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Abstract The present paper considers the optimisation version of the Eternity II
puzzle problem and unsigned edge matching puzzles in general. The goal of this
optimisation problem is to maximise the number of matching edges in the puzzle.
In 2010, the META Eternity II contest awarded the best performing metaheuristic
approach to this hard combinatorial optimisation problem. The winning hyper-
heuristic of the contest is subject of this paper. Heuristic design decisions are
motivated based on the results of extensive experiments. Furthermore, new results
for the Eternity II puzzle problem are presented. The main contribution of this paper
is the description of a novel guide-and-observe search mechanism combining a set of
objectives. The approach significantly outperforms search methods guided by the
default objective only.

Keywords Eternity II · Edge matching puzzles · Hyper-heuristics ·
Guide-and-observe

1 Introduction

The Eternity II (EII) puzzle is an edge matching puzzle consisting of 256 square tiles
that need to be placed on a regular 16 by 16 grid. Each tile has four edges featuring a
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coloured pattern. The goal of the puzzle is to rotate these tiles and place them on the
grid in such a way that the shared edge between any two adjacent tiles is matched,
i.e. the patterns of adjacent tiles at the shared edge should be the same. Furthermore,
some tiles have grey edges that need to be matched to the border of the puzzle.

The Eternity II puzzle was created by Christopher Monckton and released by
toy distributor Tomy UK Ltd. in July 2007. The company pledged to offer a cash
prize of $2 million to the first person that completely solves the puzzle. However,
as of December 31st, 2010 no complete solution has been submitted and the final
scrutiny date for the cash prize has passed. In 2010 a competition was organized for
the 3rd International Conference on Metaheuristics and Nature Inspired Computing
(META’10, Djerba Island, Tunisia). Contestants were required to develop a meta-
heuristic or a nature inspired algorithm for solving Eternity II puzzles. However, the
focus was not on solving the puzzle completely, but rather on trying to find the best
partial solution. Thus, one in which all tiles are assigned a position on the board
capable of maximising the number of matched edges. Contestants were asked to test
their algorithms on a set of benchmark instances, and to submit their algorithm while
reporting on their results. From these submissions, three finalists were selected and
invited to present their approach at the META’10 conference. In a final selection
round, the finalists’ submitted algorithms were tested on the real Eternity II puzzle.
The authors presented the best performing algorithm (results averaged over 30 runs
of 1 h each) and they were declared the winner. In this paper, we present the
components of the winning solution method.

Section 2 gives an overview of the available literature related to optimising the
Eternity II puzzle. In Sections 3 and 4 we elaborate on the details, algorithmic
components and the parameter settings. In Section 5 we discuss the experiments that
eventually have led to the algorithm submitted to the META’10 contest. Finally, we
conclude in Section 6 and give directions for future research.

2 Literature Overview

The Eternity II puzzle belongs to a more general class of Edge Matching Puzzles
(EMPs). Demaine and Demaine [7] show that for EMPs in general, determining
whether a complete solution exists is NP-complete. Antoniadis and Lingas [2] show
that the problem is APX-complete, thus proving that Edge Matching Puzzles do not
admit polynomial-time approximation schemes unless P = N P.

Due to the nature of the problem, several CSP approaches have been developed,
in addition to some evolutionary and meta-heuristic methods. Table 1 shows an
overview of the literature on optimisation approaches to Eternity II.

Ansótegui et al. [1] studied generic edge matching puzzles with frame (GEMP-F)
as SAT/CSP benchmarks. They provide some hardness experiments for both one-
set GEMP-Fs and two-set GEMP-Fs. Several SAT and CSP solvers are compared
on self generated instances of size n = {7, 8} with different numbers of colours for
one-set GEMP-Fs and on instances of size n = {6, 7} for two-set GEMP-Fs.

Schaus and Deville [15] described a successful two-phase approach to the real
EII puzzle. In the first phase an initial solution is constructed by means of a con-
straint programming approach applied to relaxed problem instances. These relaxed
instances are based on the original instances in which some of the edge-matching
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Table 1 Literature overview summary for Eternity II

Methods Puzzle type nmax

Ansótegui et al. [1] SAT/CSP Benchmark 7
Schaus and Deville [15] CSP, tabu search Real puzzle 16
Heule [10] SAT Clue puzzles, benchmark 14
Muñoz et al. [13] GA, MOEA Real puzzle 16
Wang and Chiang [18] Tabu search Real puzzle, benchmark 16
Coelho et al. [6] GVNS Real puzzle, benchmark 16
Vancroonenburg et al. [17] Hyper-heuristic Real puzzle, benchmark 16

constraints of non edge-adjacent pieces are excluded. A second phase is a tabu search
method based on a very efficient large neighbourhood that optimally swaps and
rotates a set of non edge-adjacent pieces. They are capable of reaching scores up
to 458/480 on the real puzzle.

