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Abstract Multivariate data modelling problems consist of a number of nodes with
associated function (class) values. The main purpose of these problems is to construct
an analytical model to represent the characteristics of the problem under considera-
tion. Because the devices, tools, and/or algorithms used to collect the data may have
incapabilities or limited capabilities, the data set is likely to contain unavoidable
errors. That is, each component of data is reliable only within an interval which
contains the data value. To this end, when an analytical structure is needed for the
given data, a band structure should be determined instead of a unique structure.
As the multivariance of the given data set increases, divide–and–conquer methods
become important in multivariate modelling problems. HDMR based methods allow
us to partition the given multivariate data into less variate data sets to reduce
the complexity of the given problem. This paper focuses on Interval Factorized
HDMR method developed to determine an approximate band structure for a given
multivariate data modelling problem having uncertainties on its nodes and function
values.
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İstanbul Technical University, Maslak 34469, İstanbul, Turkey
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1 Introduction

There may exist uncertainties on the location of the nodes and the function values
at these nodes in some engineering and scientific problems. When the given problem
is a multivariate data modelling problem and that problem has such uncertainties,
a band structure construction is needed instead of a unique analytical structure.
Hence, the methods used in modelling multivariate data should be reorganized due
to this fact.

Dealing with many less variate data sets instead of a single multivariate date
set as the training source, that is, learning system to construct an analytical model
for the given problem is a good way in modelling purpose. High Dimensional
Model Representation (HDMR) is a divide-and-conquer method and can be used
as a representation technique of multivariate structures [6]. To this end, HDMR
philosophy can be used as a tool for representing the characteristics of a given data
modelling problem [9]. Generalized HDMR method is based on HDMR philosophy
and is a method to partition the given multivariate data set into less variate data sets
and to determine an analytical structure through these partitioned data sets as the
model of the given problem [7].

In literature, we have Generalized HDMR to partition the given multivariate data
set in which we assume that no construction errors appear [7]. However, when we
need to take the uncertainties on data into consideration, that is, the given data
has errors in its structure, a new HDMR based method is needed to obtain a band
structure instead of a unique analytical model. The Interval Generalized HDMR
method was developed for this purpose [10]. This method is the reorganized version
of Generalized HDMR for the problems in which we need to generate band structure
as the analytical model. The numerical results show us that this method works well
for dominantly and purely additive natures. On the other hand, the representations
obtained through the Interval Generalized HDMR method are insufficient for
dominantly and purely multiplicative natures. The mentioned numerical results urge
us to develop a new HDMR based method to overcome this disadvantage. This
work aims to develop this new HDMR based method for obtaining acceptable band
structures for these types of problems. We know from literature that the Factorized
HDMR method [8] is a method to increase the performance of Generalized HDMR
method in modelling problems having multiplicative nature. Taking this case into
consideration, our new method is based on this Factorized HDMR philosophy. The
name of this new method is Interval Factorized HDMR and includes the important
features of the classical Factorized HDMR to build efficient band structure for the
considered problems of this work.

HDMR method is also used by many scientists in various research areas and
either the method is applied to several problems or new HDMR based methods are
developed [1–3, 5, 11].

This paper is organized as follows. The second section covers the related math-
ematical background needed to develop our new method. The details of the new
method are given in the third section. The fourth section includes a number of
numerical implementations to examine the performance of Interval Factorized
HDMR while the concluding remarks are discussed in the last section of this
paper.
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2 Mathematical Background

This section covers the multivariate data partitioning methods that were previously
developed and are used in constructing the Interval Factorized HDMR method for
bound analysis in multivariate data modelling problems. These methods are Plain
HDMR [9] and Interval Generalized HDMR [10]. In addition, an interpolation
technique including the bound analysis philosophy is given in the last sub-section.

2.1 The HDMR Method

The High Dimensional Model Representation (HDMR) method has the following
finite expansion to express a given multivariate function in terms of less variate
functions

f (x1, . . . , xN) = f0 +
N∑

i1=1

fi1(xi1) +
N∑

i1 ,i2=1
i1<i2

fi1i2(xi1 , xi2) + · · · + f1...N(x1, . . . , xN) (1)

where N is the number of independent variables of the given function [6]. The main
aim in this method is to uniquely determine the structure of each right hand side
component of the expansion given in Eq. 1.

