
J Math Model Algor (2013) 12:233–251
DOI 10.1007/s10852-012-9208-2

A New Hybrid Evolutionary Multiobjective Algorithm
Guided by Descent Directions

Roman Denysiuk · Lino Costa · Isabel Espírito Santo

Received: 29 July 2012 / Accepted: 14 August 2012 / Published online: 1 September 2012
© Springer Science+Business Media B.V. 2012

Abstract Hybridization of local search based algorithms with evolutionary algo-
rithms is still an under-explored research area in multiobjective optimization. In this
paper, we propose a new multiobjective algorithm based on a local search method.
The main idea is to generate new non-dominated solutions by adding a linear
combination of descent directions of the objective functions to a parent solution.
Additionally, a strategy based on subpopulations is implemented to avoid the direct
computation of descent directions for the entire population. The evaluation of the
proposed algorithm is performed on a set of benchmark test problems allowing a
comparison with the most representative state-of-the-art multiobjective algorithms.
The results show that the proposed approach is highly competitive in terms of the
quality of non-dominated solutions and robustness.

Keywords Multiobjective optimization · Evolutionary algorithms · Pattern search ·
Performance assessment

1 Introduction

Many real-world optimization problems involve the simultaneous optimization of
several conflicting objectives. These problems are called multiobjective optimization

R. Denysiuk (B)
Algoritmi R&D Center, University of Minho, Minho, Portugal
e-mail: roman.denysiuk@algoritmi.uminho.pt

L. Costa · I. Espírito Santo
Department of Production and Systems Engineering, University of Minho, Minho, Portugal

L. Costa
e-mail: lac@dps.uminho.pt

I. Espírito Santo
e-mail: iapinho@dps.uminho.pt

234 J Math Model Algor (2013) 12:233–251

problems (MOPs). Without loss of generality, a multiobjective optimization problem
with m objectives and n decision variables can be formulated mathematically as
follows:

minimize: F(x) = (f1(x), f2(x), . . . , fM(x))T

subject to: x ∈ �
(1)

where x is the decision vector defined in the decision space � = {x ∈ R
n : l ≤ x ≤ u}, l

and u are the lower and upper bounds of the decision variables, respectively, and F(x)

is the objective vector defined in the objective space F
M. Since the objective space

is partially ordered, solutions are compared on the base of Pareto dominance. For
a multiobjective minimization problem, a solution a is said to dominate a solution
b, a ≺ b, iff ∀m ∈ {1, . . . , M} : fm(a) ≤ fi(b) and ∃ j ∈ {1, . . . , M} : f j(a) < f j(b).
Opposing single-objective optimization, the solution to multiobjective optimization
problems is not a single solution, but a set of non-dominated solutions called the
Pareto-optimal set. A solution a is called a Pareto-optimal, iff �b ∈ � : b ≺ a, or there
is no feasible solution b such that b dominates a. The main goal of the multiobjective
optimization is to obtain the set of Pareto-optimal solutions.

Classical methods to solve multiobjective optimization problems mostly rely on
scalarization of the multiple objectives and require repeated runs with different
parameters sets to find several approximations to the Pareto-optimal solutions [14].
However, there are a few classical methods (stochastic and deterministic) which
either attempt to find multiple Pareto-optimal solutions in a single simulation run,
or attempt to solve multiple scalarized problems such that a good diversity among
resulting solutions is maintained [15].

Evolutionary algorithms have been successfully applied to solve a large number of
multiobjective optimization problems [2]. Compared with conventional optimization
methods for solving MOPs, multiobjective evolutionary algorithms(MOEAs) gener-
ate multiple Pareto optimal solutions in a single run, since they can explore different
regions of the solution space and maintain a set of diverse solutions. A number of
MOEAs that achieved a good performance have been proposed [3, 12, 18, 19].

However, several drawbacks are related with these approaches, such as high com-
putational cost or slow convergence at regions close to the Pareto-optimal front. The
local search algorithms have shown good ability to circumvent such difficulties in the
single-objective case. The study of local search based methods in the multiobjective
optimization context is an essential step for further hybridization with evolutionary
algorithms since this is still an under-explored research area. Nevertheless, some
studies have been conveyed on combining the global and local search techniques
in multiobjective optimization [9, 10].

In this paper we propose the Descent Directions based Multiobjective Algorithm
(DDMOA) which is a hybrid evolutionary multiobjective algorithm. It is based on
the local search principle, that during the iterations enables the given population
to proceed towards the Pareto-optimal front. The main idea for generating new
solutions relies on the approach proposed by Timmel [16]. The presence of gradients
in this approach imposes significant limitations, regarding the differentiability of
the problem being solved. Therefore, in order to overcome this drawback, descent
directions for each objective are calculated to avoid the computation of derivatives.

The remainder of this paper is organized as follows. In Section 2, we introduce
a classical method for multiobjective optimization whose main idea was extended

J Math Model Algor (2013) 12:233–251 235

and used in our algorithm. In Section 3, we give a detailed description of DDMOA.
In Section 4, we present the methodology used to assess the performance of the
proposed approach. In Section 5, we discuss the results of experimental study and
show comparison with other MOEAs. In Section 6, we conclude and address some
possible future work.

