
J Math Model Algor (2014) 13:143–167
DOI 10.1007/s10852-013-9225-9

Encoding Binary Arithmetic Operations in Integer
Programming Formulations

Raul Conejeros ·Vassilios S. Vassiliadis ·
Thomas A. Pogiatzis

Received: 4 August 2012 / Accepted: 1 April 2013 / Published online: 3 May 2013
© Springer Science+Business Media Dordrecht 2013

Abstract This paper presents the encoding of binary arithmetic operations within
Integer Programming (IP) formulations, specifically the encoding of binary multipli-
cation and addition/subtraction. This allows the direct manipulation of integer quan-
tities represented as binary strings of arbitrary size. Many articles published in the
past within the Chemical Engineering community have used this representation of
integer quantities within Mixed-Integer formulations for Process Optimization and
Design. Applications such as these can benefit from the formulations derived in this
work. As a demonstrative application we consider the simple number factorization
problem, according to which given an odd number C factors A and B are to be
found such that C equals their product. If any such factors are found the number
is factorable, else it is proven to be prime. An IP formulation is derived involving
upper and lower bounding logical constraints to encode for the value of the binary
string digits. The formulation involves O(log C) binary variables, O((log C)2) contin-
uous variables, and O((log C)2) constraints to describe the problem. Computational
results demonstrate the validity of this approach, highlighting also the fact that such
formulations are not very tight thus resulting in large numbers of iterations of the
Branch and Bound algorithm used. It is also observed that the formulations become

R. Conejeros
Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso,
Av. Brasil 2147, Valparaíso, Chile
e-mail: rconejer@ucv.cl

V. S. Vassiliadis (B) · T. A. Pogiatzis
Department of Chemical Engineering and Biotechnology,
University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK
e-mail: vsv20@cam.ac.uk

T. A. Pogiatzis
e-mail: tp309@cam.ac.uk

144 J Math Model Algor (2014) 13:143–167

significantly tighter if logical upper bounding constraints forcing continuous variables
involved to be zero are included.

Keywords Binary strings ·Binary arithmetic ·Number factorization ·
Integer programming

1 Introduction

Integer Programming (IP) has many applications in various disciplines. In the
particular case of Chemical Engineering, IP has enjoyed significant growth over the
last three decades, with contributions both in terms of applications and formulations,
as well as novel algorithms. A textbook covering the extent of applications and
algorithms in Chemical Engineering is [8], and [9] gives a review of Mixed-Integer
techniques. Applications of IP range from the scheduling of batch plants [11, 14], to
supply chain design [18], and to the design of chemical processes [10].

Of interest to the theme of our work in this paper is IP in which the quantities
involved are integer numbers and not exclusively binary ones (0–1 programming). A
general classification of domains where such a requirement is found is

1. Production Planning [16], where resources may be constrained to be integer
(time, labour force size, quantities of materials, capacities etc.).

2. Vehicle Routing Problem (VRP) and Capacitated VRP (CVRP), where the
route selection is optimized along with the load of each vehicle [12, 17]. Routing
is carried out via the use of binary variables, while the requirement for integrality
of the quantities transported necessitates the use of integer variables

3. Network Design, optimizing both the topology of a network and the associated
line capacities [3]. Binary variables capture the design of the topology, while
integer variables are needed for integral capacities.

Logic constraints within IP are formulated frequently via the use of binary vari-
ables, but also it is possible to have conditions depending on the value of general
integer variables. The representation of integer variables within IP formulations is
straightforward, if desired, through their expansion as binary strings with the digits
represented by binary variables [1, 15].

In this paper, we demonstrate how to encode direct arithmetic operations on
integer variables via their binary expansion within the IP formulations involved. As
an application we consider the problem where a number is to be proven factorable
or prime. The aim is to demonstrate the capability of logic programming to extend
to purely abstract mathematical problems. For the particular application chosen,
extensive bibliographical searches revealed no relevant publications. This was the
case for both binary arithmetic encoding and for the problem of number factorization
via IP.

This paper is organized as follows: Section 2 develops the main theory for proving
that an integer be factorable, focusing on the integer representation of the variables
involved, Section 3 discusses in detail the development of the mathematical pro-
gramming formulation for the problem; the optimization problem and computational
results are presented in Section 4, and finally conclusions are presented in Section 5.

J Math Model Algor (2014) 13:143–167 145

2 Number Factorability Testing Formulation

The factorization of numbers and proof of primality are extensively developed
topics in Number Theory [7, 13] with a relatively recent result proving that prime
number factoring is in P [2], where P is the set of problems for which an answer
is computable in polynomial time. For the purpose of demonstrating the encoding
of binary arithmetic in IP formulations, we consider the simplest method possible,
according to which given an odd number C it may be tested for factorability by
finding factors A and B such that:

A · B = C (1)

The first number, A, may be used sequentially to divide C and test whether the
result is an integer number. If no integer A divides exactly C then the given number
is prime. In searching for a value of A sequentially it is only necessary to reach the
square root of C skipping over the even numbers. Thus for A we need to scan the
following values:

3, 5, 7, . . . ,
⌊√

C
⌋

(2)

With the above and counting the divisions as the operations of this algorithm,
only half of the numbers up to the square root of the number tested need to be
scanned at most, so we find that the algorithm’s complexity is O(1

2

√
C). We explore

this approach through IP as it is used to demonstrate the direct encoding of binary
arithmetic into IP formulations.

Numbers A, B and C are represented in binary basis by [1, 15]:

A =
N A∑
i=0

xi · 2i (3a)

B =
NB∑
j=0

y j · 2 j (3b)

C =
NC∑
k=0

tk · 2k (3c)

Variable vectors x ∈ {0, 1}(N A+1) and y ∈ {0, 1}(NB+1) are to be determined such
that the condition in Eq. 1 is satisfied. The vector t ∈ {0, 1}(NC+1) is a set of constants
which represent number C in binary format.

The size of the binary strings for numbers A and C, given by parameters NDA
and NDC, are such that:

NDA = N A + 1 =
⌊

log2

⌊√
C

⌋⌋
+ 1 (4a)

NDC = NC + 1 = ⌊
log2 C

⌋ + 1 (4b)

The size of number B may be considered to be the same as that of number C, with
the saving that both A and B must be greater or equal to 3, if C is factorable. This

146 J Math Model Algor (2014) 13:143–167

yields that A ≥ 3, hence from Eq. 1 we get that C/B ≥ 3 and B ≤ C/3. This yields
that the number of digits NDB for number B is given by:

NDB = NB + 1 =
⌊

log2

(
C
3

)⌋
+ 1

= ⌊
log2 C

⌋ − ⌊
log2 3

⌋ + 1

= ⌊
log2 C

⌋

= NDC − 1

= NC (4c)

As described in the Eqs. 4a–4c, N A, NB, and NC are one bit shorter than the
minimum binary string length required to represent the associated numbers A, B,
and C. This is so because the counting in Eqs. 3a–3c starts from index value 0 (the
0-th power of 2).

