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Abstract This paper presents a new method to extract knowledge from existing
data sets, that is, to extract symbolic rules using the weights of an Artificial Neural
Network. The method has been applied to a neural network with special architecture
named Enhanced Neural Network (ENN). This architecture improves the results
that have been obtained with multilayer perceptron (MLP). The relationship among
the knowledge stored in the weights, the performance of the network and the new
implemented algorithm to acquire rules from the weights is explained. The method
itself gives a model to follow in the knowledge acquisition with ENN.
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1 Introduction

The main problem that Expert Systems (ES) have is produced by the knowledge
acquisition. In order to build ES and to avoid the bottle-neck in the knowledge acqui-
sition process, automated learning algorithms can be used, these ones will learn from
the examples that are presented. Among the methods that use learning algorithms
are Neural networks (NNs). So NNs are being applied to the ES technology due to
the advantages that the learning algorithms have [2, 4]. NN can be useful for the
knowledge base design [1, 6].

However, one of the disadvantages of NN is the way of interpreting the concepts
learned is very difficult [7]. This is due because neural networks have stored the
knowledge in the weights linked to the connections, and therefore, it is difficult to
explain the concepts in the weights from which neural networks elaborate the correct
output. That is the reason Artificial Intelligence is performing some research about
symbolic knowledge acquisition from a neural network [8, 12, 14]. Obtained rules of
the neural network could give to knowledge engineering new points of view about
the domain and new rules to interpret.

This work presents a new method to solve the nowadays problems about the sym-
bolic knowledge acquisition from the weights of a NN. The former corresponds to
the framework whose idea is to support knowledge acquisition, where the optimum
way of training the network is related with the knowledge that can be acquired. The
relationship among the knowledge stored in the weights, the performance of the
network and the new implemented algorithm to acquire rules from the weights is
explained.

The prediction volume of wood is presented as an application example, where the
whole method is implemented. The presented model has been successfully applied
and it is a tool that can be added to the processing and control methods available.
The method itself gives a model to follow in the knowledge acquisition with NN.

2 Enhanced Neural Networks

In this work we have used Enhanced Neural Networks. The application of Enhanced
Neural Networks (ENN) [10], when dealing with classification problems, is more
powerful than classical Multilayer Perceptron. These enhanced networks are able
to approximate any function f (x) using n-degree polynomial defined by the weights
in the connections. Multilayer Perceptron MLP is based on the fact that the addition
of hidden layers increases the performance of the Perceptron.

Data sets with a no linear separation can be divided by the neural network and a
more complex geometric interpolation can be achieved, provided that the activation
function of the hidden units is not a linear one.

The proposed neural networks ENNs are characterized for having different
weights for each different pattern which is introduced to the neural net [11]. Such
mechanism could be thought as a local interpolation in some specific points of the
function f (x) that the pattern set defines instead of the global interpolation that
MLP networks provide. In order to research this property two neural networks
have been used. The assistant network computes the weights of the main network
depending on the input pattern. That is, each pattern produces a set of weights that is
employed in the main network to output the desired response. The main and assistant
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networks share the inputs. Mathematically, the previous idea could be expressed as
w ji = ok, being w ji a weight of the main network and ok the output of a neuron in
the assistant network. Such idea permits to introduce quadratic terms in the output
equations of the network where they were lineal equations using Backpropagation
Neural Networks BPNN with linear activation functions. As example we considered
the Eq. 2 of a network ENN 2–1 with an assistant network 2–3 (see Fig. 1).

The weight matrix of the assistant network is given by

W =

⎛
⎜⎜⎜⎝

w11 w12 · · · w1m

w21 w22 · · · w2m
...

...
...