To determine the general structure of the constant HDMR component, f0, the
following operator is used

I0 F(x1, . . . , xN) ≡
∫ b 1

a1

dx1 · · ·
∫ b N

aN

dxNW(x1, . . . , xN)F(x1, . . . , xN) (2)

where W(x1, . . . , xN) is a product type weight and F(x1, . . . , xN) is a square inte-
grable arbitrary function [9]. The operator, Ii1 , is defined to obtain the structure of
the univariate HDMR components, fi1(xi1) while 1 ≤ i1 ≤ N.

Ii1 F(x1, . . . , xN) ≡
∫ b 1

a1

dx1W1(x1) · · ·
∫ bi1−1

ai1−1

dxi1−1Wi1−1(xi1−1)

×
∫ bi1+1

ai1+1

dxi1+1Wi1+1(xi1+1) · · ·
∫ b N

aN

dxNWN(xN)F(x1, . . . , xN)

(3)

The weight function, W(x1, . . . , xN), appearing in the above conditions are assumed
to be a product type weight and can be defined with normalization criteria as

W(x1, . . . , xN) ≡
N∏

j=1

W j(x j),

∫ b j

a j

dx jW j(x j) = 1, x j ∈ [
a j , b j

]
(4)
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The following vanishing conditions are used when we apply the above mentioned
operators to both sides of the HDMR expansion to uniquely determine the HDMR
components of the multivariate function under consideration.

∫ b 1

a1

dx1 · · ·
∫ b N

aN

dxNW(x1, . . . , xN) fi(xi) = 0, 1 ≤ i ≤ N (5)

while these conditions correspond to the following orthogonality conditions

∫ b 1

a1

dx1W1(x1) · · ·
∫ b N

aN

dxNWN(xN) fi1...is(xi1 , . . . , xis)

× f j1... j� (x j1 , . . . , x j� ) = 0, (s �= �) ∨ [
(i1 �= j1) ∨ ... ∨ (is �= js)

]
(6)

When the operators, I0 and Ii1 are applied to the both sides of the Eq. 1 respectively,
the constant and the univariate HDMR components are obtained as [9]

f0 = I0 f (x1, . . . , xN) (7)

fi(xi) = Ii f (x1, . . . , xN) − f0, 1 ≤ i ≤ N (8)

The higher variate HDMR components can be determined in the same manner.
Because the aim of this study is to deal with at most the univariate approximation,
we do not give the details of these components.

2.2 The Generalized HDMR Method

The HDMR method uses a product type weight in representing a given multivariate
function by using the HDMR expansion. When we deal with multivariate data
partitioning, it is obvious that we should know the function values at all possible
nodes of the problem domain to obtain less variate data sets which allow us to
represent the whole domain through the HDMR expansion because of product type
weight need in the HDMR algorithm. In general, we can know the function values
at only a small number of nodes of the problem domain. This urges us to use a non-
product weight in HDMR. The Generalized HDMR method was developed for this
purpose [7].

The first step in Generalized HDMR is to write the HDMR expansion of a general
weight function as

W(x1, . . . , xN) = W0 +
N∑

i1=1

Wi1(xi1) + · · · + W1...N(x1, . . . , xN) (9)

To determine the structure of each HDMR component of the general weight
function, a product type auxiliary weight is needed

�(x1, . . . , xN) ≡
N∏

j=1

� j(x j),

∫ b j

a j

dx j�(x j) = 1, 1 ≤ j ≤ N (10)
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and the vanishing conditions under this auxiliary weight to determine the HDMR
components of the general weight are defined as follows

∫ bi j

ai j

dxi j�i j(xi j)Wi1...ik

(
xi1 , . . . , xik

) = 0, 1 ≤ i j ≤ ik (11)

while the following relation is defined as the vanishing conditions for the determina-
tion of the multivariate function components [7]