One might think that there are further savings to be made since if A has the range
[1, �√C�], thus B need only be searched for in the range [�√C	, C]. The range for B
thus appears shorter and hence fewer digits may be required. Number B would have
to be represented by:

B =
⌈√

C
⌉
+

NB∑
j=0

y j · 2 j (5)

First, when the product with number A is formed this would complicate the
resulting formulation and involve large integer numbers (�√C	 would appear in the
constraints). Second, the gains are minimal as in this case we would need NB digits
given by (dropping the rounding up/down operations):

NB = log2

(
C −√

C
)

= log2

[√
C ·

(√
C − 1

)]

= 1
2

log2 C + log
(√

C − 1
)

≈ log2 C

= NC (6)

It is noted that for big C there are thus no gains as even the restricted range of B
would require the same number of digits to represent it.

The factorability test in Eq. 1 with the definitions in Eqs. 3a–3c becomes:

N A∑
i=0

NB∑
j=0

xi · y j · 2(i+ j) =
NC∑
k=0

tk · 2k (7)

It is seen that the LHS of the equation involves bilinear terms xi · y j which are
replaced by the continuous variables zij and a set of constraints declared in Section 3.

The representation of a number C in binary format in terms of its bits tk, k =
0, 1, . . . , NC is computed by Algorithm 1.

J Math Model Algor (2014) 13:143–167 147

Algorithm 1 Number representation in binary format

NDC ← ⌊
log2 C

⌋ + 1
temp ← C
for k = NDC → 1 do

tk−1 ← temp mod 2
temp ← �temp/2�

end for

Fig. 1 Example of binary multiplication

These terms are needed once we have defined how binary multiplication is to be
encoded using logical constraints. The constraint in Eq. 7 is not used directly in the
formulation that follows.

With regards to binary arithmetic [6] we focus first on representing binary
multiplication as a stagewise addition of the multiplicand an equal number of times
to the number of digits of the multiplier, storing the intermediate addition results
explicitly. As an example, consider multiplication of B = 1111 (= binary 15) with
A = 101 (= binary 5). The multiplication is shown in levels in the example in Fig. 1,
equal to the number N A = 3 of the multiplier (using as multiplier always the smaller
number), while the number of digits required being determined by number NB = 4.

It is seen that at each level of the multiplication process we shift by one position
from the previous level sum. The resulting sum is at most equal to the number of bits
of number B plus 1 digit.

148 J Math Model Algor (2014) 13:143–167

3 Mathematical Programming Formulation: Variables and Constraints

In this section, the binary multiplication algorithm is encoded using binary variables
and appropriate constraints.

3.1 Problem Variables

The bilinear products zij = xi · y j are required, and these are defined in Eqs. 8a–8d
below, based on the fact that variables x and y are binary.

0 ≤ zij ≤ 1 (8a)

zij ≤ xi (8b)

zij ≤ y j (8c)

xi + y j − 1 ≤ zij (8d)

i = 0, 1, . . . N A; j = 0, 1, . . . , NB

There are (N A + 1) × (NB + 1), or approximately O(1
2 (log2 C)2) continuous vari-

ables zij. The above defines 3 × (N A + 1) × (NB + 1) constraints, excluding the
simple bounds on the zij variables in Eq. 8a.

Variables need to be defined for the summations’ digits of each level i =
0, 1, . . . , N A:

0 ≤ sij ≤ 1; i = 0, 1, . . . , N A; j = 0, 1, . . . , (NB + 1) (9)

There are (N A + 1) × (NB + 2) variables of this type, or approximately
O(1

2 (log2 C)2).
Variables need to be defined also for the carryover digit of the summations of

each level i = 0, 1, . . . , N A:

0 ≤ cik ≤ 1; i = 1, 2, . . . , N A; k = 0, 1, . . . , NB (10)

There are N A × (NB + 1) variables of this type, or approximately O(1
2 (log2 C)2).

We need further variables to enforce the constraint that the factors are such that
A ≤ B directly from the binary string representation (if desired to be enforced,
see later discussion). What is implemented is the two’s complement method of
subtracting factor A from factor B. First the binary subtraction summation digits’
variables are defined:

0 ≤ ss j ≤ 1; j = 0, 1, . . . , NB (11)

There are (NB + 1) variables of this type, or approximately O(log2 C).
The carryover digits of this summation are defined via the following variables:

0 ≤ cc j ≤ 1; j = 0, 1, . . . , NB (12)

There are (NB + 1) variables of this type, or approximately O(log2 C).

J Math Model Algor (2014) 13:143–167 149

Fig. 2 Binary addition structure indices

3.2 Main Constraints’ Definition

The construction of the constraints follows the addition structure within binary
multiplication, and is shown in Fig. 2.

The constraints are as follows.

Level i = 0 summation digits fixing

s0, j = z0, j; j = 0, 1, . . . , NB (13a)

s0,NB+1 = 0 (13b)

The last constraint need not be imposed directly, instead the upper bound of the
summation digit variable is set to 0.

Not counting the last constraint, there are (NB + 1) constraints here.

Level i = 1, 2, . . . , N A position k = 0 of the added number

At this position there is no previous carryover as the current position is a shifted
one. The digit si,0 is produced as a result of the summation of si−1,1 + zi,0 potentially
producing a carryover digit ci,0.

The condition relating the summation digit and the carryover digit at position k =
0 is as follows, noting that this is not strictly required in the formulation:

si,0 + 2 · ci,0 = si−1,1 + zi,0; i = 1, 2, . . . , N A (14a)

If the variables involved in the above equation were all declared to be binary it
would be sufficient on its own. For the general situation the following constraints
need to be also added.