...

wn1 w22 · · · wnm

⎞
⎟⎟⎟⎠ (1)

The output of the main network has been defined by z(x, y) in Eq. 2 z(x, y) =
w1x + w2 y + b , w1 = w11x + w21 y + b 1, w2 = w12x + w22 y + b 2, b = w13x + w23 y +
b 3 then:

z(x, y) = w1x + w2 y + b

= (w11x + w21 y + b 1) ∗ x + w12x + (w22 y + b 2)y + w13x + w23 y + b 3

= w11x2 + w22 y2 + (w21 + w12)xy + (b 1 + w13)x + (b 2 + w23)y + b 3 (2)

The degree of Eq. 2 is higher than the degree of Perceptron that is 1. In this way
it is possible approximate some non lineal function without lineal separation, where
Perceptron cannot do it.

If there are not hidden layers then the degree of the polynomial is two, which is
a quadratic polynomial in the output of the network. The feature of being able to
increase the degree of the polynomial output, adding more hidden layers, makes this
kind of neural network a powerful tool against the MLP neural networks. A function
could be approximated with a certain error, previously fixed, using a polynomial of
n-degree P(x) . The achieved error using this polynomial is bound by a mathematical
expression. Then you only have to compute the successive derivates of f (x) until a
certain degree and to generate the polynomial P(x).

-1w1 w2
b

x y

z

w11

w12

x y

w1 w2 b

w13w21

w23
w22 -1

b3b2
b1

Fig. 1 ENN 2-1 linear. Right net—auxiliar net—computes weights of main net—left net
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We have studied the knowledge extraction algorithms applied to a network with
n inputs. Once trained the ENN, it is necessary to study the weight matrix of the
assistant network in which the weights have been fixed and that provides the weights
of the main network. Knowledge of the ENN is fixed at the matrix of weights of
the assistant network. These weights are the ones we have applied our knowledge
extraction algorithms, which are presented in the following sections. In order to
interpret these weights applied to each ith column of the weights of the assistant
network, it has been defined a value wk that is named as the associate weight to the
k-th input of main network, see Eq. 3.

Let W = {wpq} the weights of the assistant network, then ∀k = 1 · · · q − 1

wk =
( p∑

i=1

wik + wkq

)
, wq = wpq (3)

2.1 Polynomial Regression

This section shows an example of 2-degree polynomial regression using an ENN with
no hidden layers.

Let f (x, y) a polynomial to approximate:

f (x, y) = (Ax + By + C)2

= A2x2 + B2 y2 + C2 + 2ACx + 2BCy + 2ABxy (4)

According to theoretical results the following matrix must be obtained using an
ENN.

⎛
⎝

A2 i1 j1
i2 B2 k1

j2 k2 C2

⎞
⎠ , where i1 + i2 = 2AB,− j1 − j2 = 2AC,−k1 − k2 = 2BC (5)

A neural network has been trained using a random data set with an uniform
distribution and describing the polynomial function:

f (x, y) =
⎡
⎣(

x y 1
)
⎛
⎝

0.68805
−0.6603956
−0.1037416

⎞
⎠

⎤
⎦

2

(6)

Mean squared error of the network must be equal to 0, according to the theo-
retical results. Next listing shows obtained results with the proposed neural network
architecture. Note that MSE in the training and cross validation data sets is really
low (near 0).

Number of variables: 2
Coefficients (A, B, C): 0.68805 -0.6603956 -0.1037416
Squared coefficients (A*A, B*B, C*C): 0.4734127 0.4361223 0.01076232
# patterns: 2000 , Iterations: 102 , Learning rate: 0.05 , Cross val.: 20 %
Mean Squared Error (TRAINING):
Standard deviation 6.048446e-14 , Variance 3.65837e-27

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.952e-13 -2.955e-14 1.502e-14 1.129e-14 5.949e-14 1.082e-13
Mean Squared Error (CROSS VALIDATION):
Standard deviation 6.181435e-14 , Variance 3.821013e-27

Min. 1st Qu. Median Mean 3rd Qu. Max.
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-1.805e-13 -2.674e-14 1.735e-14 1.186e-14 6.221e-14 1.064e-13
MATRIX Network coefficients:

[,1] [,2] [,3]
[1,] 0.4734127 -0.3912136 0.04101917
[2,] -0.5175567 0.4361223 0.15181956
[3,] 0.1017396 -0.2888405 0.01076232
A*A = 0.4734127 , B*B = 0.4361223 , C*C = 0.01076232
2*A*B = -0.9087703 , 2*A*C = -0.1427588 , 2*B*C = 0.137021

Coefficients of regression polynomial can be obtained using the weights matrix of
trained neural network. Previous matrix shows final weights with a cuasi-null MSE,
in our case the coefficients are the following ones (according to Eq. 5):

(A2, B2, C2) = (0.4734127, 0.4361223, 0.01076232) (7)

(2AB, 2AC, 2BC) = (−0.9087703,−0.1427588, 0.137021) (8)

Such results are totally coherent with Eq. 6, that is, proposed neural network is able
to approximate the data set and generate the polynomial function that describes the
data set.

Next listing shows results obtained with more than 2 input variables. Note that the
ENN is able to approximate the data set with a null error.

Number of variables: 3
# patterns: 1200 , Iterations: 20 % , Learning rate: 0.05 , Cross validation set: 20 %
Real coefficients: -0.251 0.033 -0.314 -0.805
Squared Real coefficients: 0.063 0.001 0.099 0.648
Mean Squared Error (TRAINING): Standard deviation 0.007364928 , Variance 5.424216e-05
Min. 1st Qu. Median Mean 3rd Qu. Max. -0.0145600 -0.0064310 -0.0012810 -0.0008741 0.0039250 0.0233700
Mean Squared Error (CROSS VALIDATION): Stan ard deviation 0.007403743 , Variance 5.48154e-05
Min. 1st Qu. Median Mean 3rd Qu. Max. -0.0144700 -0.0063460 -0.0009139 -0.0008817 0.0034980 0.0264900
Network coefficients: 0.078 0.017 0.11 0.634
Number of variables: 5
# patterns: 2000 , Iterations: 20 , Learning rate: 0.05 , Cross validation set: 20 %
Real coefficients: 0.711 0.431 0.458 0.857 0.409 0.323
Squared Real coefficients: 0.505 0.186 0.21 0.734 0.167 0.104
Mean Squared Error (TRAINING): Standard deviation 0.0008561259 , Variance 7.329515e-07
Min. 1st Qu. Median Mean 3rd Qu. Max. -3.095e-03 -5.235e-04 1.241e-04 6.914e-05 7.022e-04 2.046e-03
Mean Squared Error (CROSS VALIDATION): Stan ard deviation 0.0009080438 , Variance 8.245436e-07
Min. 1st Qu. Median Mean 3rd Qu. Max. -2.678e-03 -5.045e-04 1.464e-04 7.691e-05 7.481e-04 1.976e-03
Network coefficients: 0.503 0.185 0.208 0.733 0.166 0.107
Number of variables: 7
# patterns: 2800 , Iterations: 20 , Learning rate: 0.05 , Cross validation set: 20 %
Real coefficients: 0.129 0.398 0.444 0.345 -0.432 0.912 0.227 -0.685
Squared Real coefficients: 0.017 0.159 0.197 0.119 0.186 0.831 0.052 0.469
Mean Squared Error (TRAINING): Standard deviation 0.0006614979 , Variance 4.375794e-07
Min. 1st Qu. Median Mean 3rd Qu. Max. -1.801e-03 -5.538e-04 -1.119e-04 -8.575e-05 3.398e-04 2.196e-03
Mean Squared Error (CROSS VALIDATION): Stan ard deviation 0.0006642028 , Variance 4.411654e-07