Edge Matching Problems are translated into SAT problems and solved using
different SAT solvers in Heule [10]. The instances under consideration are the real
clue puzzles and some benchmark puzzles up to size n = 14.

Muñoz et al. [13] consider a genetic algorithm and a multi-objective evolutionary
algorithm. Some simple crossover and mutation methods, based on the exchange
and rotation of regions, are applied. Further on, multiple objectives are used and
combined into one weighted objective. Experiments showed that these evolutionary
approaches are not able to outrun an exhaustive search. The highest score reached
on the real puzzle was 371/480.

At the META’10 contest, several metaheuristic approaches for solving Edge
Matching Puzzles were compared. The experiments were performed on the real
puzzle and on a number of benchmark problems up to size n = 16. The allowed time
for solving the puzzles of size n = 16 was 60 min. Wang and Chiang [18] described a
two-phase approach mainly based on tabu search [9], using simple swap and rotate
neighbourhoods. Coelho et al. [6] proposed an approach combining multi-start and
general variable neighbourhood search (GVNS), also using simple swap and rotate
neighborhoods. Vancroonenburg et al. [17], described a two-phased hyper-heuristic
method combined with a backtracking search for generating initial solutions. Several
basic neighbourhoods were used, including swap and rotate, in addition to more
advanced ones. The approach, that is elaborated on in this paper, was able to reach
scores up to 460/480 on the real puzzle and was also the winner of the contest.

3 Problem Description

In the optimisation version of the general unsigned1 edge matching puzzle problem,
a set of N = n2 square tiles need to be rotated and placed on an n × n grid
(Fig. 1).2 Four coloured patterns (colours for short) are associated with each tile,

1The signed edge matching puzzle problem considers tiles with edges both having a colour and a
sign (+/−). The edge colours between any two adjacent tiles should match, and the signs should be
opposed.
2A more general problem definition could allow N = n × m tiles to be placed on an n × m grid.
However, without much loss of generality, we will only focus on square grids.
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Fig. 1 Edge matching puzzle
of size 7 × 7 (Image created
using Eternity II editor,
http://eternityii.sourceforge.
net/, accessed on February
21st, 2011)

corresponding to the four sides of a tile. Some tiles have one or two sides coloured
with a specific colour, grey. The grey sides should be matched to the outer edge of the
grid. In the present paper, this is considered as a hard constraint. Thus, tiles with grey
edges are not allowed to appear on the inner part of the puzzle. In total C coloured
patterns (C is part of the input of the problem description) are distributed over all
tiles, of which usually Cinner only appear on border tiles. The goal of the optimisation
problem is to minimise the number of unmatched edges between adjacent tiles on
the grid.

The Eternity II puzzle instance is an unsigned edge matching puzzle problem
instance of size n = 16. It has 22 coloured patterns (+1 for the grey frame), of which
five only appear on border tiles and not on inner tiles. The instance was designed
in such a way that no two tiles are the same. The Eternity II puzzle rules specify
that a certain tile (tile 139) belongs at position row 9, column 8. However, we do not
consider such hint pieces as part of the problem description and thus ignore this.

4 Hyper-Heuristic Approach

The approach presented here is based on a common hyper-heuristic framework
[3]. A hyper-heuristic is an iterative search methodology that applies a set of
low-level heuristics to solve a given problem. These low-level heuristics can be
neighbourhood functions or (meta)heuristics operating on the problem and possibly
including domain specific knowledge. Unlike metaheuristics, hyper-heuristics do not
search in the space of solutions, but in the space of low-level heuristics. One assumes