∫ b 1

a1

dx1 · · ·
∫ b N

aN

dxN�(x1, . . . , xN)W(x1, . . . , xN) fi(xi) = 0, 1 ≤ i ≤ N (12)

When we apply the operator given in Eq. 2 under the auxiliary weight func-
tion, �(x1, . . . , xN) to the product of HDMR expansions of W(x1, . . . , xN) and
f (x1, . . . , xN), the following relation is obtained as the constant Generalized HDMR
component of the given multivariate function [7]

f0 = I0
[

W(x1, . . . , xN) f (x1, . . . , xN)
]

(13)

where

W0 = 1 (14)

The general structure of the univariate Generalized HDMR components are ob-
tained as follows in the same manner [7]

Ii
[

W(x1, . . . , xN) f (x1, . . . , xN)
]

= (1 + Wi(xi)) f0 + (1 + Wi(xi)) fi(xi)

+ (1 + Wi(xi))

N∑

i1=1
i1 �=i

∫ bi1

ai1

dxi1�i1(xi1)
(
1 + Wi1(xi1)

)
fi1(xi1)

+
N∑

i1 ,i2=1,i1<i2
(i1=i)∨(i2=i)

∫ (1−δi1 i)bi1 +δi1 ib i2

(1−δi1 i)ai1 +δi1 iai2

[ (
1 − δi1i

)
dxi1�i1(xi1) + δi1idxi2�i2(xi2)

]

× [
Wi1i2(xi1 , xi2) − Wi1(xi1)Wi2(xi2)

] [ (
1 − δi1i

)
fi1(xi1) + δi1i fi2(xi2)

]
(15)

where δi1i stands for Kronecker’s Delta and 1 ≤ i ≤ N. This relation is a set of inte-
gral equations whose unknowns are the univariate components of the Generalized
HDMR expansion.

2.3 The Interval Generalized HDMR Method

The Interval Generalized HDMR method takes the uncertainties in the node loca-
tions and the function values into consideration to construct new relations through
the Generalized HDMR method for obtaining an approximate band structure that
models the given problem. In this sense, a weight function is defined as follows [7]

W(x1, . . . , xN) ≡
m∑

j=1

α jδ
(
x1 − x( j )

1

) · · · δ(xN − x( j )
N

)
(16)
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where α j parameters are used for assigning a different importance to each individual
datum and the multivariate data definition is

d j ≡ (
x( j )

1 , . . . , x( j )
N , ϕ j

)
, ϕ j ≡ f

(
x( j )

1 , . . . , x( j )
N

)
, 1 ≤ j ≤ m (17)

When the weight function is inserted into the relations given in the previous sub-
section the Generalized HDMR method becomes to be applicable as a multivariate
data partitioning technique. In addition, to obtain the error bands for the uncertainty
analysis of those relations, we will approximate the differentiation operator with the
corresponding order difference operator. In this sense, the relations will involve first
order differences [10].

In this work, only the final relations of Interval Generalized HDMR are given
for simplicity since the calculations were already given in the previous works of the
authors [7, 10].

To this end, the structure of the constant Generalized HDMR component is
obtained as [7]

f0 =
m∑

j=1

α j� jϕ j (18)

while the error band for this constant component is as follows [10]

� f0 −
m∑

j=1

(
� jϕ j�α j + α jϕ j�� j

) =
m∑

j=1

α j� j�ϕ j (19)

where

� j ≡
N∏

k=1

�k
(
x( j )

k

)
, �� j = � j

(
N∑

k=1

�′
k

(
x( j )

k

)

�k
(
x( j )

k

)�x( j )
k

)
, 1 ≤ j ≤ m (20)

Here, the uncertainties in node locations, function values and α coefficients of the
weight function are assumed to be given.