2 Timmel’s Method

In this section, we describe a classical method for finding multiple Pareto-optimal
solutions of a differentiable multiobjective optimization problem proposed by
Timmel [16], whose main idea was extended and used in our hybrid algorithm. It
is a population based approach, where for a given parent solution, a child solution is
created in the following manner:

xchild = xparent − tk
M∑

m=1

um∇ fm(xparent) (2)

where xparent is the parent decision vector, xchild is the generated child decision
vector, ∇ fm(xparent) is the gradient of m-th objective, tk is the step size at the k-th
iteration and um is a uniformly distributed random number between zero and one
(um ∼ U(0, 1)).

The above formulation ensures that not all objective functions can be worsened si-
multaneously. Thus, the child solution xchild is either non-dominated when compared
to the parent solution xparent, or it dominates the parent solution.

Figure 1 shows the creation of child solutions {a, b , c, d} (denoted by the lowercase
letters) from the corresponding parents (denoted by the capital letters). The vectors
of the gradients are presented for the parent solution C. Adding to the parent
solution, the linear combination of the gradients generates the child c. For the
other parent solutions children are generated in the same way. Not all children

Fig. 1 Illustration of
generating the child solutions
{a, b , c, d}

236 J Math Model Algor (2013) 12:233–251

dominate their parents. After the child population is created, it is combined with
the parent population and only the non-dominated solutions are retained. Then, this
set becomes the parent population, and this procedure is repeated for a pre-defined
number of iterations.

The above approach is only applicable to differentiable optimization problems,
and this is the main limitation of this method. In order to avoid the use of the gradient
of the objectives, we calculate descent directions for each objective. Thus, we propose
the following formulation to generate a child solution from a given parent:

xchild = xparent + σk

M∑

m=1

umsm, (3)

where σk is the step size in the k-th iteration, um is a uniformly distributed random
number between 0 and 1 (um ∼ U(0, 1)), and sm is the descent direction for m-th
objective.

3 Descent Directions Based Multiobjective Algorithm

In this section, we present the Descent Directions based Multiobjective Algorithm
(DDMOA). It is a hybrid evolutionary multiobjective algorithm which borrows the
idea of generating new child solutions from the above described classical method and
comprises general features of evolutionary algorithms. Its pseudo-code is presented
in Algorithm 1.

Algorithm 1 DDMOA
Require: μ > 0, δ0 > 0, δtol > 0, α > 0, σ0 > 0
Ensure: PND 	 approximation to the Pareto-optimal set

1: P0 ← initialPopulation(μ)

2: k ← 0
3: σ k ← σo

4: Pk ← nondominationSorting(P0)

5: repeat
6: (Sk, Ak) ← descentDirections(Pk)

7: Rk ← tournamentSelection(Pk)

8: Ok ← generateOffspring(Rk, Sk, σ k)

9: Pk+1 ← nondominationSorting(Pk ∪ Ok ∪ Ak)

10: Pk+1 ← diversityPreserving(Pk+1)

11: σ k+1 ← updateStepSize(k)

12: k ← k + 1
13: until the stopping criterion is met
14: PND ← Pk

DDMOA starts by randomly generating an initial population P0 of μ individuals
(initialPopulation procedure). All solutions in the population are tuples of the form
(x, δ), where δ is step size for coordinate search. Next, the population is evaluated and
all dominated solutions are removed from the population (nondominationSorting

J Math Model Algor (2013) 12:233–251 237

procedure). The iterative process is started by computing descent directions for
each objective for all solutions in the population (descentDirections procedure),
which returns a matrix of descent directions Sk, and a temporary archive Ak,
with all non-dominated solutions found during coordinate search. Then, in order
to select a pool of parent solutions, Rk, a binary tournament selection based on
crowding distances is performed (tournamentSelection procedure). After the pool of
parent solutions is selected, a set of child solutions Ok is created (generateOffspring
procedure), using Eq. 3. Then, the multi-set that includes the set of parent solutions,
the generated offspring and the temporary archive is sorted (nondominationSorting
procedure), returning only non-dominated solutions and forming a new population.
If the number of solutions in the new population is greater than the pre-defined
population size, solutions which reside in less crowded regions are retained for the
next iteration (diversityPreserving procedure). After that, the step size σ k used
to generate offspring is updated. If the stopping criterion is met, the iterative
process terminates, and the algorithm returns the set of non-dominated solutions
as an approximation to the Pareto-optimal front for a given problem, otherwise the
algorithm proceeds to the next iteration. The following two stopping conditions are
used: (i) the maximum number of objective function evaluations is reached, and (ii)
δ ≤ δtol for all solutions in the population.

In the following subsections the components of DDMOA are discussed in more
detail.

3.1 Initial Population

The initial population P0 can be generated in multiple ways. It can be either
generated randomly such that all the variables are inside the search space or can be
uniformly sampled. We choose to create the initial population using Latin hypercube
(LH) sampling [13] since it gives a good overall random distribution of the population
in the variable space. Let the size of the population be N and the number of variables
be n. Let the lower and upper bounds of variable i be li and ui, respectively. To
generate a LH sample, the variable range is divided into N equal segments of size
ui−li

N each, and a real random number is generated in each segment. Then a random
permutation of integers from 1 to N is generated and the individual with index i is
assigned with a value located at the π(i)–th position in the permutation. This process
is repeated for all the variables. This ensures that the resultant population spans the
entire decision space, it is sufficiently random and is free from any biases.