http://eternityii.sourceforge.net/
http://eternityii.sourceforge.net/
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that no domain specific knowledge is transferred to the hyper-heuristic. Recently,
many different hyper-heuristics have been presented in the literature. In this work
the hyper-heuristic uses two decision mechanisms to operate: a heuristic selection
method and an acceptance criterion. According to Burke et al. [4] this hyper-
heuristic can be classified as ‘no-learning’ with ‘heuristic selection’ and ‘perturbation
heuristics’, based on the nature of the heuristic search space and the source of
feedback during learning. A pseudocode of the hyper-heuristic framework is given in
Algorithm 1. S0 refers to the initial solution, S is the current solution and S∗ refers to
the best solution found. At each iteration, the heuristic selection mechanism, denoted
as function SelectHeuristic(), has to select one of the available low-level heuristics,
represented by simple perturbative neighbourhoods. This heuristic H is then applied
to the current solution to generate the new solution S′. The acceptance criterion,
denoted as function Accept(), has to decide whether this newly generated solution
can be accepted or not. In what follows we describe the different components of the
hyper-heuristic developed for the Eternity II puzzle.

Algorithm 1 Pseudocode for the hyper-heuristic framework
S0 ← GenerateInitialSolution()

S ← S0

S∗ ← S0

while !Terminate() do
H ← SelectHeuristic()
S′ ← H(S)

if Accept( f (S), f (S′)) then
S ← S′
if f (S) < f (S∗) then

S∗ ← S
end if

end if
end while
return S∗

4.1 Solution Modelling

We use a straightforward solution representation for the Eternity II puzzle. The
puzzle board is modelled as a matrix of tile assignments, where each element of
the matrix corresponds to a position of the puzzle grid. A tile assignment is the
assignment of a certain tile ti (i = 1 . . . N) with a specific rotation to a position on
the grid. It is represented as an ordered pair of both the identifier of the tile, and its
rotation (0,1,2,3 for resp. 0◦, 90◦, 180◦, 270◦) on the board (Fig. 2). We denote a tile
assignment on row r, column c as tar,c, and its value is of the form (ti, rot). Rows are
indexed from top to bottom, columns from left to right. For example, the assignment
of tile 5 with a rotation 1 (i.e. 90◦) to row 1, column 2 can be denoted as ta1,2 = (t5, 1).
The entire grid of the puzzle can be denoted as (tar,c) or optionally, when the size of
the grid is not clear from the context, as (tar,c)n×n.

Four colours are associated with each tile, corresponding to the four sides. They
are indexed starting from the top edge and going clockwise (i.e. 0 = top, 1 = right,
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Fig. 2 Visualization of the
solution representation. A
solution is represented as a
matrix of tile assignments,
which are ordered pairs of the
tile identifier and its rotation.
Tiles that contain grey edges
are only allowed at the border
of the matrix

(t5,0) (t9,0) …

(t2,2) ...

…

(ti,r)

etc.), and they are denoted as c(ti, j). For example, the left colour of tile 5 is c(5, 3).
The special colour grey, denoting tiles that need to be matched to the grid edge, is
assigned value 0. This notation allows to unambiguously define the colours of a tile
assignment tar,c = (ti, rot) as:

c
(
tar,c, j

) = c (ti, j − rot mod 4) (1)

with j the edge index.
In order to reduce the number of possible solutions, tiles that belong at the border

(i.e. containing grey edges) are only assigned to tile assignments at the border (and
vice versa for non-border tiles). Furthermore, the tile assignment at the top left (row
1, column 1) is fixed to one random corner tile (i.e. a tile with two grey edges) to avoid
rotated solutions. The perturbative heuristics described in Section 4.5 maintain these
properties.

4.2 Initial Solution Generation

The hyper-heuristic search starts from an initial solution that can be generated either
at random or by a constructive method. The random method used in this work,
randomly places all corner pieces at the corners, border pieces at the border, and all
inner pieces at the inner region of the board. In addition, a backtracking algorithm
with different placement strategies is used as constructive method. Examples of
placement strategies are: scan-row, spiral, inverse-spiral, mirrored scan-row.

• Scan-row(SR) (Fig. 3a): places the pieces from left-to-right and from top-to-
bottom.

• Spiral(SP) (Fig. 3b): places the pieces in a circular movement from the border to
the center.

• Inverse-spiral(ISP) (Fig. 3c): places the pieces in a circular movement from the
center to the border.
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(a) Scan-row
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(b) Spiral
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(c) Inverse-spiral
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(d) Mirrored scan-row

Fig. 3 Placement strategies for backtracking search

• Mirrored scan-row(MSR) (Fig. 3d): places the pieces in a way similar to scan-
row, but alternates between (left-to-right, top-to-bottom) and a (right-to-left,
bottom-to-top) placement.