Next step is to construct the general structure of the univariate Generalized
HDMR components. The univariate components are the unknowns of the following
linear equation system [7]

βi,k = αi,k

(
f0 + fi

(
ξ

(k)

i

)) +
i−1∑

i1=1

mi1∑

�=1

αi1,i;�,k�i1

(
ξ

(l)
i1

)
fi1

(
ξ

(l)
i1

)
+

+
N∑

i1=i+1

mi1∑

�=1

αi,i1;k,��i1

(
ξ

(l)
i1

)
fi1

(
ξ

(l)
i1

)
(21)

where

βi,k ≡
∑

j∈Ji,k

α j� j

�i

(
ξ

( j )
i

) ϕ j, αi,k ≡
∑

j∈Ji,k

α j� j

�i

(
ξ

( j )
i

) , 1 ≤ k ≤ mi, 1 ≤ i ≤ N (22)
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and

αi1,i2;k,� ≡
∑

j∈Ji1 ,k
j∈Ji2 ,�

α j� j

�i1

(
ξ

(k)

i1

)
�i2

(
ξ

(�)

i2

) ,

1 ≤ k ≤ mi1 , 1 ≤ � ≤ mi2 , 1 ≤ i1 < i2 ≤ N (23)

The J sets are composed of identical xi coordinate values while mi values stand for
the total number of identical values for each coordinate [7].

The error band for each univariate component is obtained by solving the following
linear equation system [10]

αi,k

[
� f0 + � fi

(
ξ

(k)

i

)]
+ �αi,k

[
f0 + fi

(
ξ

(k)

i

)]

−
∑

j∈Ji,k

⎡

⎣α jϕ j�� j + � jϕ j�α j

�i

(
ξ

( j )
i

)

⎤

⎦

+
i−1∑

i1=1

mi1∑

�=1

[
�i1

(
ξ

(l)
i1

)
fi1

(
ξ

(l)
i1

)
�αi1,i;�,k + αi1,i;�,k�i1

(
ξ

(l)
i1

)
� fi1

(
ξ

(l)
i1

)]

+
N∑

i1=i+1

mi1∑

�=1

[
�i1

(
ξ

(l)
i1

)
fi1

(
ξ

(l)
i1

)
�αi,i1;k,� + αi,i1;k,��i1

(
ξ

(l)
i1

)
� fi1

(
ξ

(l)
i1

)]

=
∑

j∈Ji,k

⎡

⎢⎣
�i

(
ξ

( j )
i

)
α j� j�ϕ j − α j� jϕ j�

′
i

(
ξ

( j )
i

)
�ξ

( j )
i

(
�i

(
ξ

( j )
i

))2

⎤

⎥⎦

−
i−1∑

i1=1

mi1∑

�=1

[
αi1,i;�,k fi1

(
ξ

(l)
i1

)
�′

i1

(
ξ

(l)
i1

)
�ξ

(l)
i1

]

−
N∑

i1=i+1

mi1∑

�=1

[
αi,i1;k,� fi1

(
ξ

(l)
i1

)
�′

i1

(
ξ

(l)
i1

)
�ξ

(l)
i1

]
(24)

where

�αi,k −
∑

j∈Ji,k

� j�α j + α j�� j

�i

(
ξ

( j )
i

) =
∑

j∈Ji,k

α j� j�
′
i

(
ξ

( j )
i

)
�ξ

( j )
i

(
�i

(
ξ

( j )
i

))2 (25)
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and

�αi1,i2;k,� −
∑

j∈Ji1 ,k
j∈Ji2 ,�

α j�� j + � j�α j

�i1

(
ξ

(k)

i1

)
�i2

(
ξ

(�)

i2

) =

= −
∑

j∈Ji1 ,k
j∈Ji2 ,�

α j� j

[
�i1

(
ξ

(k)

i1

)
�′

i2

(
ξ

(�)

i2

)
�ξ

(�)

i2 + �i2

(
ξ

(�)

i2

)
�′

i1

(
ξ

(k)

i1

)
�ξ

(k)

i1

]

(
�i1

(
ξ

(k)

i1

))2 (
�i2

(
ξ

(�)

i2

))2

(26)

The ξ values are the identical values identified in each coordinate, xi. We also know
the �ξ

( j )
i values.