3.2 Descent Directions

The distinctive feature of our algorithm is that it needs to compute m descent
directions for each solution in the current population to allow offspring generation.
Therefore, each iteration is started by descentDirections procedure, which allows to
compute descent directions for each objective for all solutions in the population. We
present the pseudo-code for this procedure in Algorithm 2.

The population is sorted for the first objective in ascending order and partitioned
into α equal parts. Thus, α subpopulations are defined in order to promote different
reference points for the computation of descent directions. It follows that a descent

238 J Math Model Algor (2013) 12:233–251

Algorithm 2 descentDirections

Require: P
Ensure: (S,A)

1: A ← {}
2: for m = 1 . . . M do
3: sort population P in ascending order according to fm

4: partition sorted P into α subpopulations:
5: P = {p1, p2, .., pα}
6: for i = 1 . . . α do
7: identify the leader individual xleader ∈ pi

8: (sleader, A) ← coordinateSearch(P, A, xleader, m)

9: for j = 1 . . . |pi| do
10: s j,m ← xleader − x j + sleader

11: end for
12: end for
13: end for

direction, sleader, is computed using coordinate search method, in each subpopulation
pi for the leader xleader (the solution with the lower objective function value among
the other solutions in the subpopulation) and δ > δtol. For the rest of the solutions in
the given subpopulation descent directions are calculated as:

s j,m = xleader − x j + sleader, (4)

where s j,m is a descent direction for j-th solution of the i-th subpopulation for the
m-th objective, x j is the decision vector of the j-th solution in the subpopulation,
xleader is the leader solution in the subpopulation, and sleader is the descent direction
for the leader. This procedure is repeated for the other objectives. At the end, M
descent directions are associated with each solution in the population. Finding such
descent directions avoids the direct calculation of descent directions for the entire
population using coordinate search, which is computationally expensive, allowing to
reduce significantly the number of function evaluations.

3.3 Parent Selection

In order to select a pool Rk with μ parent solutions, a binary tournament selection is
performed (tournamentSelection procedure), based on crowding distances measured
in the objective space, as proposed in [3]. Therefore, solutions with the higher crowd-
ing distances have more probability of creating offspring. However, as DDMOA
uses only non-dominated solutions, the situation where the number of solutions in
the population is very small or even equal to one may occur. So, if the number
of solutions in the population is less or equal to the number of objective functions
parents are randomly selected from given solutions, otherwise the usual tournament
selection is performed. This selection process that combines crowding distances with
a stochastic selection operator promotes a good spread of solutions in the objective
space as well as the exploration of new promising areas of the decision space.

J Math Model Algor (2013) 12:233–251 239

We present the pseudo-code for this procedure in Algorithm 3.

Algorithm 3 tournamentSelection
Require: P
Ensure: R

1: R ← {}
2: while |R| < μ do
3: if |P| ≤ M then
4: randomly pick a ∈ P
5: R ← R ∪ a
6: else
7: randomly pick a ∈ P, b ∈ P ∧ a = b
8: if a <c b then 	 crowding distance of b is greater than a
9: R ← R ∪ b

10: else
11: R ← R ∪ a
12: end if
13: end if
14: end while

3.4 Offspring Generation

After a pool of parent solutions is created and M descent directions are as-
sociated with each solution in the population, a child population is generated
(generateOffspring procedure). In order to guarantee that each new solution x =
(x1, . . . , xN)T belongs to � (see Eq. 1), projection is applied to each component of
the decision vector.

We present pseudo-code for this procedure in Algorithm 4.

Algorithm 4 generateOffspring
Require: R, S, σk

Ensure: O
1: for i = 1 . . . |R| do

2: O(i) ← R(i) + σk

M∑
m=1

umsm

3: O(i) ← min{max{O(i), l}, u}
4: end for
5: evaluate child population

3.5 Non-Dominated Sorting

The nondominationSorting procedure removes all dominated solutions from a given
set. The following pseudo-code (Algorithm 5) is used for this purpose:

3.6 Diversity Preserving

If the size of the new population is greater than a pre-defined population size, Pk+1 >

μ, solutions which have the minimum distance to the other solutions are iteratively

240 J Math Model Algor (2013) 12:233–251

Algorithm 5 nondominationSorting
Require: P
Ensure: P′

1: P′ ← {}
2: for i = 1 . . . |P| do
3: for j = 1 . . . |P| and j = i do
4: if P(j) ≺ P(i) then
5: break
6: end if
7: end for
8: if j = |P| then
9: P′ ← P′ ∪ P(i)

10: end if
11: end for

removed from the population Pk+1 until |Pk+1| = μ. If there are several individuals
with minimum distance the tie is broken by considering the second smallest distances,
and so on.

The pseudo-code for this procedure is presented in Algorithm 6.

Algorithm 6 diversityPreserving
Require: P
Ensure: P

1: while |P| > μ do
2: find a ∈ P 	 solution with the lower distance to a neighboring solution
3: P ← P\a
4: end while

3.7 Step Size Adaptation

There is no common rule to update the step size σ k in Eq. 3, but it must be
done carefully to ensure convergence to the Pareto-optimal front. Thus, after the
new population is formed, the step size used to generate offspring is updated
(updateStepSize procedure). We use the following approach for updating:

σ k = max
(
δtol,

σ0

k

)
(5)

Using this method the step size σ decreases during the iterations from the initial
value σ0 at the first iteration and never becomes less then δtol.

