≤ 2nξ. (38)

Substituting Eqs. 38 and 37 into Eq. 36, we obtain

‖d f
x ‖2 + ‖d f

s ‖2 ≤ 8δ(v)2 + 12θ2n2

(1 − δ(v))2
. (39)

4.2 Value for θ

At this stage, we choose τ = 1
8 . Since δ(v) ≤ τ = 1

8 and the right-hand-side of Eq. 39
is monotonically increasing in δ(v), we have

‖d f
x ‖2 + ‖d f

s ‖2 ≤ 1

8
+ 768θ2n2

49
.

Using θ = α
2
√
n
, the above relation becomes

‖d f
x ‖2 + ‖d f

s ‖2 ≤ 1

8
+ 192nα2

49
. (40)

From Eq. 33 we know that w(v) ≤ 1
2
√

2
is needed in order to have δ(v f ) ≤ 1√

2
. Due to

Eq. 40, this will hold if

1

8
+ 192nα2

49
≤ 1

2
.

If we take

α = 1√
11n

, (41)

the above inequality is satisfied. Moreover,

‖ p̃v‖2
∞ ≤ ‖d f

x − d f
s ‖2 = ‖d f

x ‖2 + ‖d f
s ‖2 − 2(d f

x )
Td f

s

<
1

2
− 2(d f

x )
Td f

s ≤ 1

2
+ 4w(v)2 ≤ 1

2
+ 1

2
= 1,

which, by Lemma 6, means that (x f , y f , s f ) is strictly feasible. Thus, we have found
a desired update parameter θ .
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4.3 Complexity Analysis

We have seen that if at the start of an iteration the iterate satisfies δ(x, s;μ) ≤ τ , with
τ = 1

8 , then after the feasibility step, with θ as defined in Eq. 32 and α as in Eq. 41,
the iterate is strictly feasible and satisfies δ(x f , s f ;μ+) ≤ h < 1.

After the feasibility step, we perform a few centering steps in order to get the
iterate (x+, y+, s+) which satisfies δ(x+, s+;μ+) ≤ τ . By Lemma 3, after k centering
steps we will have the iterate (x+, y+, s+) that is still feasible for (Pν+) and (Dν+) and
satisfies

δ
(
x+, s+;μ+) ≤ h2k.

From this, one easily deduces that δ(x+, s+;μ+) ≤ τ will hold after at most

⌈
log2

log2 τ

log2 h

⌉
, (42)

centering steps. So, each main iteration consists of at most 1 +
⌈

log2
log2 τ
log2 h

⌉
so-called

inner iterations. Recall the value of τ from Eq. 32. According to Eq. 33 we may take
h = 1√

2
, so the number of inner iterations in each main iteration is at most 4.

In each main iteration both the duality gap and the norms of the residual vectors
are reduced by the factor 1 − θ . Hence, the total number of main iterations is
bounded above by

1

θ
log

max
{
nξ 2, ‖r0

p‖, ‖r0
d‖

}

ε
.

Due to Eqs. 32, 41 and the fact that we need at most 4 inner iterations per main
iteration, we may state the main result of the paper.

Theorem 1 If (P) and (D) are feasible and ξ > 0 is such that ‖x∗ + s∗‖∞ ≤ ξ for some
optimal solution x∗ of (P) and (y∗, s∗) of (D), then after at most

8
√

11n log
max

{
nξ 2, ‖r0

p‖, ‖r0
d‖

}

ε
,

inner iterations, the algorithm f inds an ε-optimal solution of (P) and (D).

5 Numerical Results

In this section, we perform the proposed primal-dual infeasible interior-point algo-
rithm (with an accuracy ε = 10−5) on a number of problems in the NETLIB test set
for linear optimization. Numerical results were obtained by usingMATLABR2009a.
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Table 1 Computational performance of the proposed algorithm

LP Primal optimal value Dual optimal value Duality gap

afiro −4.647531427504551e+002 −4.647531437146635e+002 9.642084251026972e−007
sc50a −69.999997121037651 −70.000003851179571 6.730141919319976e−006
blend −30.812151077217347 −30.812151304491149 2.272738015562936e−007
sc105 −52.202057234217044 −52.202063280200463 6.045983418800915e−006
adlittle 2.337683536553557e+005 2.337683549762290e+005 −0.001320873328950
kb2 3.941595241384492e−007 0 3.941595241384492e−007
stocfor1 −4.113197622387252e+004 −4.113197621904278e+004 −4.829744284506887e−006
scagr7 −2.331389826401264e+006 −2.331389823224168e+006 −0.003177095204592
share1b −7.658931857924126e+004 −7.658931857353629e+004 −5.704961949959397e−006
share2b −4.157322418941577e+002 −4.157322408644903e+002 −1.029667373586563e−006
sc50b −69.999997121037651 −70.000003851179571 6.730141919319976e−006

Table 1 lists the names of the test problems, the primal optimal value cTx, the dual
optimal value bT y and the relative duality gap.

Based on the numerical results we have listed in the Table 1, our algorithm is
reliable in terms of optimal values.

6 Concluding Remarks

We presented a full-Newton step IIPM based on Darvay search directions for linear
optimization. Some good properties of our algorithm are: i) the step length need
not be calculated because we have full steps, ii) both feasibility and optimality
are improved at the same rate, iii) the iterates lie in the quadratic convergence
neighborhood with respect to perturbed problems, iv) each main iteration of our
algorithm consists of a feasibility step and at most 3 centering steps. The iteration
bound obtained for this algorithm coincides with the best known bound for IIPMs.

Acknowledgements The authors are very grateful to the editor and the anonymous referees for
their valuable suggestions which helped to improve the paper.
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