2.4 Interpolation

The univariate components of both Generalized HDMR and Interval Generalized
HDMR are partitioned data sets of the given multivariate data. To obtain an
analytical structure for these components Langrange interpolation is used. In this
sense, a multinomial should be built in terms of Lagrange polynomials

pi(xi) =
mi∑

ki=1
Lki(xi) fi

(
ξ

(ki)

i

)
,

Lki(xi) = xT
i A−1

i eki , 1 ≤ ki ≤ mi, 1 ≤ i ≤ N (27)

where

xi =

⎡

⎢⎢⎢⎢⎢⎣

1
xi

x2
i
...

xmi−1
i

⎤

⎥⎥⎥⎥⎥⎦
, Ai =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 ξ
(1)

i

(
ξ

(1)

i

)2
. . .

(
ξ

(1)

i

)mi−1

1 ξ
(2)

i

(
ξ

(2)

i

)2
. . .

(
ξ

(2)

i

)mi−1

...
...

...
. . .

...

1 ξ
(mi)

i

(
ξ

(mi)

i

)2
. . .

(
ξ

(mi)

i

)mi−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(28)

Here, 1 ≤ i ≤ N and A is a Wandermonde matrix [10]. When we take into consider-
ation the uncertainties mentioned before, the error band for the multinomial given
in Eq. 27 is obtained as

�pi(xi) =
mi∑

ki=1

[
(�Lki(xi)) fi

(
ξ

(ki)

i

)
+ Lki(xi)

(
� fi

(
ξ

(ki)

i

))]
(29)

where

�Lki(xi) = −xT
i A−1

i (�Ai)A−1
i eki , 1 ≤ ki ≤ mi, 1 ≤ i ≤ N (30)
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and

�Ai =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2ξ
(1)

i �ξ
(1)

i . . . (mi − 1)
(
ξ

(1)

i

)mi−2
�ξ

(1)

i

0 1 2ξ
(2)

i �ξ
(2)

i . . . (mi − 1)
(
ξ

(2)

i

)mi−2
�ξ

(2)

i

...
...

...
. . .

...

0 1 2ξ
(mi)

i �ξ
(mi)

i . . . (mi − 1)
(
ξ

(mi)

i

)mi−2
�ξ

(mi)

i

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(31)

Finally, we can express the considered analytical structure in terms of Interval
Generalized HDMR components and the following band structure is obtained as
the model of the given problem

s̄(l)
1 (x1, . . . , xN) ≡ ( f0 − |� f0|) +

N∑

i=1

(pi(xi) − |�pi(xi)|)

s̄(u)
1 (x1, . . . , xN) ≡ ( f0 + |� f0|) +

N∑

i=1

(pi(xi) + |�pi(xi)|) (32)

where s̄(l)
1 and s̄(u)

1 stand for the lower and upper bands of the model respectively [10].

3 Interval Factorized HDMR

Partitioning the given data including the errors in it and obtaining analytical struc-
tures for the univariate components of the expansion through Interval Generalized
HDMR algorithm cannot be sufficient for the multivariate functions that do not have
dominantly additive nature. A factorized form of this method is needed when the
sought function has multiplicative nature. The expansion for this factorized form is
defined as follows [8].

f (x1, . . . , xN) = r0

⎡

⎣
N∏

i1=1

(
1 + ri1(xi1)

)
⎤

⎦ × · · · × [ ( 1 + r1...N(x1, . . . , xN) ) ] (33)

The univariate Factorized HDMR approximation can be written as

π1(x1, . . . , xN) = r0

N∏

i1=1

(
1 + ri1(xi1)

)
(34)

where the Factorized HDMR components are written in terms of Generalized
HDMR components as follows [8]

r0 = f0, ri1(xi1) = fi1(xi1)

f0
, 1 ≤ i1 ≤ N (35)

To obtain the error bands for the constant and the univariate terms of the Factorized
HDMR expansion the first order differences of the relations of these components
are evaluated. The error band for the constant term is obtained as

�r0 = � f0 (36)
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while the relation for the error band of the univariate terms are

�ri1(xi1) = f0� fi1(xi1) − fi1(xi1)� f0

f 2
0

, 1 ≤ i1 ≤ N (37)

where the error band relations for the constant term and the univariate terms of the
Interval Generalized HDMR algorithm are given in Eqs. 19 and 24 respectively.