Min. 1st Qu. Median Mean 3rd Qu. Max. -1.614e-03 -5.361e-04 -1.186e-04 -9.047e-05 3.024e-04 2.229e-03
Network coefficients: 0.018 0.16 0.198 0.12 0.187 0.832 0.053 0.466
Number of variables: 9
# patterns: 3600 , Iterations: 20 , Learning rate: 0.05 , Cross validation set: 20 %
Real coefficients: -0.329 -0.717 0.765 0.126 -0.025 -0.917 0.899 0.724 -0.263 -0.667
Squared Real coefficients: 0.108 0.514 0.585 0.016 0.001 0.841 0.809 0.524 0.069 0.445
Mean Squared Error (TRAINING): Standard deviation 0.0002464544 , Variance 6.073979e-08
Min. 1st Qu. Median Mean 3rd Qu. Max. -6.969e-04 -2.121e-04 -3.974e-05 -3.869e-05 1.235e-04 8.826e-04
Mean Squared Error (CROSS VALIDATION): Stan ard deviation 0.0002595937 , Variance 6.738888e-08
Min. 1st Qu. Median Mean 3rd Qu. Max. -7.053e-04 -2.128e-04 -6.166e-05 -3.831e-05 1.235e-04 8.826e-04
Network coefficients: 0.108 0.514 0.586 0.016 0.001 0.841 0.809 0.524 0.07 0.444
Number of variables: 11
# patterns: 4400 , Iterations: 20 , Learning rate: 0.05 , Cross validation set: 20 %
Real coefficients: -0.553 0.423 -0.585 0.525 -0.156 0.098 0.906 -0.943 -0.867 0.835 0.459 0.049
Squared Real coefficients: 0.305 0.179 0.343 0.276 0.024 0.01 0.82 0.89 0.752 0.697 0.211 0.002
Mean Squared Error (TRAINING): Standard deviation 2.250265e-05 , Variance 5.063691e-10
Min. 1st Qu. Median Mean 3rd Qu. Max. -7.489e-05 -1.916e-05 -4.108e-06 -3.332e-06 1.171e-05 8.005e-05
Mean Squared Error (CROSS VALIDATION): Stan ard deviation 2.36987e-05 , Variance 5.616285e-10
Min. 1st Qu. Median Mean 3rd Qu. Max. -6.592e-05 -1.746e-05 -2.043e-06 -1.089e-06 1.424e-05 7.249e-05
Network coefficients: 0.305 0.179 0.343 0.276 0.024 0.01 0.82 0.89 0.752 0.697 0.211 0.002
Number of variables: 13
# patterns: 5200 , Iterations: 20 , Learning rate: 0.05 , Cross validation set: 20 %
Real coefficients: -0.756 0.592 -0.554 -0.364 -0.28 -0.703 -0.837 0.53 -0.633 -0.739 -0.099 0.29 0.642 -0.218
Squared Real coefficients: 0.571 0.351 0.306 0.133 0.079 0.494 0.701 0.281 0.401 0.545 0.01 0.084 0.413 0.047
Mean Squared Error (TRAINING): Standard deviation 1.333839e-05 , Variance 1.779126e-10
Min. 1st Qu. Median Mean 3rd Qu. Max. -4.251e-05 -1.124e-05 -2.323e-06 -2.052e-06 6.820e-06 4.597e-05
Mean Squared Error (CROSS VALIDATION): Stan ard deviation 1.350141e-05 , Variance 1.822882e-10
Min. 1st Qu. Median Mean 3rd Qu. Max. -4.042e-05 -1.153e-05 -2.484e-06 -1.925e-06 6.654e-06 5.383e-05
Network coefficients: 0.571 0.351 0.306 0.133 0.079 0.494 0.701 0.281 0.401 0.545 0.01 0.084 0.413 0.047
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Fig. 2 Different shapes obtained using ENN with no hidden layers, corresponding to XOR, circle,
ellipse and parabola functions. MSE is near to 0.0 with 100 iterations

Such results show in a practical way the universal approximation property of ENN
[10, 11] (Fig. 2).

