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Abstract The problem of service centers location is formulated as a bicriteria opti-
mization problem of finding a dominating set in graph. We investigate the properties
of this problem and propose the methods for its solving. The results of computational
experiment for instances with random data are presented.
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1 Introduction

A problem of optimal location of service centers (for example, location of telecenters
or telephone exchanges) can be formulated as a problem of finding the dominating
set with minimum weight in a graph. In [16] we considered the practical problem
of location of telecenters in the case of the Greek islands in the Aegean sea. The
telecenters can essentially influence on regions development. We suggested the dis-
crete optimization problem with one criterion and presented the results of computa-
tional experiments.

In this paper, we suggest and study a mathematical model of the problem of service
centers location as a bicriteria dominating set problem in which a total cost of centers
location is minimized and a level of satisfaction of requirements by the service centers
is maximized. We propose an integer linear model of this problem and the methods
for its solving. The results of computational experiments are presented for instances
with random data. The paper is an expansion of article [18].
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The dominating set problem is a special case of the set covering problem (SCP) [6].
The dominating set problem (DSP) can be formulated as follows. Consider a

graph G = (V, E), where V = {v1, ..., vn} is the set of vertices and E ⊆ {(vi, v j) : i, j =
1, ..., n; i �= j} is the set of edges. A set S ⊆ V is called the dominating set if for any
vi �∈ S there is a vertex v j ∈ S such that (vi, v j) ∈ E. The DSP consists in finding the
dominating set with the minimal cardinality. If for each v j a positive cost c j is assigned
then the weighted DSP is to find a dominating set of minimum total cost.

Sometimes it is more convenient to consider the weighted DSP as the following
integer linear programming (ILP) problem:

minimize cx

subject to

Ax ≥ e,

x ∈ {0, 1}n,

where x j = 1 if v j ∈ S and x j = 0 otherwise, j = 1, ..., n. Here A is the incidence
matrix of vertices of the graph G in which we put aii = 1, i = 1, ..., n, c is the n-vector
of costs, e is the n-vector of 1s. The integer linear program of the SCP has the same
form but A is an arbitrary Boolean (m × n)-matrix.

Different exact algorithms have been proposed for solving the SCP using branch
and bound approach [1, 4, 19], cutting planes [2], L-class enumeration [22] and other
techniques. However, the SCP is an N P-hard problem and application of exact al-
gorithms to the large-scale instances is often time-consuming. A number of heuristic
algorithms are developed for approximate solving the large-scale problems within
relatively short running time. The solutions of good quality may be obtained using
Lagrangian heuristics [5], neural networks [14] or metaheuristics such as genetic
algorithm (GA) [3, 11, 15, 21]. Most of the successful versions of exact algorithms
combine the exact techniques with heuristic methods (see e.g. [1, 4, 12, 13]). A great
survey of the literature in multicriteria optimization is presented in [7].

Let us formulate the problem of optimal location of service centers. Let P1, ..., Pn

be the set of demand points that constitute the total region demand for service
centers. The service centers can be located in these points. Denote by c j the location
cost and by u j the coefficient of the efficiency for the center at point Pj, j = 1, ..., n.

Let dij be the distance between points Pi and Pj, i, j = 1, ..., n, i �= j (for example,
Euclidean). A service center can satisfy the demand of a point if the distance between
this center and the point does not exceed some given value d. The problem consists
in finding the centers location for which the total cost of the centers opening is
minimized and the total efficiency of the centers location is maximized provided that
all demands are satisfied.

Using the distances dij and the value d we obtain the graph G = (V, E) with the
vertices set

V = {P1, ..., Pn}
and the edges set

E ⊆ {(Pi, Pj) : i, j = 1, ..., n; i �= j}.
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The edge (Pi, Pj) belongs to E iff dij ≤ d. Denote by A the incidence matrix of
vertices of the graph G. Put aii = 1, i = 1, ..., n. Now the considered problem can
be formulated as bicriteria problem of finding dominating set in the graph G.

Introduce Boolean variables

x j =
{

1, if a center locates in point Pj,
0, otherwise ,

where j = 1, ..., n.

The efficiency function of our problem is given by

fu(x) =
n∑

j=1

u jx j.