4 Performance Assessment

The performance comparison of different multiobjective optimization algorithms is
more difficult than in the case of single objective optimization. In the multiobjective

J Math Model Algor (2013) 12:233–251 241

case, the goal is to find a good approximation to the true Pareto-optimal set, and to
obtain a well distributed subset of the whole Pareto-optimal frontier. Many ways of
measuring the performance of multiobjective algorithms have been proposed in the
literature. In our study, we compare the quality of the non-dominated sets obtained
by the algorithms using two quality indicators: the unary additive epsilon indicator
(I1

ε+) [21] to assess the convergence, and the hypervolume indicator (I−
H) [20] to

assess both the convergence and the diversity. Since we are dealing with stochastic
algorithms and we want to provide the results with confidence, we compare the
results on the individual benchmark functions using a standard two-sided Wilcoxon
rank sum test. In this work we consider a confidence level of 95 % in the statistical
tests, which means that the difference are unlikely to have occurred by chance with
a probability of 95 %. For a detailed description of the use of non-parametric tests
to analyze the performance of evolutionary algorithms we refer to [7]. Finally, we
present the results in the form of performance profiles [5] providing good visualiza-
tion and easiness of making inferences about the performance of the algorithm. A
brief description of the performance profiles and the quality indicators are provided
in this section.

4.1 Performance Profiles

The performance profiles were proposed to compare the performance of determin-
istic algorithms over a set of distinct optimization problems [5]. These performance
profiles can be extended to the context of stochastic algorithms with some adapta-
tions [1].

Let P and S be the set of problems and the set of solvers in comparison,
respectively, and let mp,s be the performance metric required to solve problem p ∈ P
by solver s ∈ S . The comparison is based on performance ratios defined by

rp,s = mp,s

min{mp,s : s ∈ S}

and the overall assessment of the performance of a particular solver s is given by

ρs(τ) = 1

total number of problems
{size{p ∈ P : rp,s ≤ τ }}.

For τ = 1, ρs(τ) gives the probability that the solver s will win over the others in
the set. Thus, for τ = 1, the uppermost curve shows the algorithm with the highest
percentage of problems with the best metric value. However, for large values of τ ,
ρs(τ) measures the solver robustness. Overall, the higher the ρs values, the better the
solver is. Also, for solver s that performs the best on a problem p, rp,s = 1. If rp,s = 2,
it means that the m-fold improvement by solver s on problem p is twice the best value
found by another solver on the same problem p.

In this paper, we use quality indicators [11] to measure the quality of non-
dominated sets � obtained by the algorithms which can be defined as a function
I : � → R. This mapping to the set of real numbers allows to apply statistical tools
such as performance profiles. In this study we consider the ε-indicator (I1

ε+) and
hypervolume indicator (I−

H), which are positive and superior to zero, and a smaller

242 J Math Model Algor (2013) 12:233–251

value of the quality indicator corresponds to a better performance of the algorithm.
Thus, we define the metric:

mp,s = Istats

where Istats represents a statistic computed for a given quality indicator value
obtained in several runs (e.g., minimum, median,...). A description of the epsilon
and the hypervolume indicators follows.

Table 1 Median values of the epsilon indicator after 30 runs

DDMOA NSGA–II IBEA MOEA/D

Two-objective test problems
ZDT1 0.0063II,III,IV 0.013IV 0.0082II,IV 0.0997
ZDT2 0.0074II,III,IV 0.0158III,IV 0.029IV 0.4135
ZDT3 0.0066III,IV 0.0075III,IV 0.0216IV 0.1788
ZDT4 0.0006II,III,IV 0.0029III,IV 0.0087IV 0.0675
ZDT6 0.0002II,III,IV 0.0166IV 0.0151II,IV 0.0413
DTLZ1 0.0174II,III,IV 0.1422 0.1206II 0.1175
DTLZ2 0.0088II,III 0.013III 0.0138 0.0092II,III

DTLZ3 0.0183II,III,IV 0.1592 0.1731 0.1935
DTLZ4 0.0091II,III,IV 0.0133III 0.0149 0.0123III

DTLZ5 0.0091II,III 0.0125III 0.0138 0.0094II,III

DTLZ6 0.0009II,III 0.5668 0.4662II 0.0007I,II,III

DTLZ7 0.0051II,III,IV 0.0093III,IV 0.0254IV 0.2967
WFG1 0.0179III 0.0136I,III,IV 0.0242 0.0171III

WFG2 0.2514 0.193I 0.1931I 0.0196I,II,III

WFG3 0.0704 0.0148I 0.0083I,II,IV 0.0128I,II

WFG4 0.0532IV 0.016I,IV 0.012I,II,IV 0.0805
WFG5 0.085 0.0187I 0.0169I,II 0.0167I,II,III

WFG6 0.0349 0.0409 0.0465 0.0111I,II,III

WFG7 0.0242 0.0176I 0.0121I,II 0.0098I,II,III

WFG8 0.1471III 0.1838III 0.2246 0.1264II,III

WFG9 0.0331 0.0144I 0.0112I,II,IV 0.0128I,II

Three-objective test problems
DTLZ1 0.0023II,III,IV 0.0824 0.0179II,IV 0.1309
DTLZ2 0.0811II,IV 0.1149IV 0.0775I,II,IV 0.5403
DTLZ3 0.0063II,III,IV 0.1217IV 0.0487II,IV 0.3549
DTLZ4 0.1282III,IV 0.1175I,III,IV 0.632IV 0.6643
DTLZ5 0.0111II,III,IV 0.0154III,IV 0.0407IV 0.7908
DTLZ6 0.0004II,III,IV 0.5041 0.1919II 0.0688II,III