The carryover digit ci,0 is equal to 1 only if both variables si−1,1 and zi,0 are equal
to 1.

ci,0 ≥ 1 + si−1,1 + zi,0 − 2; i = 1, 2, . . . , N A (14b)

The cases ci,0 equals 0 are to be satisfied via the objective function. Additional
constraints that would enforce this directly, although not necessary under the current
objective function in Eq. 23, are as follows: variables ci,0 are 0 if both variables si−1,1

and zi,0 are equal to 0, or one of them is equal to 1 and the other equal to 0.

ci,0 ≤ 2 − (1 − si−1,1) − (1 − zi,0) (14c)

ci,0 ≤ 2 − si−1,1 − (1 − zi,0) (14d)

150 J Math Model Algor (2014) 13:143–167

ci,0 ≤ 2 − (1 − si−1,1) − zi,0 (14e)

i = 1, 2, . . . , N A

The summation digit si,0 is equal to 1 if either one of the variables si−1,i and zi,0 is
equal to 1 and the other equal to 0.

si,0 ≥ 1 + si−1,1 + (1 − zi,0) − 2 (14f)

si,0 ≥ 1 + (1 − si−1,1) + zi,0 − 2 (14g)

i = 1, 2, . . . N A

The cases si,0 equals 0 are to be satisfied via the objective function. Additional
constraints that would enforce this directly, although not necessary under the current
objective function in Eq. 23, are as follows: variables si,0 are 0 if both variables si−1,1

and zi,0 are both equal to 1, or both of them are equal to 0.

si,0 ≤ 2 − si−1,1 − zi,0 (14h)

si,0 ≤ 2 − (1 − si−1,1) − (1 − zi,0) (14i)

i = 1, 2, . . . N A

There are 9 × N A constraints defined above, or approximately O(9
2 log2 C).

Level i = 1, 2, . . . , N A positions k = 1, 2, . . . , NB of the added number

At this position, the digit si,k is produced as a result of the summation of si−1,k+1 +
zi,k + ci,k−1 potentially producing a carryover digit ci,k.

The condition relating the summation digit and the carryover digit at position k =
1, 2, . . . , NB is as follows, noting that this is not strictly required in the formulation:

sik + 2 · cik = si−1,k+1 + zik + ci,k−1 (15a)

i = 1, 2, . . . , N A; k = 1, 2, . . . , NB

There are N A × (NB − 1) constraints of this type, or approximately
O(1

2 (log2 C)2).
If the variables involved in the above equation were all declared to be binary it

would be sufficient on its own. For the general situation the following constraints
need to be also added.

The carryover digit cik is equal to 1 only if the three variables si−1,i+k, zik, and
ci,k−1 involved are all three equal to 1, or any two of the three equal to 1 and the
other equal to 0.

cik ≥ 1 + si−1,k+1 + zik + ci,k−1 − 3 (15b)

cik ≥ 1 + si−1,k+1 + zik + (1 − ci,k−1) − 3 (15c)

J Math Model Algor (2014) 13:143–167 151

cik ≥ 1 + si−1,k+1 + (1 − zik) + ci,k−1 − 3 (15d)

cik ≥ 1 + (1 − si−1,k+1) + zik + ci,k−1 − 3 (15e)

i = 1, 2, . . . , N A; k = 1, 2, . . . , NB

There are 4 × N A × (NB − 1) constraints of this type, or approximately
O(2(log2 C)2).

The cases where cik equals 0 are to be satisfied via the objective function.
Additional constraints that would enforce this directly, although not necessary under
the current objective function in Eq. 23, are as follows: variables cik are 0 if either all
variables si−1,k+1, zik and ci,k−1 are equal to 0, or if any one of them is equal to 1 and
the other two equal to 0.

cik ≤ 3 − (1 − si−1,k+1) − (1 − zik) − (1 − ci,k−1) (15f)

cik ≤ 3 − si−1,k+1 − (1 − zik) − (1 − ci,k−1) (15g)

cik ≤ 3 − (1 − si−1,k+1) − zik − (1 − ci,k−1) (15h)

cik ≤ 3 − (1 − si−1,k+1) − (1 − zik) − ci,k−1 (15i)

i = 1, 2, . . . , N A; k = 1, 2, . . . , NB

There are 4 × N A × (NB − 1) constraints of this type, or approximately,
O(2(log2 C)2).

The summation digit sik is equal to 1 only if the three variables si−1,k+1, zik, and
ci,k−1 are all three are equal to 1, or they involve exactly one of them equal to 1 and
the other two equal to 0.

sik ≥ 1 + si−1,k+1 + zik + ci,k−1 − 3 (15j)

sik ≥ 1 + si−1,k+1 + (1 − zik) + (1 − ci,k−1) − 3 (15k)

sik ≥ 1 + (1 − si−1,k+1) + zik + (1 − ci,k−1) − 3 (15l)

sik ≥ 1 + (1 − si−1,k+1) + (1 − zik) + ci,k−1 − 3 (15m)

i = 1, 2, . . . , N A; k = 1, 2, . . . , NB

There are 4 × N A × (NB − 1) constraints of this type, or approximately,
O(2(log2 C)2).

152 J Math Model Algor (2014) 13:143–167

The cases sik equals 0 are to be satisfied via the objective function. Additional
constraints that would enforce this directly, although not necessary under the current
objective function in Eq. 23, are as follows: variables sik are 0 if either all variables
si−1,k+1, zik and ci,k−1 are equal to 0, or if any two of them are equal to 1 and the other
is equal to 0.

sik ≤ 3 − (1 − si−1,k+1) − (1 − zik) − (1 − ci,k−1) (15n)

sik ≤ 3 − si−1,k+1 − zik − (1 − ci,k−1) (15o)

sik ≤ 3 − si−1,k+1 − (1 − zik) − ci,k−1 (15p)

sik ≤ 3 − (1 − si−1,k+1) − zik − ci,k−1 (15q)

i = 1, 2, . . . , N A; k = 1, 2, . . . , NB

There are 4 × N A × (NB − 1) constraints of this type, or approximately
O(2(log2 C)2).

Level i = 1, 2, . . . , N A position k = NB + 1 of the added number

At this position, the digit si,NB+1 is produced. This is simply the carryover from the
previous position summation, at k = NB, as there are no digits above it.

si,NB+1 = ci,NB (16)

i = 1, 2, . . . , N A

There are N A constraints of this type, or approximately O(1
2 log2 C).

Matching of the input number C binary string

The input string is matched by enforcing it at the final summation level, as
described by the following constraints.

si,0 = ti (17a)

i = 0, 1, 2, . . . , N A

sN A,k = tN A+k (17b)

k = 1, 2, . . . , (NC − N A)

sN A,k = 0 (17c)

k = (NC − N A + 1), (NC − N A + 2), . . . , (NB + 1)

J Math Model Algor (2014) 13:143–167 153

Further logical constraints

Additional constraints demanding that factors A and B are both greater than 3
(they are both odd by C being odd) are the following:

N A∑
i=0

xi ≥ 2 (18a)

NB∑
j=0

y j ≥ 2 (18b)

3.3 Tightening Constraints Ensuring A ≤ B

To ensure that the factors A and B encoded in the binary vectors x and y, respec-
tively, are such that A ≤ B, we implement the binary number subtraction of B − A
using the two’s complement approach [6]. According to this, number A, which has
fewer digits than B, is padded with zeros for higher power digits, and then its digits
are complemented (flipped from 1 to 0 and vice versa, using subtraction from 1:
x′

i = 1 − xi) and the result is added to the binary representation of B, along with
the addition of 1 to the lowest digit location.