3 Material and Methods

We present a method for extracting knowledge from the weights with a model of
enhanced neural network ENN. Three different stages have been made, first stages
identifying classes of values of the variable to predict, these classes will be consistent
with the rules and allow grouping of similar characteristics and these characteristics
are reflected in the weights of the trained network. Different classifications carried
out by changing parameters such as amplitude of the output class, division into
outputs classes with the same number of patterns, trying to improve the learning
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rate for each trained ENN [3]. A second part, when you are training an ENN, it is
possible to know the effect, each one input is having on the network output. This
provides feedback as to which input channels are the most significant. From there,
you may decide to prune the input space by removing the insignificant channels. This
will reduce the size of the network, which in turn reduces the complexity and the
training times and error [9].

One last stage of processing of rules that identified the behavior of the input
variables (antecedent of the rule) in each output classes (consequents of rules).
Finally, when the rules have been established. Therefore there will be achieved a
control system. The model presented has been successfully applied to the prediction
volume of wood. ENNs are thus a useful and very powerful set of tools that can add
to the large number of processing and control methods available.

First Step: the first stage, this method obtains the consequents or the output in
a rule. First of all, it is necessary a normalization of initial set of training patterns,
input and output variables in the interval [−1, 1]. This standardized set of patterns
is ordered from the smallest to the biggest output. The first option was to divide the
whole range [−1, 1] in k output intervals with the same number of patterns in each
interval.

A second option was proposed, the output is divided into intervals k units
wide, obtaining 2

K training subsets from each output interval I1 · · · I 2
k

, where Ii =
[−1, −1 + k) · · · I 2

k
= (1 − k, 1] and k = 1 + 3.322 log10 n [13] and n is the number of

patterns. Those intervals will be the consequents of the extracted rules.
Finally we developed a new method, named Bisection Method (BM), which was

provided a better error rate in the training of each interval than the other methods
named, and it is discussed below. Figure 3 shows a summary of the whole process.

1
EXTRACTING
KNOWLEDGE

Study of 
Weights

1.1
Ratio Error

1.2
Bisection 
Method

1.3
Consequents

1.4
Antecedents

1.5
Domain Input 

Variables

ENN

SSEE

EXTRACTING RULES

1.6
Algorithm

1.7
Database of 

Rules

Study of 
characteristics by 

class or input 
interval

Fig. 3 Scheme of symbolic knowledge acquisition
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3.1 First Step: Bisection Method (BM)

Once the set of patterns has been sorted, the output is divided in two intervals, and
iteratively division is performed. A first division of the values associated to the output
variable, in two intervals: positive output (0, 1] and negative output [−1, 0). Two
independent neural networks are defined in order to be trained. Each one neural
network is trained with n inputs and only one output. Each one of the two output
intervals is divided in two new classes. This division is performed iteratively, studying
the variation of weights. When in a new division the weights do not change, then go
back to the initial division, and finish the division of the sets of patterns. A division
of the set of training patterns is made according to their outputs, the output range is
divided into intervals, for each output interval Ii, a set of training Si is considered,
an independent neural network is trained, as it is shown in Fig. 4. The initial pattern
set is classified in several subsets and therefore into several ENNs. When output
intervals are fixed, the consequents of the rules have been fixed by BM.

Obtaining consequent rules or output intervals Ii for a prediction function:

1. Standardization of all patterns in the interval [−1, 1].
2. Order the set of patterns from low to high output.

X1

Xp

w1

wp

I1=[-1..-1+k)

RNA 1

X1

Xp

w1

wp

I2=[-1+k..-1+2k)

RNA 2

X1

Xp

w1

wp

I(2/k)-1=[1-2k..1-k)

RNA (2/k)-1

X1

Xp

w1

wp

I(2/k)=[1-k..1)

RNA (2/k)

Fig. 4 Set of neural networks used in the bisection method (BM)
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3. Divide the ordered set of patterns S in n subsets S1 ∪ · · · ∪ Sn, with Si ∩ S j = ∅
and ∪Si = S and ∪Ii = [−1, 1] by (BM) in the previous step and so that in each
subset Si all output values have the same sign. Building one ENNi trained with
each Si. The range Ii determines the consequents rules that are extracted from
each ENNi.