In the experiments described later in this paper, it is shown that an initial solution
generated with backtracking using a scan-row placing strategy yields the best results.

4.3 Heuristic Selection

Many heuristic selection methods exist, some of which use on-line (see e.g. [5, 12, 14])
or off-line learning based on the feedback of the generated solutions. In this work a
simple random selection method is applied. A low-level heuristic or neighbourhood
is selected at random during each iteration. Given that the number of low-level
heuristics (see Section 4.5) is low, the benefit of more complex heuristic selection
methods is not expected to outweigh the increase in complexity.

4.4 Acceptance Criteria

For the acceptance of solutions one can use different criteria, including Simulated
Annealing [11], Only Improving, Improving or Equal, and Great Deluge [8]. Ex-
periments show (see Section 5.1) that the recently introduced Iteration Limited
Threshold Accepting (ILTA) [12] criterion performs slightly better than other
methods. ILTA is similar to improving or equal acceptance but it can accept
worsening solutions after a number (k) of consecutive worsening solutions. These
worsening solutions can only be accepted if their quality is within a certain range
R of the current best solution’s objective value. ILTA’s two parameters (k and R)
are more understandable and thus easier to fine-tune compared to, for example, the
parameters in Simulated Annealing.

4.5 Low-Level Heuristics

Many low-level heuristics or neighbourhoods can be devised. The most obvious ones
are based on simply swapping and rotating pieces on the board. The following three
swap and rotate heuristics are applied:

– swap and rotate two corner pieces,
– swap and rotate two border (not corner) pieces,
– swap and rotate two inner pieces.
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In each of the above heuristics, a completely random decision is made concerning the
selection of tiles to reassign. Furthermore, a Probabilistic partial optimal placement
heuristic of q pieces is used. The ‘partial optimal placement’ heuristic was introduced
by Schaus and Deville [15], who call it a very large neighbourhood. The heuristic
removes q non-adjacent tiles from the board thus creating q holes. The tiles are
then optimally reinserted into the holes by solving an assignment problem, for
which an efficient algorithm, the Hungarian method, exists. In this work, we use
a probabilistic version of the partial optimal placement heuristic. It selects q tiles
proportionally to their number of unmatched edges, using a roulette-wheel selection
method. We created two versions of this heuristic, one for the inner part and one
for the corner/border tiles. For the inner part, q has been set to 24, for the border
q = 16. As reported by Schaus and Deville [15], increasing q further does not result
in significant improvement.

4.6 Objectives

One of the strategies for improving local search and avoiding local optima is to
change the fitness landscape of the problem [16]. Different objective functions
effectively guide the search through different search landscapes. We present a novel
approach that adopts some ideas of existing methods. We consider the following
objective functions (Fig. 4):

– Obj1, Matched edges: This is the default optimisation objective that counts the
number of matched edges in the solution (Fig. 4a).

– Obj2, Complete 2 × 2 squares: This objectives counts the number of completely
correct 2 × 2 regions in the puzzle. A completely correct 2 × 2 region has all
its inner edges matched. Outer edges on the border of the 2 × 2 region are not
checked (Fig. 4b).

– Obj3, Perfect tiles: This objective counts the number of perfectly correct tiles.
These tiles have all their four edges matched (Fig. 4c).

– Obj4, Complete 3 × 3 squares: This objective counts the number of completely
correct 3 × 3 regions in the puzzle. It is the 3 × 3 version of Obj2 (Fig. 4d).

– Obj5, Complete 4 × 4 squares: It is the 4 × 4 version of Obj2.

Note that a good objective value for one of the new objective functions does not
necessarily correspond to a good objective value for the default objective (Obj1).
This implies that a search method guided by one of the new objective functions
may get stuck in a local optimum that is not a local optimum in the default search
landscape. That observation is the basic idea behind the new guide-and-observe
approach. The hyper-heuristic search method consists of two phases. The search is
first guided by one of the new objective functions (Obj2 − 5), while in the second
phase it is guided by the default objective function. In order not to miss any good
solutions with respect to the default objective, the solution quality in terms of Obj1
is continuously being observed during the first phase. The search in the second phase
starts from the solution with the overall best Obj1 value. This two-phase approach is
described in Algorithm 2. Do note, however, that the optimal solutions considering
the new objective functions correspond to an optimal solution of the default objective
(Obj1).
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(a) Matched edges