Position k = 0

At this position there is no previous carryover. The digit ss0 is produced as a result
of the summation of y0 + (1 − x0) + 1, potentially producing a carryover digit cc0.

The condition relating the summation digit and the carryover digit at position k =
0 is as follows, noting that this is not strictly required in the formulation:

ss0 + 2 · cc0 = y0 + (1 − x0) + 1 (19a)

If the variables involved in the above equation were all declared to be binary it
would be sufficient on its own. For the general situation the following constraints
need to be also added.

The carryover digit cc0 is equal to 1 only if both y0 and (1 − x0) are equal to 1, or
when only one of these terms is 1 and the other is 0.

cc0 ≥ 1 + y0 + (1 − x0) − 2 (19b)

cc0 ≥ 1 + y0 + x0 − 2 (19c)

cc0 ≥ 1 + (1 − y0) + (1 − x0) − 2 (19d)

The cases cc0 equals 0 are to be satisfied via the objective function. Additional
constraints that would enforce this directly, although not necessary under the current
objective function in Eq. 23, are as follows: variable cc0 is 0 if both y0 and (1 − x0)

are equal to 0.

cc0 ≤ 2 − (1 − y0) − x0 (19e)

154 J Math Model Algor (2014) 13:143–167

The summation digit ss0 is equal to 1 if either y0 and (1 − x0) are both equal to 1,
or both terms are equal to 0.

ss0 ≥ 1 + y0 + (1 − x0) − 2 (19f)

ss0 ≥ 1 + (1 − y0) + x0 − 2 (19g)

The cases ss0 equals 0 are to be satisfied via the objective function. Additional
constraints that would enforce this directly, although not necessary under the current
objective function in Eq. 23, are as follows: variable ss0 is 0 if either one of y0 and
(1 − x0) is equal to 1 and the other is equal to 0.

ss0 ≤ 2 − y0 − x0 (19h)

ss0 ≤ 2 − (1 − y0) − (1 − x0) (19i)

There are 9 constraints defined above.

Position k = 1, 2, . . . , N A

The digit ssk is produced as a result of the summation of yk + (1 − x0) + cck−1,
potentially producing a carryover digit cck.

The condition relating the summation digit and the carryover digit at position k =
1, 2, . . . , N A is as follows, noting that this is not strictly required in the formulation:

ssk + 2 · cck = yk + (1 − xk) + cck−1 (20a)

k = 1, 2, . . . , N A

If the variables involved in the above equation were all declared to be binary it
would be sufficient on its own. For the general situation the following constraints
need to be also added.

The carryover digit cck is equal to 1 only if all of yk, (1 − xk) and cck−1 are equal
to 1, or when only two of these terms are 1 and the other is 0.

cck ≥ 1 + yk + (1 − xk) + cck−1 − 3 (20b)

cck ≥ 1 + yk + (1 − xk) + (1 − cck−1) − 3 (20c)

cck ≥ 1 + yk + xk + cck−1 − 3 (20d)

cck ≥ 1 + (1 − yk) + (1 − xk) + cck−1 − 3 (20e)

k = 1, 2, . . . , N A

The cases cck equals 0 are to be satisfied via the objective function. Additional
constraints that would enforce this directly, although not necessary under the current

J Math Model Algor (2014) 13:143–167 155

objective function in Eq. 23, are as follows: variable cck is 0 if all of yk, (1 − xk) and
cck−1 are equal to 0, or any two are equal to 0 and the other one is equal to 1.

cck ≤ 3 − (1 − yk) − xk − (1 − cck−1) (20f)

cck ≤ 3 − (1 − yk) − xk − cck−1 (20g)

cck ≤ 3 − (1 − yk) − (1 − xk) − (1 − cck−1) (20h)

cck ≤ 3 − yk − xk − (1 − cck−1) (20i)

k = 1, 2, . . . , N A

The summation digit ssk is equal to 1 if all of yk, (1 − xk) and cck−1 are equal to 1,
or if only one of them is equal to 1 and the other two terms are equal to 0.

ssk ≥ 1 + yk + (1 − xk) + cck−1 − 3 (20j)

ssk ≥ 1 + yk + xk + (1 − cck−1) − 3 (20k)

ssk ≥ 1 + (1 − yk) + (1 − xk) + (1 − cck−1) − 3 (20l)

ssk ≥ 1 + (1 − yk) + xk + cck−1 − 3 (20m)

k = 1, 2, . . . , N A

The cases ssk equals 0 are to be satisfied via the objective function. Additional
constraints that would enforce this directly, although not necessary under the current
objective function in Eq. 23, are as follows: variable ssk is 0 if all of yk, (1 − xk) and
cck−1 are equal to 0, or any two are equal to 1 and the other one is equal to 0.

ssk ≤ 3 − (1 − yk) − xk − (1 − cck−1) (20n)

ssk ≤ 3 − yk − (1 − xk) − (1 − cck−1) (20o)

ssk ≤ 3 − yk − xk − cck−1 (20p)

ssk ≤ 3 − (1 − yk) − (1 − xk) − cck−1 (20q)

There are 17 × N A constraints defined above, or approximately O(17
2 log2 C).

Position k = (N A + 1), (N A + 2), . . . , NB

156 J Math Model Algor (2014) 13:143–167

The digit ssk is produced as a result of the summation of yk + cck−1 + 1 potentially
producing a carryover digit cck.

The condition relating the summation digit and the carryover digit at position k =
(N A + 1), (N A + 2), . . . , NB is as follows, noting that this is not strictly required in
the formulation:

ssk + 2 · cck = yk + cck−1 + 1 (21a)

k = (N A + 1), (N A + 2), . . . , NB

If the variables involved in the above equation were all declared to be binary it
would be sufficient on its own. For the general situation the following constraints
need to be also added.