DTLZ7 0.0489II,III,IV 0.0802III,IV 0.0904IV 0.6863
WFG1 0.0763II,IV 0.0902IV 0.0521I,II,IV 0.3201
WFG2 0.1511IV 0.0967I,IV 0.1949 0.1947
WFG3 0.0751III,IV 0.0541I,III,IV 0.1109IV 0.4534
WFG4 0.1097II,IV 0.1282IV 0.0794I,II,IV 0.7283
WFG5 0.1638IV 0.1171I,IV 0.0752I,II,IV 0.6741
WFG6 0.0977II,IV 0.1485IV 0.0887I,II,IV 0.854
WFG7 0.151IV 0.1069I,IV 0.0697I,II,IV 0.587
WFG8 0.1809II,IV 0.2328IV 0.1832II,IV 0.6951
WFG9 0.1085II,IV 0.1267IV 0.0782I,II,IV 0.7224

J Math Model Algor (2013) 12:233–251 243

4.2 Epsilon Indicator

The unary additive epsilon indicator I1
ε+ is based on additive ε-dominance and

defined with respect to a reference set R as:

I1
ε+(A) = Iε+(A, R) = inf

ε∈R

{∀a′ ∈ R ∃a ∈ A : a �ε a′}. (6)

Table 2 The median values of the hypervolume indicator after 30 runs

DDMOA NSGA–II IBEA MOEA/D

Two-objective test problems
ZDT1 0.2265II,III,IV 0.2315IV 0.2287II,IV 0.3285
ZDT2 0.5576II,III,IV 0.5657IV 0.5639IV 0.7364
ZDT3 0.2758II,III,IV 0.2787III,IV 0.2801IV 0.4499
ZDT4 0.0041II,III,IV 0.0048III,IV 0.0089IV 0.0526
ZDT6 0.2854II,III,IV 0.2951IV 0.2941II,IV 0.3125
DTLZ1 0.0007II,III,IV 0.041 0.0289II 0.0438
DTLZ2 0.7776II,III,IV 0.7791IV 0.7785II,IV 0.7799
DTLZ3 0.0006II,III,IV 0.0394 0.0345II,IV 0.0684
DTLZ4 0.7797II,III,IV 0.7812IV 0.7806 0.7858
DTLZ5 0.779II,III,IV 0.7801IV 0.7797II,IV 0.7814
DTLZ6 0.0083II,III,IV 0.5818 0.4125II 0.0083II,III

DTLZ7 0.3398II,III,IV 0.3442IV 0.3428II,IV 0.5286
WFG1 0.3476 0.3382I,III,IV 0.34I 0.3395I,III

WFG2 0.4645 0.3746I,III 0.3766I 0.3283I,III

WFG3 0.4828 0.4221I 0.4184I,II,IV 0.4202I,II

WFG4 0.7228 0.6892I,IV 0.6873I,II,IV 0.7064I

WFG5 0.645 0.6291I,IV 0.6287I,II,IV 0.6301I

WFG6 0.7477 0.732I 0.7313I 0.7014I,II,III

WFG7 0.6954 0.6775I 0.6753I,II,IV 0.6761I,II

WFG8 0.5968II,III 0.633 0.6415 0.5971II,III

WFG9 0.6779 0.6343I,IV 0.6321I,II,IV 0.6362I

Three-objective test problems
DTLZ1 0.08e − 6II,III,IV 0.0026IV 0.05e − 3II,IV 0.2962
DTLZ2 0.4592II,IV 0.4813IV 0.4429I,II,IV 0.893
DTLZ3 0.08e − 5II,III,IV 0.0043IV 0.0002II,IV 0.5863
DTLZ4 0.4666II,III,IV 0.4721III,IV 0.6256IV 0.8852
DTLZ5 0.8808II,III,IV 0.8818IV 0.8817II,IV 0.9807
DTLZ6 0.0047II,III,IV 0.3865 0.0438II,IV 0.1807II

DTLZ7 0.3763II,III,IV 0.4017IV 0.3876IV 0.9499
WFG1 0.1143IV 0.0778I,III,IV 0.0816I,IV 0.4749
WFG2 0.2022IV 0.0725I,IV 0.2223IV 0.3724
WFG3 0.416IV 0.3514I,IV 0.349I,II,IV 0.7235
WFG4 0.5309IV 0.5104I,IV 0.4587I,II,IV 0.8674
WFG5 0.492IV 0.4602I,IV 0.4263I,II,IV 0.8553
WFG6 0.5735II,IV 0.6106IV 0.5553I,II,IV 0.9292
WFG7 0.4372IV 0.3732I,IV 0.3376I,II,IV 0.814
WFG8 0.5204II,IV 0.5579IV 0.5075I,II,IV 0.8991
WFG9 0.5372IV 0.5214I,IV 0.4717I,II,IV 0.8794

244 J Math Model Algor (2013) 12:233–251

The ε-indicator gives the minimum factor ε such that any objective vector in R is ε-
dominated by at least one objective vector in A. Smaller values of I1

ε+ are preferable.
To define the reference set R, all non-dominated sets obtained by the solvers over

all performed runs are combined. Then, all dominated solutions are removed, and
the remaining points, which are non-dominated by any of the approximation sets are
taken as a reference set.