(c) Perfect tiles

Fig. 4 Objective functions: hatched areas indicate the tiles under consideration, bold edges indicate
the checked edges. a is the default objective, b counts all completely correct 2 × 2 square regions,
c counts all perfectly placed tiles and d counts all completely correct 3 × 3 regions

Algorithm 2 Pseudocode for the two phase guide-and-observe framework.
S0 ← GenerateInitialSolution()

SbestObj1 = HyperHeuristic(S0, timeout = t1, objective = ObjX)

S∗ = HyperHeuristic(SbestObj1, timeout = t2, objective = Obj1)
return S∗

Using the notation introduced in Section 4.1 the above objective functions can be
further formalized:

– Obj1: let m(tar1,c1, tar2,c2) denote whether the adjacent tile assignments
tar1,c1, tar2,c2 match (value = 1) or not (value = 0). Then:

Obj1 =
n∑

r=1

n−1∑

c=1

m(tar,c, tar,c+1) +
n∑

c=1

n−1∑

r=1

m(tar,c, tar+1,c)
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– Obj2: let sq(tar,c) denote whether the square region [r, r + 1] × [c, c + 1] is
internally completely correct (value = 1) or not (value = 0). Then:

Obj2 =
n−1∑

r=1

n−1∑

c=1

sq(tar,c)

– Obj3: let perfect(tar,c) denote whether the tile assignment tar,c is perfectly placed,
i.e. m(tar−1,c, tar,c) = m(tar,c, tar+1,c) = m(tar,c−1, tar,c) = m(tar,c, tar,c+1) = 1, or
not. Then:

Obj3 =
n∑

r=1

n∑

c=1

perfect(tar,c)

– Obj4: let tr(tar,c) denote whether the square region [r, r + 2] × [c, c + 2] is inter-
nally completely correct (value = 1) or not (value = 0). Then:

Obj4 =
n−2∑

r=1

n−2∑

c=1

tr(tar,c)

– Obj5: let qu(tar,c) denote whether the square region [r, r + 3] × [c, c + 3] is
internally completely correct (value = 1) or not (value = 0). Then:

Obj5 =
n−3∑

r=1

n−3∑

c=1

qu(tar,c)

5 Experiments

All experiments apply the following low-level heuristics or neighbourhoods: swap-
rotate (corner, border, and inner), probabilistic partial optimal assignment (bor-
der+corner and inner). One of them is always selected randomly. All tests are
performed 30 times.

In the following experiments, a time limited termination condition leads to the
same findings as an iteration limited termination condition. This can be explained
as follows: the objectives and the acceptance criteria have a marginal performance
impact on the number of iterations that can be performed in a fixed time. In the
experiments, the speed of the hyper-heuristic search is about 4000 iterations/second
on an Intel Core 2 Duo 2.8 GHz processor.

5.1 Acceptance Criteria

Table 2 shows a comparison of the guide-and-observe hyper-heuristic with different
acceptance criteria: Improving or Equal (IE), Accept All (AA), ILTA, Great Deluge
(GD) and Simulated Annealing (SA). The settings are as follows: 100, 000 iterations,
Obj4, scan-row backtracking (10 s) starting solution. For both ILTA and SA, the best
parameter settings resulting from the experiments were used. The accept all criterion
performs badly because it does not guide the search towards better solutions. The
other acceptance criteria, which all accept improving or equal solutions, perform
very well. ILTA results in the highest average score, and thus it is used in the final
algorithm. This best ILTA had the following parameter settings: k = 500, R = 1.4.
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Table 2 Comparison of the
guide-and-observe hyper-
heuristic approach with
different acceptance criteria

IE AA ILTA GD SA

Max. 456 426 458 455 456
Min. 427 372 448 448 450
Average 451.3 403.2 452.9 452.1 452.4
Stdev. 5.2 13.9 2.7 2.0 1.7

5.2 Objectives

Figure 5 shows the different behaviour of the search guided by the five different
objectives. The tests were performed using a random starting solution, an improving
or equal acceptance criterion and 100,000 iterations for each phase. An improving or
equal acceptance criterion is used to reduce the effects of more advanced acceptance
mechanisms like ILTA. The stacked bar chart shows for each objective x:

– the average best solution, in terms of Obj1, reached while optimising Objx
(Phase 1),

– the average improvement, in terms of Obj1, realized by observing the best
solution for Obj1 while optimising Objx (Phase 1—best observed),

– and the average improvement, in terms of Obj1, realized by optimising Obj1 in a
second phase with the same settings (Phase 2).