The carryover digit cck is equal to 1 only if both of yk and cck−1 are equal to 1, or
when either one of them is equal to 1 and the other equal to 0.

cck ≥ 1 + yk + cck−1 − 2 (21b)

cck ≥ 1 + yk + (1 − cck−1) − 2 (21c)

cck ≥ 1 + (1 − yk) + cck−1 − 2 (21d)

k = (N A + 1), (N A + 2), . . . , NB

The cases cck equals 0 are to be satisfied via the objective function. Additional
constraints that would enforce this directly, although not necessary under the current
objective function in Eq. 23, are as follows: variable cck is 0 if both of yk and cck−1

are equal to 0.

cck ≤ 2 − (1 − yk) − (1 − cck−1) (21e)

The summation digit ssk is equal to 1 if both of yk and cck−1 are equal to 1, or if
both are equal to 0.

ssk ≥ 1 + yk + cck−1 − 2 (21f)

ssk ≥ 1 + (1 − yk) + (1 − cck−1) − 2 (21g)

k = (N A + 1), (N A + 2), . . . , NB

The cases ssk equals 0 are to be satisfied via the objective function. Additional
constraints that would enforce this directly, although not necessary under the current
objective function in Eq. 23, are as follows: variable ssk is 0 if either one of yk and
cck−1 is equal to 1, and the other one is equal to 0.

ssk ≤ 2 − yk − (1 − cck−1) (21h)

ssk ≤ 2 − (1 − yk) − cck−1 (21i)

J Math Model Algor (2014) 13:143–167 157

There are 9 × (NB − N A − 1) constraints defined above, or approximately
O(9

2 log2 C).

Position “k = NB + 1”

The digit ccNB would be the digit assigned to the (NB + 1)th final digit of the
summation. Based on subtraction of binary numbers using the two’s complement
method, if this digit is equal to 1 we discard it indicating that the previous digits of
the summation carry the difference of B − A and that B > A. If this digit is 0, this
indicates that B < A. To exclude such solutions from the optimization problem, we
simply impose the following single constraint:

ccNB = 1 (22)

3.4 Objective Function

The objective function does not reflect any quantity derived from the underlying
factorization problem: it is just a means to set the continuous variables s, c, ss and cc
to zero, if they are left loose by the lower bounding constraints defined throughout
the formulation.

min
x,y,s,c,ss,cc

N A∑
i=0

NB+1∑
j=0

sij +
N A∑
i=1

NB∑
k=0

cik +
NB∑
j=0

(ss j + ccj) (23)

If the variables involved are defined as binary also, then the objective serves no
purpose other than complete the feasibility problem as an optimization problem.

4 Optimization Problem and Computational Results

The optimization problem involves the objective function in Eq. 23, subject to the
constraints defined by equations in Sections 3.2 and 3.3.

Of these we may wish to consider including the upper bounding constraints for
the continuous variables, as outlined in the various parts of the formulation, and to
include also the constraints that ensure A ≤ B if so desired.

Running this problem with a factorable number C produces feasible solutions with
variables s, c, ss and cc attaining integer values (either 0 or 1 only). The run must be
terminated at the first feasible all-integer solution, which proves the number to be
factorable. Running with a prime number C should produce an infeasible solution at
the point of exhaustion of the Branch and Bound (BB) tree. This would prove the
number to be prime.

Here we present results for four types of formulation of the factorization problem.
The formulations follow.

4.1 Model I

This model is comprised of the objective function in Eq. 23 and the constraints given
by Eqs. 8a–8d, 9, 10, 13a, 13b, 14a, 14b, 14f, 14g, 15a–15e 15j–15m, 16, 17a–17c,
18a, 18b. Upper bounding constraints for the continuous variables and constraints

158 J Math Model Algor (2014) 13:143–167

enforcing A < B are not included. Thus, variables ss and cc do not occur in this
model.

4.2 Model II

This model is comprised of all the constraints and objective of Model I, with
additional upper bounding constraints for the continuous variables s and c. The addi-
tional constraints are given by Eqs. 14c–14e, 14h, 14i, 15f–15i, 15n–15q. Constraints
enforcing A < B are not included, thus variables ss and cc do not occur in this model.

4.3 Model III

This model is comprised of all the constraints and objective of Model I, with
additional constraints enforcing A < B. The additional constraints are given by
Eqs. 11, 12, 19a–19d, 19f, 19g, 20a–20e, 20j–20m, 21a–21d, 21f, 21g, 22. Variables
ss and cc are required in this model.

4.4 Model IV

This model is comprised of all the constraints and objective of Model III, with
the additional upper bounding constraints on the continuous variables ss and cc,
enforcing A < B. The additional constraints are given by Eqs. 19e, 19h, 19i, 20f–20i,
20n–20q, 21e, 21h, 21i. Variables ss and cc are required in this model.

4.5 Computational Results and Discussion

Table 1 presents the various case studies considered along with a description of the
size of the resulting optimization problems. Table 2 displays the resource usage for
the solver CPLEX version 10 [5]. Finally, Table 3 reports the factors A and B for
each number C considered in the case studies.

All case studies were run on an INTEL Core i5 2.4 GHz computer, using the
Mixed-Integer Linear Programming solver CPLEX, interfaced with the GAMS
modeling language [4]. All options were left at the default values, except biasing
the search for the generation of integer solutions, and terminating the run after the
first integer solution is discovered.

In general, provision of upper bounding logical constraints on the continuous
variables is beneficial in terms of computational performance. Thus usually Model
II performs better than Model I, and Model IV better than Model III.

In terms of enforcing the constraint that factors A and B are such that A < B,
it only makes a difference in the results of Case 3. In fact for larger numbers this
condition is satisfied by all formulations computationally, and moreover it does not
contribute to make the search faster but has the opposite in making convergence
much slower. Thus Model III is slower than Model I, and Model IV is slower than
Model II.

The use of computational resources during the solution of the models with the
BB algorithm of CPLEX are summarised in various figures, each analysing the
performance of the 4 different models proposed in this work for each of the 12 integer
numbers C tested for primality. Specifically, Fig. 3 shows the total number of nodes

J Math Model Algor (2014) 13:143–167 159

T
ab

le
1

C
as

e
st

ud
y

de
sc

ri
pt

io
ns

C
as

e
#

C
P

ri
m

e
N

A
N

B
N

C
M

od
el

I
II

II
I

IV

B
.V

.
C

.V
.

C
on

st
r.

B
.V

.
C

.V
.

C
on

st
r.

B
.V

.
C

.V
.

C
on

st
r.

B
.V

.
C

.V
.

C
on

st
r.