3.2 Second Step: Algorithm to Extract Predictive Variables (EM)

Now, the importance of each input variable must be studied for each different
training network ENNi, taking into account the weights in each one, and so we must
repeat the next algorithm for each one ENNi obtained in the first step. In this process,
antecedents should be chosen in order from biggest to smallest absolute value of
the weights of the connections of input variables, in such way, that each variable
antecedent verifies:

wiju jCk > 0 (9)

where Ck = {−1, 1} is the kind of inference, negative or positive (where i is the
number of the outputs interval).

It can be studied in which range of allowed values of the input variable, along
with the other variables that contribute to the output, is possible to obtain the whole
output range which is being studied. The range of the variables antecedents would
never be the whole interval [−1, 1], due to the sign of the weights will determine if
the variable will be positive or negative according to Eq. 9.

To determine the best set of forecasting variables, in each subset of training Si

with output in Ii:

– Analyze the variation of the values of the input variables for each training subsets
Si, in each ENNi calculating the interval (μij − σij, μij + σâĂŞij) for each variable
μ j in Ii.

– For each ENNi built in step 1, extract important input variables or antecedents,
from it following next steps:

1. CURRENT = wi0 (bias term)
UNKNOWN = ∑

u j∈UNUSEDVARS |wij|
2. Stop if exist values for u j ∈ [−1, 1] such

wi0 + ∑
u j∈USEDVARS wiju j − f −1(zi) > UNKNOWN

zi ∈ Ii, zi = min{Ii}
Where ai · · · a j are input values of the variables ui · · · u j and ui · · · u j ∈
USEDVARS.
If you want get more input variables for the output class Ii (consequent
selected) go to step 3.

3. Choose a new variable uk ∈ UNUSEDVARS such |Wik| is the maximum
value and where Ciwik ≥ 0. It gets a new antecedent of the rule.

4. CURRENT = CURRENT + Wik

UNKNOWN = UNKOWN − |Wlk|
UNUSEDVARS = UNUSEDVARS − (uk)

5. Go to step 2.
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3.3 Third Step: Obtaining Rules

In the previous step, the antecedents of the rules have been obtained, this is the most
influential input variables for each output interval I j, each trained ENN j.

When the rule R j has been formulated, the most important condition has been
given for output in a given interval [−b , −c). The rule obtained is that the weights
are provided, as the most important feature of this interval. If μui[−b ,−c) and σui[−b ,−c)

are the mean and standard deviation of variable ui in the output range [−b , −c).
Then we take as domain and therefore antecedent for this interval, the values that
the variable ui takes on interval.

Thus, we obtain as the first major rule or rule over the output interval [−b , −c)

If ai ∈→ output ∈ [−b , −c) = I j (10)

Or which is the same: If ai ∈→ I j.
Where i is the number of the input variables and j is the number of output

intervals. In this way we are indicating that in the output range I j, the most important
variable is the i-th input variable and we are giving the values taken by the i-th input
variable for the output set I j. Finally, the knowledge extraction for every net ENN j

is made, obtaining a rule or a subset of rules for each output interval. Each rule
R j corresponds to an output interval. Each output interval has an associated ENN j,
the network has been trained and whose weights define the variables that must be
antecedents of each rule. We enunciate more general rules with one antecedent or
finer rules with more than a single antecedent.

Rk : If μi ∈ [a, b) ∧ · · · ∧ μ j ∈ [c, d) then Ik (11)

If the rule is verified for the extreme values of the interval, you will be checking
for the rest of the values within the range of variation of the antecedent.

4 Data Mining Using Enhanced Neural Networks

We have studied the behavior of the weights of the network, for a first data set
defining a function exactly. It is a collection of values that define a functional
relationship (deterministic). If the network is trained in which the input patterns
are the independent variables in the functional relationship and the output pattern
of the network is the dependent variable y. The network learns the relationship
among the variables and the values which constitute the dependent variable are
predicted by ENN. We have studied this case, to check the level of knowledge stored
in the weights. The relationship between the independent variable and the dependent
variable is shown in the values of the weights, some examples are explained below.
A table of values for independent variables and the corresponding values for the
dependent variable is performed. With these data the network is trained.