4.3 Hypervolume Indicator

The hypervolume measure or S-metric was introduced by Zitzler and Thiele [20].
It can be defined as the Lebesgue measure
 of the union of hypercuboids in the
objective space,

Saref(A) =

(
⋃

a∈A

{ f1(a′), . . . , fM(a′) : a ≺ a′ ≺ aref}
)

,

where A denotes the set of non-dominated solutions and aref is the appropriately
chosen reference point. We consider the hypervolume difference to a reference set
R, and this is referred as the hypervolume indicator I−

H [11]. Given an approximation
set A, the indicator value is defined as,

I−
H(A) = Saref(Aref) − Saref(A)

where smaller values correspond to higher quality in contrast to the original hy-
pervolume Saref(A). The reference point is determined by the point with largest
values of the objective functions among all solvers over the all performed runs for

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

PF
DDMOA

(a) ZDT1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

PF
DDMOA

(b) ZDT2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f1

f 2

PF
DDMOA

(c) ZDT3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f 2

PF
DDMOA

(d) ZDT4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

PF
DDMOA

(e) ZDT6

Fig. 2 Plots of the non-dominated solutions with the best hypervolume value found by DDMOA in
30 runs in the objective space on ZDT test problems

J Math Model Algor (2013) 12:233–251 245

each problem. Before calculating the hypervolume, the data is normalized. Thus, the
hypervolume indicator [11] can be defined as:

I−
H(A) = 1 − Saref(A).

5 Experimental Results

In order to assess the performance of the proposed approach, we compare the
obtained results with those obtained by NSGA–II [3], IBEA [18] and MOEA/D [12].
We have used the implementation of these algorithms provided by jMetal frame-
work [6]. The choice of the algorithms is not occasional, because this algorithms are
representative well-established state-of-the-art evolutionary algorithms and repre-
sent three different trends in evolutionary multiobjective optimization. Specifically,
NSGA–II is dominance based, IBEA is indicator based and MOEA/D is recent
powerful decomposition based.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

f1

f 2

PF
DDMOA

(a) DTLZ1

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f 2

PF
DDMOA

(b) DTLZ2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2
PF
DDMOA

(c) DTLZ3

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f 2

PF
DDMOA

(d) DTLZ4

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f 2

PF
DDMOA

(e) DTLZ5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

PF
DDMOA

(f) DTLZ6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

f1

f 2

PF
DDMOA

(g) DTLZ7

Fig. 3 Plots of the non-dominated solutions with the best hypervolume value found by DDMOA in
30 runs in the objective space on the two-objective DTLZ test problems

246 J Math Model Algor (2013) 12:233–251

We adopted the two-objective ZDT [17], DTLZ [4] and WFG [8] test problems,
as well as the three-objective DTLZ [4] and WFG [8] test problems. We used 30
decision variables for ZDT1, ZDT2, ZDT3, ZDT6, and ZDT4 was tested using 10
decision variables. For the two-objective and three-objective DTLZ test problems,
30 decision variables were adopted. The two-objective and three-objective WFG test
problems were tested with 10 decision variables (k = 4 position related parameters
and l = 6 distance related parameters).

For all algorithms, we set the population size equal to 100 and the maximum
number of objective function evaluations is set to 15,000 and 20,000 for the two-
objective and three-objective test problems, respectively. All other parameters for
NSGA–II, IBEA and MOEA/D are the default in jMetal framework [6]. The default
values for the parameters used in DDMOA are the following: initial step size and
tolerance for local search δ0 = 1, δtol = 10−3, the number of subpopulations α = 5, the
initial step size σ0 = 5. These parameters were obtained as a result of the performed
sensitivity analysis. Since we compare stochastic algorithms, for each problem 30
independent runs of each algorithm were performed.

0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f1

f 2

PF
DDMOA

(a) WFG1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f1

f 2

PF
DDMOA

(b) WFG2

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f1

f 2

PF
DDMOA

(c) WFG3

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f1

f 2

PF
DDMOA

(d) WFG4

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f1

f 2

PF
DDMOA

(e) WFG5

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f1

f 2

PF
DDMOA

(f) WFG6

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f1

f 2

PF
DDMOA

(g) WFG7

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f1

f 2

PF
DDMOA

(h) WFG8

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f1

f 2

PF
DDMOA

(i) WFG9

Fig. 4 Plots of the non-dominated solutions with the best hypervolume value found by DDMOA in
30 runs in the objective space on the two-objective WFG test problems

J Math Model Algor (2013) 12:233–251 247

Table 1 presents the statistical tests and the median values of the epsilon indicator.
The superscripts I, II, III and IV indicate whether the respective algorithm performs
significantly better than DDMOA, NSGA–II, IBEA and MOEA/D, respectively.
The best value in each row is marked bold (the lower the better). DDMOA outper-
forms the other algorithms on ZDT and the majority of the two and three-objective
DTLZ test problems. For the two-objective WFG test problems, the best perfor-
mance is achieved by MOEA/D that provides the best median values of the epsilon
indicator in 5 out of 9 test problems. For the three-objective WFG test problems,
IBEA has the best performance, providing the best median values of the epsilon
indicator in 6 out of 9 test problems. DDMOA outerperforms on the three-objective
WFG test instances.