The maximization of this function we replace by the minimization (− fu(x)). Now the
ILP model of the considered problem can be written as follows:

minimize f1(x) =
n∑

j=1

c jx j, (1)

minimize f2(x) = −
n∑

j=1

u jx j, (2)

subject to

n∑
j=1

aijx j ≥ 1, i = 1, ..., n, (3)

0 ≤ x j ≤ 1, j = 1, ..., n, (4)

x j ∈ Z , j = 1, ..., n. (5)

In what follows, it is assumed that c j > 0, u j > 0, c j, u j are integer, j = 1, ..., n.

Note that problem 1, 3–5 is an integer programming model of the weighted DSP.
The paper is organized as follows: in Section 2, analysis of the model is carried out.

In Section 3, we give the necessary information on the L-class enumeration algorithm
for one criterion SCP. In Section 4, some approaches to solving the problem are sug-
gested. In Section 5, results of computational experiment for instances with random
data are presented. Finally, some conclusions and perspectives are considered.

2 Analysis of the Model

Consider the general multicriteria discrete optimization problem

minimize F(x) = ( f1(x), ..., fm(x))

subject to

x ∈ X,

where X is some finite set and m ≥ 2.
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A point x̄ ∈ X is called Pareto-optimal solution if there is no x ∈ X (x �= x̄) for
which

(1) fk(x̄) ≥ fk(x) for all k = 1, ..., m,
(2) fk(x̄) > fk(x) for at least one k ∈ {1, ..., m} hold.

Let X̃ denote the set of the Pareto-optimal solutions (POS) and let X0 be a full set
of alternatives (FSA) (see, for example, [10]). The FSA is defined as a set X0 (X0 ⊆
X̃) with the minimal cardinality and F(X0) = F(X̃), where F(X ′) = {F(x) | x ∈ X ′},
X ′ ⊆ X. It is clear that

X0 ⊆ X̃ ⊆ X.

Many multicriteria discrete optimization problems have the following property
[10]: for any X there exists some set of coefficients of the objective vector-function
F(x) such that the following equalities hold

X0 = X̃ = X.

The problem 1–5 has the indicate property. In particular, consider the given
problem for which the cost functions coefficients are c j = u j = 2 j−1, j = 1, ..., n. It
is easy to see that in this case any feasible solution belongs to the FSA. Therefore for
arbitrary c j > 0, j = 1, ..., n the maximal cardinality of the FSA is equal to 2n − 1 and
if c j = 1, j = 1, ..., n, then it is equal to n.

In [8, 10] the solvability of the multicriteria discrete optimization (MDO) problem
was investigated by the method of the linear convolution of the criteria. This
approach consists in the replacement of the objective vector-function by the artificial
one-dimensional cost function

f λ(x) =
m∑

k=1

λk fk(x),

where λk ≥ 0, k = 1, ..., m are fixed coefficients and
∑m

k=1 λk = 1. The MDO prob-
lem is called solvable by the method of the linear convolution of the criteria if for any
individual problem every point from the POS (or from the FSA) can be obtained as
an optimal solution of the problem with function f λ(x) for some values λk.

Problem 1–5 is not solvable by the method of the linear convolution of the criteria.
Indeed, consider the problem with the parametric values c j = 2 j−1, u j = 3 j−1, j =
1, ..., n, n ≥ 3 by restrictions Eqs. 4, 5 and

n∑
j=1

x j ≥ 1. (6)

It should be noted that this problem is the bicriteria DSP on the complete graph.
It is easy to see that any Boolean point x (x �= 0) is a Pareto-optimal solution to this
problem. But point x′ = (1, 0, ..., 0, 1) can not be obtained by solving the following
problem

minimize f λ(x) =
n∑

j=1

q jx j,

subject to Eqs. 4–6 for any λ ∈ [0, 1], where q j = λc j − (1 − λ)u j.
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Indeed, the point x′ is an optimal solution to this problem, if the coefficients of the
function f λ satisfy the following conditions

q1 = 2λ − 1 ≤ 0,

qn = λ
(
2n−1 + 3n−1

) − 3n−1 ≤ 0,

q j = λ
(
2 j−1 + 3 j−1

) − 3 j−1 ≥ 0, j = 2, ..., n − 1.

Thus, we conclude that λ ≤ 1
2 and λ ≥ 3

5 . So the needed value λ does not exist.

3 The L-class Enumeration Algorithm to Solving the SCP

The L-class enumeration algorithm to solving the ILP problem is based on usage of
a special partition of space Rn which is called the L-partition [17].