Table 1 Weights associated in
different training functions

Function w1 w1

x + 3y 0.6201 1.7628
x + 5y 0.427 2.003
x2 + y2 1.273 1.273
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Table 2 Weights associated
function f (x, y) = x + y2 over
different input range (an
implementation in R has been
used)

Domain input w1 w1 Mean squared
variables error

[0, 100) 0.0121 1.3807 0.101
[1, 100] 0.0413 1.6128 0.003
[0, 1] 0.6175 0.6431 0.002
[1, 2] 9.838 27.027 0.030
[0.5, 1] 2.776 0.274 0.002

Table 1 shows as the value of the weights preserves the relationship between the
independent variables, the weight of the variable y is three times that of the variable
x in the first case and in the second case is actually five times the weight of the
variable x. The weight value of the variable y, in both cases the variable with the
most influential is the variable y, with different degrees in each case. The importance
of the input variables is reflected in the weights. In the third case, not working with a
linear function, but this is a case in which the behavior of the variables is symmetrical,
both variables influence in the same way in the output value; with different ENNs
have been obtained similar weights. This study has confirmed that the knowledge of
the network, once trained, is stored in the weights.

We have studied the function f (x, y) = x + y2 and we have generated random
patterns for the variables x and y, then we have observed the behavior of the weights
changes according to the range of input values. So if we work with values obtained at
random in the interval [1, 100] for the input variables x and y the weights obtained
have different characteristics that if we work with values for input variables in the
interval [0, 1]. It seems clear just, when a variable takes values in it [0, 1] and is
squared, the value of the variable will decrease, as in this way is described by the
values of the weights for the variable y. However, if the variable takes values greater
than 1 then the variable is greater than being squared. Both features for the same
function are reflected in the weights of the trained networks for different range of
the input variable y (see Table 2).

All results show that the importance of the input variables change when the range
of input variables change. Yet it is confirmed that the proposed method depends on:

– First step: divide the set of patterns for its outputs and the study of interrelation-
ships between the input and output variables. Sometimes, the variation in the
range of the output variable causes changes on the importance of input variables
and then it is necessary to divide the range of the output variable in class, for a
separate study of each output class.

– Second step: study the range and weights of the input variables in each range of
the output variable obtained in the previous step.

– Third step: extract rules using steps one and two.

5 Example of Application

Volume parameter is one of the most important parameters in forest research when
dealing with some forest inventories. Usually, some trees are periodically cut in
order to obtain such parameters using cubical proofs for each tree and for a given
environment. This way, a repository is constructed to be able to compute the volume
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of wood for a given area or forests and for a given tree species in different natural
environments. The data set file [5] has been used in order to implement method
explained in the Section 3. The example of application is a dataset from eucalyptus
obtained from a region in Spain. The main aim is to detect relationships between all
the variables that are in our study, and also this work seeks to estimate the wood
volume. The input variables considered for the network were diameter, thickness
bark (crust); grow of diameter, height and age. The output variable was the volume
of wood.

The Enhanced ENNs were trained, but in any case learning didnt improve, initially
tested the whole set. The ratio of error should not be acceptable; the knowledge
learned by the network is not good, the error is too large. The evolutions of the
values of the weights, in different division intervals for all patterns, the first division
in positives and negatives outputs in, finally four networks have been trained. The
error is less when the total pattern set is divided in subsets and one ENN is trained for
each subset of pattern. In this example, finally 4 neural networks were constructed:
one for each set of patterns S1 · · · S4 obtained, which outputs are I1 · · · I4, .One
neural network is trained for each interval. Now, in each one of the sets of patterns
obtained, the most important input variables, in each one of the subsets is sought,
using the algorithm for extraction (EM). Table 3 shows the weights of the four
trained networks obtained in the first phase BM.