Table 2 shows the statistical tests and the median values of the hypervolume
indicator. The superscripts I, II, III and IV indicate whether the respective algo-
rithm performs significantly better than DDMOA, NSGA–II, IBEA and MOEA/D,
respectively. The best value in each row is marked bold (the lower the better).
DDMOA outperforms the other algorithms on the two-objective ZDT and DTLZ
test problems, providing significantly better values of the hypervolume indicator
than all other considered algorithms. IBEA performs significantly better than the

0
0.1

0.2
0.3

0.4
0.5

0
0.1

0.2
0.3

0.4
0.5

0

0.1

0.2

0.3

0.4

0.5

f1f2

f 3

(a) DTLZ1

0
0.5

1
1.5

0
0.5

1
1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1f2

f 3

(b) DTLZ2

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

f1f2

f 3

(c) DTLZ3

0
0.5

1
1.5

0
0.5

1
1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1f2

f 3

(d) DTLZ4

00.20.40.60.8

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1f2

f 3

(e) DTLZ5

0
0.2

0.4
0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1

f1f2

f 3

(f) DTLZ6

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

2

3

4

5

6

f1

f2

f 3

(g) DTLZ7

Fig. 5 Plots of the non-dominated solutions with the best hypervolume value found by DDMOA in
30 runs in the objective space on the three-objective DTLZ test problems

248 J Math Model Algor (2013) 12:233–251

other algorithms on the 5 two-objective WFG test problems. For the three-objective
WFG3-9 test problems, IBEA gives significantly better results in terms of the
hypervolume indicator than the other algorithms. The dominance of IBEA on
WFG test problems in terms of the hypervolume can be explained because it is the
only one of the considered algorithms which attempts to maximize the cumulative
hypervolume covered by non-dominated solutions.

Figures 2, 3, 4, 5 and 6 show the non-dominated solutions with the best hypervol-
ume value found by DDMOA in 30 runs ploted in the objective space. Attending
Figs. 2, 3 and 5, we can see that DDMOA reaches the Pareto-optimal fronts for the
ZDT two-objective problem as well as to three objective DTLZ problem, proving
well-distributed solutions in the objective space. From Fig. 4, we see that DDMOA
performs poorly on the majority of the two-objective WFG test problems. The
adequate Pareto-optimal fronts are achieved by DDMOA for the problems WFG1, 4
and 7. Although DDMOA performs poorly on WFG8 test problem, from Table 2 we
can see that DDMOA provides the best median value of the hypervolume indicator,
being significantly better than NSGA-II and IBEA on the same problem. Analyzing
Figure 6, we can observe that DDMOA is able to find an adequate approximation to

0
0.5

1
1.5

2
2.5

0
1

2
3

4

−1

0

1

2

3

4

5

6

7

f1f2

f 3

(a) WFG1

0
0.5

1
1.5

2
2.5

0
1

2
3

4

0

1

2

3

4

5

6

7

f1f2

f 3

(b) WFG2

0

1

2

3

0
1

2
3

4

0

1

2

3

4

5

6

7

f1
f2

f 3

(c) WFG3

0
0.5

1
1.5

2
2.5

0
1

2
3

4
5

0

2

4

6

8

f1f2

f 3

(d) WFG4

0
0.5

1
1.5

2
2.5

0
1

2
3

4
5

0

1

2

3

4

5

6

7

f1f2

f 3

(e) WFG5

0
0.5

1
1.5

2
2.5

0
1

2
3

4
5

0

1

2

3

4

5

6

7

f1f2

f 3

(f) WFG6

0
0.5

1
1.5

2
2.5

0
1

2
3

4
5

0

1

2

3

4

5

6

7

f1f2

f 3

(g) WFG7

0
0.5

1
1.5

2
2.5

0
1

2
3

4
5

0

1

2

3

4

5

6

7

f1f2

f 3

(h) WFG8

0
0.5

1
1.5

2
2.5

0
1

2
3

4
5

0

1

2

3

4

5

6

7

f1f2

f 3

(i) WFG9

Fig. 6 Plots of the non-dominated solutions with the best hypervolume value found by DDMOA in
30 runs in the objective space on the three-objective WFG test problems

J Math Model Algor (2013) 12:233–251 249

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

performance profile on I1ε + median

τ

ρ (
τ)

1130650180

DDMOA
NSGA−II
IBEA
MOEA/D

(a) Performance profile on I 1
+median .

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

performance profile on I−H median

τ

ρ (
τ)

3.75

x 10
6

630

DDMOA
NSGA−II
IBEA
MOEA/D

(b) Performance profile on I −
H median .

Fig. 7 Performance profiles on the median values of the quality indicators

the Pareto-optimal fronts for all the three-objective WFG test problems except for
WFG3 test problem.