Denote by Z n the set of all integer points of space Rn. Each integer point z ∈ Z n

forms a separate class of the L-partition. Points x, y �∈ Z n (x � y) belong to the same
fractional L-partition class of space Rn if there is no point z ∈ Z n such that x 	 z 	 y.
Here and below �,	 are the symbols of the lexicographical order.

We denote by X/L the quotient set induced by L-partition for a set X ⊂ Rn. The
elements of X/L are called L-classes of the set X. There exist (n + 1) types of L-
classes in Rn. For example, there are three types of them in R2: integer points, vertical
intervals and vertical stripes. On Fig. 1 L-classes V1 and V5 are vertical stripes, V2

and V4 are vertical intervals and V3 is integer point.

Fig. 1 The L-partition for a
set X from R2
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This L-partition has some important properties, for example,

(1) if X is bounded, then X/L is finite;
(2) on X/L a linear order may be introduced: for any nonempty V ′, V ′′ ∈ X/L we

define V ′ � V ′′ if x′ � x′′ for any x′ ∈ V ′ and x′′ ∈ V ′′.

Let us consider the idea of the L-class enumeration (LCE) method for ILP
problem [17]. Let M be the polyhedron of the related continuous problem of the
ILP problem. The main step of the basic algorithm is to pass from one L-class of the
polyhedron M to another one according to the lexicographically increasing order.
The record value of the objective function is also taken into account. The algorithm
generates a sequence S of points x(t) from the relaxation set M with the following
properties:

(1) x(t) ≺ x(t+1), t = 1, 2, ..., where x(1) is the lexicographically minimal point of M,
i.e. x(1) = lexmin M;

(2) all x(t) belong to different L-classes.

Note that searching each new current point x(t) the LCE algorithm goes through
some part of the polyhedron M where the objective function values are less or equal
to ρ − 1. Here ρ is the current objective function record which changes if the point
x(t) is integer. In the view of the linear order on the set of L-classes the L-class
enumeration may be illustrated with the help of the following “tape” (see Fig. 2).
Each box of the tape corresponds to a separate L-class, the white boxes represent
fractional L-classes and the black boxes represent integer points.

Further we describe the L-class enumeration algorithm [17] for solving the SCP
in the following formulation:

minimize f (x) = (c, x)

subject to

x ∈ M,

x ∈ {0, 1}n,

where M is a polyhedron that is defined by conditions 3 and 4. Let ζ 0 ∈ {0, 1}n be an
approximate solution obtained by some method.

3.1 Below we Provide the Scheme of LCE for the SCP

Step 0. Find x′ = lexmin M. Set r := min{(c, x′), (c, ζ 0)} and
p := max{ j : x′

j = 1, j = 1, ..., n − 1}.

Fig. 2 Solving ILP problem
using the L-class enumeration
method
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Step 1. Find ϕ := max{ j : x′
j = 0, j = 1, ..., p − 1}.

If such ϕ does not exist, go to step 4.
Step 2. Set x′′ := x′. Solve the linear subproblem:

f ind x′ = lexmin{x ∈ M : (c, x) ≤ r − 1, x1 = x′′
1, ...,

xϕ−1 = x′′
ϕ−1, xϕ = 1}. (7)

2.1 If the subproblem 7 has no solutions, and ϕ = 1, go to
step 4.

2.2 If the subproblem 7 has no solutions, and ϕ > 1, then set
p := ϕ and go to step 1.

2.3 If x′ ∈ Z n, then set r := (c, x′) and
p := max{ j : x′

j = 1, j ≤ n − 1}, go to step 1.

Step 3. Find ϕ = min{ j : x′
j �= �x′

j, j = 1, ..., n}, and go to step 2.
Step 4. The enumeration is finished: the best obtained integer solution is optimal.

The linear subproblems on step 2 may be solved, for example, using the lexico-
graphical dual simplex method. Often in the case of SCP it turns out that these
subproblems have no feasible solutions. To save the computation time the linear
subproblems are examined by the following group testing heuristic [22], which allows
to test more than one L-class at a time. This heuristic is applied on step 2 in the case
if an L-class where xϕ = 1, and x j = x′′

j , for all j = 1, . . . , ϕ − 1 is not found. Then
we solve the following subproblem:

find x′ = lexmin
{

x ∈ M : (c, x) ≤ r − 1, x1 = x′′
1, ...,

x j0−1 = x′′
j0−1,

∑ j0+n0−1

j= j0
x j ≥ 1

}
, (8)

where j0 and n0 > 0 are such that j0 = min{ j < ϕ : x′′
j = x′′

j+1 = ... = x′′
j+n0−1 = 0,

and no k ∈ [ j + n0, ϕ − 1] exists that x′′
k = 0}.