1
35

N
2

4
5

8
57

14
9

8
57

22
3

8
67

18
6

8
67

28
5

2
37

Y
2

4
5

8
57

14
9

8
57

22
3

8
67

18
6

8
67

28
5

3
32

3
N

4
7

8
13

13
9

42
5

13
13

9
66

9
13

15
5

48
6

13
15

5
77

4
4

33
1

Y
4

7
8

13
13

9
42

5
13

13
9

66
9

13
15

5
48

6
13

15
5

77
4

5
5,

82
5

N
6

11
12

19
27

9
92

3
19

27
9

1,
48

1
19

30
3

1,
01

4
19

30
3

1,
63

8
6

5,
82

1
Y

6
11

12
19

27
9

92
3

19
27

9
1,

48
1

19
30

3
1,

01
4

19
30

3
1,

63
8

7
72

,7
39

N
7

14
15

23
39

2
1,

33
4

23
39

2
2,

15
3

23
42

2
1,

44
6

23
42

2
2,

34
5

8
63

,8
09

Y
7

14
15

23
39

2
1,

33
4

23
39

2
2,

15
3

23
42

2
1,

44
6

23
42

2
2,

34
5

9
83

7,
53

7
N

9
18

19
29

61
0

2,
14

4
29

61
0

3,
48

5
29

64
8

2,
28

6
29

64
8

3,
72

9
10

83
5,

84
7

Y
9

18
19

29
61

0
2,

14
4

29
61

0
3,

48
5

29
64

8
2,

28
6

29
64

8
3,

72
9

11
6,

61
1,

55
3

N
11

21
22

34
83

9
3,

00
8

34
83

9
4,

91
1

34
88

3
3,

14
7

34
88

3
5,

19
8

12
6,

71
1,

71
3

Y
11

21
22

34
83

9
3,

00
8

34
83

9
4,

91
1

34
88

3
3,

17
4

34
88

3
5,

19
8

A
bb

re
vi

at
io

ns
ar

e:
“B

.V
.”

is
bi

na
ry

va
ri

ab
le

s,
“C

.V
.”

is
co

nt
in

uo
us

va
ri

ab
le

s,
“C

on
st

r.
”

is
co

ns
tr

ai
nt

s

160 J Math Model Algor (2014) 13:143–167

T
ab

le
2

C
as

e
st

ud
y

co
m

pu
ta

ti
on

al
ef

fo
rt

C
as

e
#

M
od

el

I
II

II
I

IV

C
P

U
(s

)
N

od
es

It
er

.
C

P
U

(s
)

N
od

es
It

er
.

C
P

U
(s

)
N

od
es

It
er

.
C

P
U

(s
)

N
od

es
It

er
.

1
<

1
0

24
<

1
0

15
<

1
0

31
<

1
0

18
2

<
1

0
14

<
1

0
10

<
1

0
27

<
1

0
14

3
<

1
0

44
<

1
0

48
<

1
0

14
3

<
1

0
13

2
4

<
1

0
10

4
<

1
0

86
<

1
0

12
7

<
1

0
15

8
5

<
1

28
1

14
,7

14
<

1
16

91
9

<
1

30
9

14
,6

09
<

1
22

1,
42

2
6

1
40

0
17

,5
89

<
1

10
0

5,
52

0
<

1
20

0
10

,0
62

<
1

10
0

5,
94

8
7

1
17

2
12

,6
70

2
19

7
18

,0
41

8
1,

39
1

10
6,

09
3

1
10

6
11

,1
18

8
15

3,
30

0
20

6,
18

3
6

40
0

50
,6

97
23

4,
20

0
29

5,
41

9
15

1,
10

0
12

6,
71

8
9

20
7

13
,8

10
1,

75
5,

54
8

18
63

2
11

1,
32

8
36

0
20

,0
94

2,
94

4,
11

1
93

3,
31

3
57

2,
64

8
10

19
0

15
,9

00
1,

79
1,

17
1

78
2,

70
0

48
9,

05
1

28
8

19
,2

00
2,

62
6,

21
3

64
1,

90
0

40
8,

40
2

11
2,

49
7

59
,1

94
15

,7
62

,4
36

28
37

6
12

8,
54

0
2,

35
8

53
,1

78
14

,5
02

,9
78

20
8

2,
31

9
92

3,
90

4
12

3,
90

5
11

7,
60

0
25

,3
11

,1
71

93
8

11
,6

00
4,

26
2,

02
4

12
,5

57
35

7,
70

0
74

,0
69

,4
30

1,
02

3
13

,2
00

4,
42

1,
52

3

“I
te

r.
”

st
an

ds
fo

r
C

P
L

E
X

it
er

at
io

ns
,x

“N
od

es
”

ar
e

th
e

B
B

tr
ee

no
de

s
ex

am
in

ed

J Math Model Algor (2014) 13:143–167 161

Table 3 Case study factors obtained

Case # Model

I II III IV

A B A B A B A B

1 5 7 5 7 5 7 5 7
2 − − − − − − − −
3 19 17 19 17 17 19 17 19
4 − − − − − − − −
5 25 233 25 233 25 233 5 1,165
6 − − − − − − − −
7 9 6,977 9 6,977 9 6,977 9 6,977
8 − − − − − − − −
9 3 279,179 3 279,179 3 279,179 3 279,179
10 − − − − − − − −
11 117 56,509 13 508,581 3 2,203,851 3 2,203,851
12 − − − − − − − −
Dashes indicate the factors do not exist as C is prime

106

(a)
105

N
u

m
b

er
 o

f
n

o
d

es

104

103

103 104 105

C
106 107

102

10

1

105

(b)

N
u

m
b

er
 o

f
n

o
d

es

104

103

103 104 105

C
106 107

102

10

1

106

(c)
105

N
u

m
b

er
 o

f
n

o
d

es

104

103

103 104 105

C
106 107

102

10

1

105

(d)

N
u

m
b

er
 o

f
n

o
d

es

104

103

103 104 105

C
106 107

102

10

1

Fig. 3 Number of nodes in BB tree versus number C tested. a Model I, b Model II, c Model III and
d Model IV

162 J Math Model Algor (2014) 13:143–167

104
C

P
U

 t
im

e
(s

)

103

102

10

1

103

C
P

U
 t

im
e

(s
) 102

10

1

105

104

C
P

U
 t

im
e

(s
)

103

102

10

1

104

C
P

U
 t

im
e

(s
)

103

102

10

1

(a) (b)

(c) (d)

103 104 105

C
106 107 103 104 105

C
106 107

103 104 105

C
106 107 103 104 105

C
106 107

Fig. 4 Total CPU time (seconds) versus number C tested. a Model I, b Model II, c Model III and
d Model IV

used in the BB trees, Fig. 4 shows the total CPU time usage, and Fig. 5 shows the
average CPU time cost of each of the nodes in the BB trees.