The results show the benefit of optimising other objectives than the default one.
Moreover, observing the Obj1 values while optimising an other objective leads
to higher values. A second optimisation phase on Obj1 additionally results in
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Objective 1 Objective 2 Objective 3 Objective 4 Objective 5
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Phase 1 - best observed 
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Fig. 5 Comparison of objectives for a two-phase guide-and-observe hyper-heuristic search with
100,000 iterations for each phase, starting from a random solution
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an increase of the best observed solution from the first phase. For example,
Obj4 reaches the highest score, while Obj5 reaches the highest observed score in
phase 1.

Figure 6 shows the same experiment but now starting from a solution constructed
by applying a scan-row backtracking search during 10s. Due to the improved starting
solution, the scores are higher than the ones started from a random solution. Obj4
and Obj5 are still the best objectives, but the difference between the two is very small.

Figures 7 and 8 show a run of a hyper-heuristic search with Obj4 for an IE and an
ILTA (k = 500, R = 1.4) acceptance criterion. The searches started from a random
solution. The figures present both the Obj4 and the Obj1 values. The results show
that for an equal Obj4 value, multiple Obj1 values are observed, and thus exploration
continues while visiting solutions with equal objective values. This is a result of the
equality condition in the acceptance criteria. The ILTA run shows that worsening
the solution can help to eventually reach better solutions.

An interesting observation is that Obj4 and Obj5 combined with the partial
optimal assignment move, show an avalanche-like effect. Whereas at the beginning of
the search it is difficult to find improvements, this combination continues to generate
improvements more quickly after the first one, until it finally converges. This can
easily be seen in Fig. 9. It presents the cumulative Obj1 improvement found during
the search guided by Obj5. It is very hard to start from a random solution with Obj5
(on a puzzle of size 16 × 16). However, once started, it results in higher observed
Obj1 values. For larger puzzles (size > 16 × 16), Obj5 potentially has higher benefits.
Due to Obj5′s starting problems, we prefer applying Obj4 in further experiments,
however.
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Fig. 6 Comparison of objectives for a two-phase guide-and-observe hyper-heuristic search with
100,000 iterations for each phase, starting from a 10 s scan-row backtracking solution
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Fig. 7 Guide-and-observe hyper-heuristic run starting from a random solution, optimizing Obj4,
improving or equal acceptance criterion
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Fig. 8 Guide-and-observe hyper-heuristic run starting from a random solution, optimizing Obj4,
ILTA (k = 500, R = 1.4) acceptance criterion
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Fig. 9 Obj5 avalanche-like effect. Comparison of the cumulative Obj1 improvements during a search
guided by Obj1 or Obj5. Single phase hyper-heuristic search for 100,000 iterations, IE acceptance
criterion, random starting solution

5.3 Starting Solution

The starting solution can be very important for the final result. Therefore, some
experiments were performed to find the best starting solution. Table 3 shows a
comparison of the results for an improving or equal hyper-heuristic search, starting
from a random solution and four different backtracking solutions. For each method,
30 runs of 100, 000 iterations were carried out, and Obj4 was used. The backtracking
solutions were constructed by using a backtracking search that was interrupted after
10 s, and that made use of one of the following search orders: scan-row, spiral,
inverse-spiral and mirrored scan-row. In Table 3, it can be seen that a backtracking
search using a scan-row strategy leads to the best results. A statistical t-test (95%
confidence) revealed that it performed significantly better than the other methods.
Similar experiments were conducted for the other objectives leading to the same
findings.

Table 3 Comparison of results for different starting solution generation methods, followed by a
one-phase hyper-heuristic search of 100,000 iterations

Random BT SR (10 s) BT SP (10 s) BT ISP (10 s) BT MSR (10 s)

Max. 430 456 441 447 448
Min. 413 438 413 432 422
Average 421.2 451.4 423.5 442.7 438.2
Stdev. 3.7 3.4 7.1 3.3 7.9
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Table 4 Influence of time given to a scan-row backtracking search, followed by a one-phase hyper-
heuristic search of 100,000 iterations

0.5 s 1 s 3 s 6 s 10 s 30 s 60 s 600 s 3,600 s

Max. 453 455 455 455 458 456 457 458 457
Min. 434 429 436 446 438 448 448 452 451
Average 443.9 447.4 448.6 451.3 451.5 452.3 453.0 454.0 454.2
Stdev. 6.4 5.9 4.8 2.1 4.1 1.8 1.8 1.5 1.6

Table 4 shows the influence of the amount of time given to a scan-row backtrack-
ing search for generating the starting solution. The same settings were used as in the
previous experiment. The table shows that a time between 6 and 60 s gives a good
time/quality trade-off. Giving more time to the scan-row backtracking search does
not result in large improvements.