In the case if in the set {x ∈ M : (c, x) ≤ r − 1} there is no such L-class V 	 x′′
that for all x ∈ V we have x j = x′′

j, j = 1, ..., j0 − 1, then problem 8 has no feasible
solutions. Otherwise the next L-class would be found, and the process would
continue from it.

Before solving problem 8 we first check the existence of admissible solutions to it.
Let us consider the following supplementary linear subproblem:

minimize
n∑

j=1

c jx j (9)

subject to

x ∈ M,

j0+n0−1∑
j= j0

x j ≥ 1, (10)

x j = x′′
j , j = 1, ..., j0 − 1. (11)



112 J Math Model Algor (2013) 12:105–116

If the optimal goal function value for Eqs. 9–11 exceeds r − 1, then the problem 8
has no solutions. In order to obtain a lower bound for the optimum of Eqs. 9–11 one
can use an approximate solution to the dual problem. This solution may be obtained
for example by the knapsack greedy algorithm.

The LCE method always finds the optimum of SCP and finishes enumeration after
visiting not more than |M/L| L-classes.

The hybrid algorithm for the SCP is based on the described above L-class
enumeration algorithm and uses the GA and a Lagrangean heuristic to obtain an
initial approximate solution. The linear subproblems in L-class enumeration are
tested by means of Lagrangean relaxation. The results of computational experiments
showed that the given method of hybridization seems to be promising.

4 The Approaches to Solving the Bicriteria Problem of Optimal Service Centers
Location

Since obtaining all elements from the set of POS and (or) the FSA may be difficult,
therefore the special subsets of the POS, in particular, the lexicographical set of the
alternatives (LSA) are used.

For a vector-function F(x) = ( f1(x), ..., fm(x)) a Pareto-optimal solution x∗ is
called the lexicographical minimum (LM) of the problem if

F(x∗) = lexmin {F(x) | x ∈ X}.
Let Xmin be the set of all lexicographical minima for all different orders of com-
ponents of the objective vector-function. The LSA is a set Xlex (Xlex ⊆ Xmin) with
minimal cardinality and F(Xlex) = F(Xmin) (see, for example, [9, 20]).

If the vector-function of problem 1–5 is of the form F(x) = ( f2(x), f1(x)) then the
unique LM exists and it is (1,1,...,1). In practice, the order F(x) = ( f1(x), f2(x)) is
more useful. We consider some methods of obtaining the corresponding LM.

Let the MDO problem have a finite set of feasible solutions. In [9, 20] it was
showed that in this case any point from a LSA may be found by the algorithm of
linear convolution of the criteria. Using [20] the coefficients of linear convolution
function for considered problem 1–5 can be defined in the following way:

λ1 = α + 1

α + 2
, λ2 = 1

α + 2
,

where α = ∑n
j=1 u j − [ũ0] + 1. Here ũ0 is the optimal value of the objective function

of the linear program:

minimize
n∑

j=1

u jx j

subject to Eqs. 3 and 4.
Another approach to finding the lexicographical minimum is the sequential

optimization. In this case the MDO problem is replaced by a sequence of one-
criterion problems. We use the hybrid algorithm for the SCP [12] for finding the
lexicographical minimum of problem 1–5 by means of the sequential optimization
approach.
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Finding the LM of problem 1–5 consists of two steps

Step 1. Solve SCP Eqs. 1, 3–5 by the hybrid algorithm from [12]. Denote by x∗ the
optimal solution to this problem. Put c∗

0 = f1(x∗), u∗
0 = f2(x∗).

Step 2. Solve the following problem

maximize f2(x) =
n∑

j=1

u jx j (12)

subject to Eqs. 3–5 and the additional condition

n∑
j=1

c jx j = c∗
0. (13)

This problem can be solved by some known method for general integer pro-
gramming problem (branch and bound algorithms, cutting plane algorithms, LCE
algorithm). On the other hand, problem 3–5, 12 and 13 can be decomposed into an
optimization problem and a problem of solving a system of linear constraints.

Note that the integer points of plane Eq. 13 can be found by solving problem 1,
3–5 by a modification of the LCE algorithm, in case ρ = c∗

0 + 1 and ρ does not change
during the solving process. Now consider the following decomposition method to
solving problem 3–5, 12 and 13.