The data plotted in all of these three figures show clearly an exponential trend
which reveals the observed (experimental) computational complexity of the models,
which is a function of both the models used as well as the specific internal imple-
mentation of the BB algorithm used in CPLEX. The data presented in these figures
have been correlated with exponential functions and the results are summarised in
Table 4.

4.6 Experimentally Determined Complexity of Number of Nodes in BB Tree

The experimentally determined average complexity of the number of nodes in the
BB tree for the four proposed models is approximately O(C0.77). The best complexity
is achieved for Model II which is approximately O(C0.63). The MIP formulations pre-
sented involve approximately O(3

2 log2 C) binary variables. If the full combinatorial
complexity of the problem were to be realised during solution, then the number of
nodes in the BB tree would be approximately O(2

3
2 log2 C) = O(C1.5). It is evident that

the number of nodes in increasing size problems grows exponentially with power 0.63

J Math Model Algor (2014) 13:143–167 163

10-1

10-2

C
o

st
 o

f
n

o
d

e

10-3

10-1

C
o

st
 o

f
n

o
d

e

10-2

10-3

10-1

10-2

C
o

st
 o

f
n

o
d

e

10-3

10-1

C
o

st
 o

f
n

o
d

e

10-2

10-3

(a) (b)

(c) (d)

103 104 105

C
106 107 103 104 105

C
106 107

103 104 105

C
106 107 103 104 105

C
106 107

Fig. 5 Average CPU time (seconds) per node of BB tree versus number C tested. a Model I, b Model
II, c Model III and d Model IV

(for Model II) which is smaller than the worst complexity expected for the models; in
fact it is less than the square root, approximately, of the full combinatorial complexity
of the MIP models.

The actual complexity of the original factorization algorithm considered is O(C0.5)

which shows that computationally the present implementation we tested (and BB
solver) results in slightly increased complexity. Thus computationally the models
tested do not seem to offer an advantage with the present state of the formulations
proposed.

The node complexity is what may be considered as the absolute complexity of the
BB method. However as we shall see below the actual complexity as measured by
the CPU time is of even higher value than this.

4.7 Experimentally Determined CPU Time Complexity of BB Runs

The experimentally determined CPU time average complexity of the CPU time in
the BB trees for the four proposed models is approximately O(C1.04). The best
complexity is achieved for Model II which is approximately O(C0.77). This is the
actual cost of importance for practical application. Based on this, it is also clear that

164 J Math Model Algor (2014) 13:143–167

Table 4 Fitted exponential models for resource usage indicators

Model Fitted function Correlation coefficient

Total nodes in BB tree
I 0.1759 × C0.82 0.8496
II 0.2523 × C0.6268 0.5338
III 0.1145 × C0.889 0.9434
IV 0.0949 × C0.7467 0.7374

Total CPU time (seconds)
I 8.0 × 10−6 × C1.2413 0.9083
II 0.0009 × C0.7662 0.7444
III 2.0 × 10−5 × C1.2403 0.9644
IV 0.0002 × C0.9319 0.8548

CPU time (seconds) per node of BB tree
I 7.0 × 10−5 × C0.3934 0.9754
II 0.0005 × C0.3156 0.9052
III 0.0002 × C0.3318 0.914
IV 0.0004 × C0.3355 0.8954

computational times for our case studies could become prohibitive if we decided to
increase the number tested for factorability: based on the average complexity of all
models an increase by 1 digit would result in a 10-fold increase of CPU times, while
increasing by 3 digits would result in a 1000-fold increase in CPU time.

This complexity is higher than the one for the total number of nodes in the BB
trees. This leads to the interesting question as to how what is the average complexity
per node of the trees that the present implementation seems to involve. This is
calculated next.

4.8 Experimentally Determined Average CPU Time Complexity Per Node
of the BB Trees

By dividing the total CPU time by the total number of nodes in each run we calculate
the average CPU time per node. This indicator is experimentally determined on
average for the four proposed models to be approximately O(C0.34). The best
complexity is achieved for Model II which is O(C0.32).

This shows that the average cost per node grows roughly with the cubic root of the
size of the problem (magnitude of the integer number tested). Contrary to this we
would have expected the Simplex method we used in our solver options to involve
heuristically a cost that is proportional to the size of the problem tested, or at most a
low power of it. Our models have a size complexity of O((log C)2), both for the size
of total variables and constraints.

4.9 Overall Discussion of Experimental Results

From the above data it is clear that the best observed computational complexity is
achieved for Model II. This contains the basic binary arithmetic constraints, with
the addition of upper bounding constraints for the values of the variables of the
formulation. Model III and Model IV which contain the constraints encoding that
the factors are related by A < B are more computationally intensive.

J Math Model Algor (2014) 13:143–167 165

A particular interesting observation is also made for Case 9 and 10, ran with Model
III and Model IV. Although the numbers are of the same number of digits and Case
9 is a factorable number while Case 10 is a prime number, the effort to solve the
former (iterations, nodes and CPU time) is greater than for the latter. One possible
explanation for this is that the number in Case 9 is actually larger than that of Case
10. Apart from this, the BB method is essentially a heuristic and the path followed
during the implicit enumeration of the search tree can vary in unpredictable ways for
cases where the formulation is effectively of the same size (the two numbers are very
close to each other).

5 Conclusions

The main idea presented in the paper is the direct handling of arithmetic operations
on integer numbers of arbitrary size represented encoded as binary strings, using
binary variables to represent their digits within IP formulations. Often general
integers are represented as summations of powers of two, multiplied by binary
variables, and for this case we demonstrate how multiplication, addition and compar-
isons of magnitude of two numbers are encoded by appropriate integer constraints
and cuts.

As an example, the factorization of an integer number C is considered and for-
mulated as an optimization problem. The algorithm encoded is based on successive
divisions of the number, and is known to have the worst complexity of all factoriza-
tion methods. We encoded this algorithm as a set of integer constraints expecting
the IP formulation to be somewhat better in terms of gross operations required
(nodes in the BB enumeration tree). The case is that even as an IP formulation the
algorithm is not competitive with other existing methods. It is notable that nowhere
the formulation utilizes explicitly either the number C to be factorized or its square
root, so ordinary arithmetic (as opposed to extended arithmetic for large numbers)
mathematical programming software may be used even for numbers with a very large
number of digits.

The formulation may require many BB iterations (nodes) to prove factorability
as numerical experiments have shown, as the lower bounds obtained for the nodes
may be too loose to fathom quickly parts of the BB tree. The numerical experiments
conducted and reported in this work demonstrate clearly that this is the case for large
numbers.