In the second step, the method named as EM has been implemented. Now when
the set is divided into four subsets and the weights are observed in each obtained
subset or class, it is possible to detect that the most important input variable is
changing in each class, by the weights in each neural network. The crust appears
as the most important variable followed by height in the first class, in the class two
the most important input variable has changed and now the principal variable is the
diameter and in the third class the same importance for diameter and height and
in the fourth class is the diameter the most important variable again. Weights are
studied when they are stable and do not change.

Table 4 shows the possible domain of antecedents of the rules. In the third step
the solution is a set of rules. Using sections 3.2 and 3.3, the following rules have been
obtained from the nets. To apply the rules extracted above to the studied case about
volume of wood. The rules show that the network has learned, and then it is possible
get a good set of rules if there was a good learning ratio in the training network.
For each output interval a set of rules is obtained with one or more variables as
antecedents, so the rules are obtained:

if crust ∈ [4, 13.6] ∩ height ∈ [9.5, 14.2] → volume ∈ [22, 64]

Table 3 The most important input variables: weights associated over each output interval volume
(or class) with the mean square error (MSE) obtained by ENN

Class Age Diameter Height Crust Active performance

1 −0.147 −0.046 0.705 1.279 MSE = 0.060
2 0.036 0.788 0.596 0.586 MSE = 0.110
3 0.142 0.670 0.669 0.495 MSE = 0.019
4 −0.181 0.840 0.8248 0.57 MSE = 0.062

Bold values represent the most relevant variables in each class
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Table 4 Values of the variables in each ENNi

Class Volume Diameter Crust Height Age

Average 1 43.39 9.55 8.84 11.9 12.9
Deviation 1 20.7 2.06 4.76 2.32 4.54
Average 2 95.13 13.13 17.4 16.41 12.9
Deviation 2 12.55 1.16 5.16 1.62 4.44
Average 3 161.33 15.61 26.087 19.48 1.4
Deviation 3 25.24 1.27 5.66 2.03 3.38
Average 4 476.87 22.89 69.3 25.88 15.43
Deviation 4 226.21 4.19 30.1 4.33 2.53

Domain antecedents of rules

if diameter ∈ [12, 14.3] ∩ height ∈ [12.4, 22.5] → volume ∈ [82, 107]
if diameter ∈ [14.3, 16.9] ∩ height ∈ [20.4, 31.7] → volume ∈ [136, 186]

if diameter ∈ [18.2, 27] ∩ height ∈ [39, 99] → volume ∈ [250, 703]
if diameter ≥ 14.3 ∩ height ≥ 20.4 → volume ≥ 136

if diameter ≥ 14.3 ∩ crust ≥ 40 → volume ≥ 136

The problem under study is prediction of volume of wood, and the rules obtained are
useful in order to estimate the amount of wood using typical tree variables and the
Knowledge obtained is compared with other methods such as repository and with the
tree volume tables for a given tree species and for prediction methods as regression.
The results are similar in each case.

6 Conclusions and Final Remarks

A new method to extract rules from a neural net has been elaborated. In this way
the rules obtained will allow completing the knowledge that could be extracted from
an expert when building the knowledge base for an ES. In the proposed method,
a model of ENN has been used. The implemented method is effective when the
importance or characteristics of forecasting variables could change depending on the
range of forecast variable.

The proposed method has been developed in three parts: a study of the weights
in the enhanced neural network by dividing the pattern set into subsets (BM),
so you get two benefits, the ENN detects a possible change in the importance of
the input variables (for each one of the subsets obtained after the division) and
an improvement in learning rate and the consequent of the rules. In the second
part by the algorithm (EM) to obtain the most important input variables for each
subset or the antecedents for each rule, and finally in the third part building for
each division obtained a rules database. The output of the net has a lower mean
squared error, thus a more accurate set of rules is obtained. We have compared
the results obtained with rules with other methods as tables of scaling for trees of
this species and statistical forecasting models, in both cases, the results are similar
to those obtained by the proposed method. The advantage ENN is each new data
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can be updated and improved the database, more easily and can go to expand the
database of rules obtained.
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