The first order difference of the univariate Factorized HDMR approximant given
in Eq. 34 can be obtained as follows

�π1(x1, . . . , xN) = (�r0)

N∏

i1=1

(
1 + ri1(xi1)

) + r0�

⎛

⎝
N∏

i1=1

(
1 + ri1(xi1)

)
⎞

⎠ (38)

If the calculations for the above relation are done the following relation is obtained

�π1(x1, . . . , xN) =
[

�r0

r0
+

N∑

k=1

�rk(xk)

1 + rk(xk)

]
π1(x1, . . . , xN) (39)

The univariate Interval Factorized HDMR approximants for the lower curve and the
upper curve structures can be written respectively as

π
(l)
1 (x1, . . . , xN) = π1(x1, . . . , xN) − |�π1(x1, . . . , xN)| (40)

π
(u)
1 (x1, . . . , xN) = π1(x1, . . . , xN) + |�π1(x1, . . . , xN)| (41)

where π
(l)
1 and π

(u)
1 stand for the lower and upper bands of the model respectively.

Since we deal with at most univariate approximation in this work, the relations of
higher variate approximations are not included here.

4 Numerical Implementations

This section covers a number of examples to examine the bound analysis perfor-
mance of our new method, Interval Factorized HDMR. The calculations are done
in MuPAD [4] within 20-digits precision. Because we offer a new method that
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Fig. 2 Band structures for f2(x1, . . . , x5)

works well for cases that are dominantly and purely multiplicative nature, the testing
functions are selected as

f1(x1, . . . , x5) =
[

5∑

i=1

xi

]3

, f2(x1, . . . , x5) =
[

5∑

i=1

xi

]5

,

f3(x1, . . . , x5) =
5∏

i=1

xi (42)

where each has 5 independent variables. The modelling process will be executed on
400 nodes with an uncertainty of 10 % on the locations of the nodes and the function
values. The domains of the independent variables are selected as follows

1 ≤ x1 ≤ 4, 3 ≤ x2 ≤ 7, 2 ≤ x3 ≤ 5, 4 ≤ x4 ≤ 8, 3 ≤ x5 ≤ 9 (43)

Figures 1, 2, and 3 show the performance of both Interval Generalized HDMR
and Interval Factorized HDMR methods in randomly constructed multivariate
data modelling problems by using the testing functions and the domain of each
independent variable of the related function given in Eqs. 42 and 43 respectively.
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Fig. 3 Band structures for f3(x1, . . . , x5)
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It is clear that the Interval Factorized HDMR method works better than the other
method. Our proposed method constructs a tighter band structure.

5 Concluding Remarks

Generalized HDMR is a multivariate data partitioning method and can be used
to obtain an analytical structure as the model for the multivariate data modelling
problems. When uncertainties on data that describe such problems occur, Gener-
alized HDMR method should be reconstructed to determine error bands for the
components of the method. This results in a band structure as the model instead of a
unique analytical structure. The Interval Generalized HDMR method is the method
that has the ability to determine that type of a band structure. However, it is known
that this method works well for cases of additive nature. When the nature of the
given problem becomes dominantly or purely multiplicative then a new method is
needed to have an acceptable band structure. This new method is named as Interval
Factorized HDMR and is based on the standard Factorized HDMR method. The
numerical results and the corresponding figures show us that this new method gives
better band structures than the Interval Generalized HDMR method for cases of
dominantly and purely multiplicative nature. This means that our new method closes
the gap that the Interval Generalized HDMR method has in modelling cases of
non-additive nature.

References

1. Banerjee, I., Ierapetritou, M.G.: Model independent parametric decision making. Ann. Oper.
Res. 132(1–4), 135–155 (2004)

2. Chowdhury, R., Rao, B.N.: Hybrid high dimensional model representation for reliability analysis.
Comput. Methods Appl. Mech. Eng. 198, 753–765 (2009)

3. Gomez, M.C., Tchijov, V., Leon, F., Aguilar, A.: A tool to improve the execution time of air
quality models. Environ. Model. Softw. 23, 27–34 (2008)

4. Oevel, W., Postel, F., Wehmeier, S., Gerhard, J.: The MuPAD Tutorial. Springer, New York
(2000)
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