The IP formulation involves (N A + NB + 2) binary variables. That approxi-
mately translates to O(3

2 log2 C) binary variables, which yields a maximum complex-
ity of all the combinations of the binary variables to be O(C3/2). This is higher than
the brute-force division algorithm which is O(1

2

√
C), but a lot of the combinations

of the binary variables are infeasible due to the logical constraints imposed. This is
verified by the computational results but unfortunately the resulting experimentally
determined complexity is higher than that of the original factorization algorithm
encoded in the MIP formulations.

The computational results obtained demonstrate the correctness of our formula-
tion and its viability, however for the specific application of number factorization the
computational performance was poor especially for large integers. This is primarily
due to the fact that the objective function used does not convey any meaning related

166 J Math Model Algor (2014) 13:143–167

to the underlying problem, and thus the lower bounding procedure is not tight
enough to fathom BB tree nodes quickly.

In terms of the experimentally determined complexities of the overall implemen-
tation, the complexity in terms of nodes in the BB tree grows much slower than
the full combinatorial complexity of the MIP models. However, when compounded
with the also exponentially growing complexity that the experimental results indicate
to be required at each node, the total CPU complexity is bigger. Overall, the
node complexity alone is slightly bigger than that of the original factorization
method considered and transcribed into the MIP models, which makes the present
implementation non-competitive. The computationally determined complexities also
make it clear that much larger integer numbers could not be tried with the present
implementation as this would require excessive computational times.

The significance of this work is in the demonstration of the encoding of binary
arithmetic directly into IP formulations and the derivation of suitable cuts to reduce
the search space. In particular if large integers are represented as binary strings
through the use of binary variables, it is demonstrated how basic operations like
multiplication, addition and subtraction are implemented directly. It is further
demonstrated how logical comparisons on the size of integer values are also achieved
using this encoding, as for example with the comparison of the magnitude of factors
A and B, through the two’s complement subtraction method. The results highlight
the necessity to include upper bounding logical constraints on continuous variables
representing binary digits resulting from arithmetic operations, with significant
impact on the reduction of the computational effort.

Further work following from what is presented in this paper needs to consider
alternative tightening constraint schemes to improve the lower bounds generated by
each LP solution at the nodes of the BB tree. This would increase the fathoming
of nodes and accelerate convergence. Also, some consideration will be necessary in
order to explain and improve the experimentally observed complexity of the average
cost of each node.

Acknowledgements Funding from Onassis Foundation for Thomas A. Pogiatzis is gratefully
acknowledged.

References

1. Adams, W.P., Henry, S.M.: Base-2 expansions for linearizing products of functions of discrete
variables. Oper. Res. 60(6), 1477–1490 (2012)

2. Agrawal, M., Kayal, N., Saxena, N.: Primes is in p. Ann. Math. 2, 781–793 (2002)
3. Bienstock, D., Chopra, S., Günlük, O., Tsai, C.Y.: Minimum cost capacity installation for multi-

commodity network flows. Math. Program. 81, 177–199 (1998)
4. Brooke, A., Kendrick, D., Meeraus, A.: GAMS: A User’s Guide. Scientific Press, Palo Alto, CA

(1988)
5. CPLEX: Using the CPLEX Callable Library. ILOG Inc., CPLEX Division, 930 Tahoe Blvd.

#802-279, Incline Village, NV 89451-9436, USA (1997)
6. Dandamudi, S.P.: Fundamentals of Computer Organization and Design. Springer (2003)
7. Dietzfelbinger, M.: Primality Testing in Polynomial Time. Springer (2004)
8. Floudas, C.: Nonlinear and Mixed-Integer Optimization. Oxford University Press, 198, Madison

Avenue, New York, New York 10016, USA (1995)
9. Grossmann, I.E.: Review of nonlinear mixed-integer and disjunctive programming techniques.

Optim. Eng. 3, 227–252 (2002)

J Math Model Algor (2014) 13:143–167 167

10. Grossmann, I.E., Caballero, J.A., Yeomans, H.: Mathematical programming approaches to the
synthesis of chemical process systems. Korean J. Chem. Eng. 16, 407–426 (1999)

11. Harjunkoski, I., Grossmann, I.E.: Decomposition techniques for multistage scheduling problems
using mixed-integer and constraint programming methods. Comput. Chem. Eng. 26(11), 1533–
1552 (2002)

12. Laporte, G., Nobert, Y.: A branch and bound algorithm for the capacitated vehicle routing
problem. Oper. Res. Spectrum. 5, 77–85 (1983)

13. Manin, Y.I., Panchishkin, A.A.: Introduction to Modern Number Theory. Springer
(2007)

14. Méndez, C.A., Cerdá, J., Grossmann, I.E., Harjunkoski, I., Fahl, M.: State-of-the-art review of
optimization methods for short-term scheduling of batch processes. Comput. Chem. Eng. 30(6–
7), 913–946 (2006)

15. Muldoon, F.M., Adams, W.P., Sherali, H.D.: Ideal representations of lexicographic orderings and
base-2 expansions of integer variables. Oper. Res. Lett. 41(1), 32–39 (2013)

16. Pochet, Y., Wolsey, L.: Production Planning by Mixed Integer Programming (Springer Series
in Operations Research and Financial Engineering). Springer-Verlag New York, Inc., Secaucus,
NJ, USA (2006)

17. Ralphs, T.K., Kopman, L., Pulleyblank, W.R., Trotter, L.E.: On the capacitated vehicle routing
problem. Math. Program. 94, 343–359 (2003)

18. You, F., Grossmann, I.E.: Mixed-integer nonlinear programming models and algorithms for
large-scale supply chain design with stochastic inventory management. Ind. Eng. Chem. Res.
47(20), 7802–7817 (2008)

	Encoding Binary Arithmetic Operations in Integer Programming Formulations
	Abstract
	Introduction
	Number Factorability Testing Formulation
	Mathematical Programming Formulation: Variables and Constraints
	Problem Variables
	Main Constraints' Definition
	Tightening Constraints Ensuring AB
	Objective Function

	Optimization Problem and Computational Results
	Model IQ3Please check capturing of section levels if correct.
	Model IIQ3
	Model IIIQ3
	Model IVQ3
	Computational Results and DiscussionQ3
	Experimentally Determined Complexity of Number of Nodes in BB TreeQ3
	Experimentally Determined CPU Time Complexity of BB RunsQ3
	Experimentally Determined Average CPU Time Complexity Per Node of the BB TreesQ3
	Overall Discussion of Experimental ResultsQ3

	Conclusions
	References