Starting from the point x∗ the LCE algorithm solves SCP Eqs. 1, 3–5 with ρ =
c∗

0 + 1. Let x′ be a current integer point obtained by the algorithm. If x′ satisfies the
inequality

n∑
j=1

u jx j ≥ u∗
0 + 1,

then u∗
0 := f2(x′) and the move towards the next element of the L-partition of the

relaxation polyhedron of SCP Eqs. 1, 3–5 is made.
Another decomposition method is connected with using knapsack problem 4, 5,

12 and 13.
Other known approach to finding the solutions set of the MDO problem (trade-

off method) consists in the following. We pass from bicriteria problem 1–5 to the
problem P :

maximize f2(x) =
n∑

j=1

u jx j (14)

subject to Eqs. 3–5,

c∗
0 ≤

n∑
j=1

c jx j ≤ c∗
0 + δ, (15)

where δ is the integer value of the trade-off, and [c∗
0, c∗

0 + δ] is the interval of the cost
which can be used for opening the service centers.

By changing the values of parameter δ we can obtain a set of the feasible solu-
tions and some Pareto-optimal solutions to problem 1–5 among them. Note that if
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c j = 1, j = 1, ..., n then the optimal solution to problem P is a Pareto-optimal
solution to Eqs. 1–5 and it satisfies the condition

n∑
j=1

c jx j = c∗
0 + δ.

If all c j are arbitrary, then finding a Pareto-optimal solution requires in addition
to solve problem 1, 3–5 and 15 with the constraint

n∑
j=1

u jx j ≥ u∗
0.

Here u∗
0 is equal to the optimal value of the objective function of the problem P .

It is easy to see that the decomposition methods can be also used for the problem
P . Here, the initial value of ρ is equal to c∗

0 + δ + 1 and the enumeration of L-classes
is started with the lexicographically minimal point of the relaxation polyhedron of
problem P . Note that the algorithm gives all Pareto-optimal solutions that satisfy
condition Eq. 15.

The similar approach can be also used when starting from function 2.

5 Computational Experiment

We solved the practical problem of location of telecenters in the case of the Greek
islands in the Aegean sea (24 greatest islands) [16]. The Data was collected from the
Greek Organization of Statistics and from the Greek Organization of Telecommuni-
cations. We varied the maximal admissible distance d between every pair of potential
telecenters from 100 to 250 km. Note that in this problem all costs c j were equal, i.e.
in Eq. 1 we minimized the number of located telecenters. For example, in the case of
d = 150 the efficiency will be maximal when the number of telecentres is equal to 5.
This solution is of practical importance.

Below the results of computational experiments are presented for instances with
random data. The approach including the trade-off method and the first type of
decomposition for solving the bicriteria dominating set problem was tested on a
series of instances with random data. We used the hybrid algorithm for the DSP
implemented in Borland Pascal and tested on Pentium IV (3 GHz). The experiments
were carried out on series with n = 100, 250, 300, c j, u j ∈ [1, 100], j = 1, ..., n, the
probability of appearance of an edge in graph was equal to 0.1 or to 0.2. The value
δ was equal to 5 % of optimal value c∗

0. The number of the obtained Pareto-optimal
solutions for a given value δ varied from 3 to 11. The front of Pareto-optimal solutions
in the criterial space for four instances with n = 250 is presented on Fig. 3.

The average times of solving for series were: 17; 514 and 1139 s. The average
increase of the value of objective function 14 was from 12 to 20 %. The solving time
grows when the probability of appearance of an edge in graph and (or) the upper
bound on c j decrease. For example, in the case n = 250 and the probability equal to
0.2 the average times of solving decreased in 6 time.
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Fig. 3 The front of
Pareto-optimal solutions

6 Conclusion

In this paper the problem of optimal location of service centers is considered.
The discrete optimization formulation of this problem is suggested as a bicriteria
dominating set problem in graph. Some properties of the problem are investigated,
in particular, it is shown that the maximal cardinality of the full set of alternatives
may be exponential.

We used the integer linear programming model of our problem and the L-
partition approach. The trade-off method, the decomposition and LCE algorithm
were used for finding a subset of the Pareto-optimal solutions set. The computational
experiment showed that the algorithm based on the trade-off method and decompo-
sition of first type is promising.

In [23] we have shown that analogous results are valid for the more general
bicriteria set covering problem. In addition, some greedy heuristics for solving this
problem were suggested. In future it is prospective to use the other search heuristics
and parallelization of the algorithms.
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