5.4 Global Results

The final algorithm submitted to the META’10 Eternity II competition used the
following configuration:

– Initial solution generated using a scan-row backtracking algorithm (time limited
to 10 s);

– First phase hyper-heuristic search with an ILTA (k = 500,R = 1.4) acceptance
criterion for time t1 = 3

4 × T, optimising on Obj4 and observing the best Obj1
solution;

– Second phase hyper-heuristic search starting from the best observed solution
in phase 1 for time t2 = 1

4 × T, with an ILTA (k = 500,R = 1.4) acceptance
criterion and optimising on Obj1;

– All reported low-level heuristics are used.

The following results were generated on a desktop pc with (CPU: Intel Core 2 Duo
3 Ghz, Windows XP SP3, Java 1.6 JRE). We performed 30 runs with a predetermined
time (T), for each instance of a certain size.

– 10 × 10 → 1200 s
– 12 × 12 → 1800 s
– 14 × 14 → 2400 s
– 16 × 16 → 3600 s

Table 5 shows the results of these runs on four benchmark puzzles (10 × 10, 12 ×
12, 14 × 14 and 16 × 16) and on the real Eternity II puzzle. The benchmark puzzles

Table 5 Results of the two-phase guide-and-observe hyper-heuristic approach on 4 benchmark
instances and the real EII puzzle, using a fixed time limit

10 × 10 12 × 12 14 × 14 16 × 16 Real EII puzzle

Number of total edges 180 264 364 480 480

Max. 172 254 348 460 461
Min. 168 250 344 453 455
Average 170.4 251.9 345.8 457.3 457.6
Stdev. 0.9 0.9 1.0 1.5 1.5
Time for best over all (s) 46 656.4 762.4 1563.9 2871.97
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Table 6 Comparison with
META’10 Eternity II contest
finalists, average results over
30 runs

10 × 10 12 × 12 14 × 14 16 × 16

Number of total edges 180 264 364 480

Present work 170.4 251.9 345.8 457.3
Coelho et al. [6] 165.67 238.93 320.77 419.57
Wang and Chiang [18] 159.57 232.33 312.57 408.63

and the execution times are the same as the ones that were provided at the META’10
Eternity II contest. The maximum, minimum, average, and standard deviation of the
number of matching edges over 30 runs are reported. We also report the time (in
seconds) needed to obtain the best solution over all 30 runs. The results show that
the novel approach is capable of matching up to 96% of the edges over all the puzzles.
It generated a solution with 461 matching edges on the real Eternity II puzzle, which
is a very competitive result. Furthermore, Table 6 shows that the approach compares
favourably to the results obtained by the two other finalists of the META’10 Eternity
II contest.

6 Conclusion

The contribution of the paper is the introduction of a new guide-and-observe hyper-
heuristic approach to optimising Eternity II -like puzzles. The power of the approach
can be attributed to the novel parallel observation of objective values, to the set
of objectives, and to the efficient hyper-heuristic. We have shown that optimising
an objective different from the default objective, allows to reach solutions with a
higher number of matching edges. The hyper-heuristic is applied in a two-phase
approach. During the initial phase of the search, a new 3 × 3 squares objective is
applied. Optimising the default objective in a second phase, starting from the best
observed solution (in terms of the default objective) in the first phase, improves the
quality of the solutions even more. The winning approach of the META’10 Eternity
II contest is capable of reaching scores up to 461/480 matching edges for the real
Eternity II puzzle in less than one hour of computation time. Such a result can be
considered very acceptable, taking into account the past research on the topic.

In the future, the applicability of the novel guide-and-observe idea will be further
investigated for other combinatorial optimisation problems and in connection with
other metaheuristics and hyper-heuristics. In this light, the research question is
how to design objective functions that are more appropriate for guiding a local
search method, while remaining sufficiently correlated with the real objective of the
problem.

With respect to the Eternity puzzle, other objective functions, exploring more
advanced heuristic selection mechanisms and new low-level heuristics or neighbour-
hoods may be interesting directions for future research.
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