Figure 7 presents performance profiles on the median values of both quality indi-
cators, which allow to get insights about the overall performance of the algorithms on
all tested problems. Figure 7a shows that the most accurate algorithm is DDMOA,
providing the best median value of the epsilon indicator in 46 % of the tested
problems. In terms of the robustness, the best algorithm is DDMOA. Figure 7b shows
that the most accurate algorithm is DDMOA, providing the best median value of the
hypervolume indicator in 49 % of the tested problems. In terms of robustness, the
best algorithm is again DDMOA.

6 Conclusions

Most of existing multiobjective techniques rely on evolutionary algorithms or classi-
cal methods based on decomposition. However, combination of mathematical pro-
gramming methods and evolutionary algorithms has been proven to be very success-
ful in single-objective optimization. This work attempts to provide such combination
to the mutiobjective case.

This paper propose a new hybrid evolutionary multiobjective algorithm
(DDMOA). The algorithm combines a classical method for multiobjective optimiza-
tion, local search and general features of evolutionary algorithms. Child solutions
are generated adding to a parent solution a linear combination of descent directions
of the objective functions. To find descent directions of the objectives, pattern
search method is employed combined with a strategy based on subpopulations. The
proposed strategy efficiently guide the population toward the Pareto-optimal front.

We have compared DDMOA with some outstanding state-of-the-art evolutionary
multiobjective algorithms on a set of benchmark test problems. Our analysis has
shown that DDMOA outperforms other algorithms on a large number of the tested
problems, providing always competitive results. Moreover, all results are provided
with statistical confidence.

250 J Math Model Algor (2013) 12:233–251

As future work, we will convey further studies of the methods to update the step
size used to generate offspring as well as during the local search procedure to find
descent directions. We will also try to improve the convergence of the algorithm
through the application of the techniques which allow to use the solutions from other
non-dominated fronts to generate offspring.

Acknowledgements The authors would like to thank FCT - Fundação para a Ciência e a Tecnolo-
gia (Portuguese Foundation for Science and Technology) that supported in part this work.

References

1. Costa, L., Espírito Santo, I., Oliveira, P.: Stochastic algorithms assessment using performance
profiles. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computa-
tion, pp. 933–940 (2011)

2. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons,
Chichester (2001)

3. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algo-
rithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

4. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-
objective optimization. Technical Report 112, Swiss Federal Institute of Technology (ETH),
Zurich, Switzerland (2001)

5. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math.
Program. 91(2), 201–213 (2002)

6. Durillo, J.J., Nebro, A.J.: jmetal: a java framework for multi-objective optimization. Adv. Eng.
Softw. 42(10), 760–771 (2011)

7. García, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for
analyzing the evolutionary algorithms’ behaviour: a case study on the cec’2005 special session on
real parameter optimization. J. Heuristics 15(6), 617–644 (2009)

8. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a
scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

9. Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its application
to flowshop scheduling. IEEE Trans. Syst. Man Cybern., Part C Appl. Rev. 28(3), 392–403
(1998)

10. Knowles, J., Corne, D.: M-paes: a memetic algorithm for multiobjective optimization. In: Pro-
ceedings of the Congress on Evolutionary Computation, pp. 325–332 (2000)

11. Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic
multiobjective optimizers. TIK Report 214, Computer Engineering and Networks Laboratory
(TIK), ETH Zurich (2006)

12. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, moea/d
and nsga-ii. IEEE Trans. Evol. Comput. 13(2), 229–242 (2009)

13. Loh, W.L.: On latin hypercube sampling. Ann. Stat. 33(6), 2058–2080 (1996)
14. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Dordrecht

(1999)
15. Shukla, P.K., Deb, K.: On finding multiple pareto-optimal solutions using classical and evolu-

tionary generating methods. Eur. J. Oper. Res. 181(3), 1630–1652 (2007)
16. Timmel, G.: Ein stochastisches suchverrahren zur bestimmung der optimalen kompromilsungen

bei statischen polzkriteriellen optimierungsaufgaben. Wiss. Z. Tech. Hochsch. Ilmenau 26(5),
159–174 (1980)

17. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical
results. Evol. Comput. 8(2), 173–195 (2000)

18. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Proceedings of the
8th International Conference on Parallel Problem Solving from Nature, pp. 832–842 (2004)

19. Zitzler, E., Laumanns, M., Thiele, L.: Spea2: improving the strength pareto evolutionary algo-
rithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss
Federal Institute of Technology (ETH), Zurich, Switzerland (2001)

J Math Model Algor (2013) 12:233–251 251

20. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a comparative
case study. In: Proceedings of the 5th International Conference on Parallel Problem Solving
From Nature, pp. 292–304 (1998)

21. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment
of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132
(2003)

	A New Hybrid Evolutionary Multiobjective Algorithm Guided by Descent Directions
	Abstract
	Introduction
	Timmel's Method
	Descent Directions Based Multiobjective Algorithm
	Initial Population
	Descent Directions
	Parent Selection
	Offspring Generation
	Non-Dominated Sorting
	Diversity Preserving
	Step Size Adaptation

	Performance Assessment
	Performance Profiles
	Epsilon Indicator
	Hypervolume Indicator

	Experimental Results
	Conclusions
	References

