
J Math Model Algor (2013) 12:329–343
DOI 10.1007/s10852-012-9193-5

Reconstructing Convex Matrices by Integer
Programming Approaches

Alain Billionnet · Fethi Jarray · Ghassen Tlig ·
Ezzedine Zagrouba

Received: 13 January 2012 / Accepted: 14 June 2012 / Published online: 12 July 2012
© Springer Science+Business Media B.V. 2012

Abstract We consider the problem of reconstructing two-dimensional convex binary
matrices from their row and column sums with adjacent ones. Instead of requiring
the ones to occur consecutively in each row and column, we maximize the num-
ber of adjacent ones. We reformulate the problem by using integer programming
and we develop approximate solutions based on linearization and convexification
techniques.

Keywords Discrete Tomography (DT) · Integer programming ·
Convexification · Linearization

1 Introduction

Discrete tomography (DT) concerns the reconstruction (exactly or approximately)
of discrete objects defined on discrete lattices from their projections. The projections
are the sums along few angles of the pixel values. One of the main problems in DT
is the reconstruction of binary matrices from two projections. DT was first studied

A. Billionnet · F. Jarray (B) · G. Tlig
CEDRIC-CNAM, 292 rue St-Martin, 75003 Paris, France
e-mail: fethi_jarray@yahoo.fr

A. Billionnet
e-mail: alain.billionnet@ensiie.fr

G. Tlig
e-mail: ghassen.tlig@auditeur.cnam.fr

G. Tlig · E. Zagrouba
Faculté des Sciences de Tunis El Manar, 2092 El Manar II, Tunisie

E. Zagrouba
e-mail: ezzedine.zagrouba@fsm.rnu.tn



330 J Math Model Algor (2013) 12:329–343

by Ryser [25] and Gale [13], and it has been investigated under various conditions
[7, 10, 23, 27, 28].

DT is applicable in many interesting contexts such as nondestructive testing, image
processing, electron microscopy, data security, industrial tomography and material
sciences [17, 18, 22, 24, 26]. In general, the reconstruction of binary matrices from
a small number of projections is undetermined and the number of solutions can be
very large. Moreover, the projections data and the prior knowledge about the object
to reconstruct are not sufficient to determine a unique solution. So DT is usually
reduced to an optimization problem to select the best solution in a certain sense. For
example, maximizing the number of adjacent ones in each row and column.

In this paper, we deal with the reconstruction of hv-convex matrices. In particular,
research objectives are to derive three linearization methods, four convexification
methods, and variable fixing methods and to compare them computationally.

A binary matrix is h-convex if the ones occur consecutively in a single block in
each row. Similarly a binary matrix is v-convex if the ones occur contiguously in each
column. A binary matrix is hv-convex if it is both h-convex and v-convex. Woeginger
[28] shows that the existence problem for hv-convex matrices is NP-complete. In
[8, 23], the authors present polynomially solvable classes of the hv-convex matrices.
Kuba [20] proposes heuristics for the general class. Balázs [2] introduces the class
of canonical hv-convex matrices (see Fig. 1) and proves that the reconstruction can
be performed in polynomial time. Dahl and Flatberg [9] provide an algorithm to

Fig. 1 Example of reconstructing a 50 × 50 matrix (solution obtained by PLClassic1)



J Math Model Algor (2013) 12:329–343 331

find hv-convex or nearly hv-convex matrices based on integer programming and
variables splitting. They use a subgradient method to get an approximate solution.
For an introduction to subgradient methods see [21]. Jarray et al. [19] provide an
approximate solution based on a longest path and network flow algorithms.

The remainder of this paper is organized as follows. In Section 2, we introduce
some definitions and notation. In Section 3, we propose linearization techniques.
In Section 4, we propose convexification methods. In Section 5, we show how the
different formulations can be improved by fixing some variables. In the last section,
we present and discuss the numerical results.

2 Some Definitions and Notation

Let H = (h1, h2, . . . , hm) and V = (v1, v2, . . . , vn) be two positive integer vectors. We
denote by U(H,V) the class of m × n binary matrices A satisfying:

∑n
j=1 ai, j = hi, i =

1, . . . , m and
∑m

i=1 ai, j = v j, j = 1, . . . , n. The vectors H and V is called respectively
the horizontal and vertical projection of the matrix A. We suppose that the projec-
tions of rows and columns are consistent, i.e. U(H,V) is not empty. This implies that∑n

j=1 v j = ∑m
i=1 hi = τ is a necessary condition for non-emptiness of U(H,V). Let

X = (xij)i=1,...,m; j=1,...,n be an m × n binary matrix. The number of adjacent ones is:

f (X) =
m−1∑

i=1

n∑

j=1

xi, jxi+1, j +
m∑

i=1

n−1∑

j=1

xi, jxi, j+1.

We model the reconstruction of an hv-convex matrix by the following integer
program

P

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max f (X)

s.t.
∑n

j=1 xij = hi i = 1, . . . , m (i)
∑m

i=1 xij = v j j = 1, . . . , n (ii)

xij ∈ {0, 1} i = 1, . . . , m; j = 1, . . . , n.

The objective is to maximize the number of adjacent ones in the rows and columns
over the class U(H,V). Constraint (i) (resp. (ii)) ensures that the sum of ones in row
i (resp. column j) is equal to the prescribed horizontal projection hi (resp. vertical
projection v j). The program P is quadratic since the objective function contains some
products of two variables. In general P is NP-hard. To handle P, we need to convert
it into an easier program.

Proposition 1 Let X be a binary matrix with orthogonal projections H and V. X is
hv-convex if and only if:

f (X) = 2
m∑

i=1

hi − m − n = σ.



332 J Math Model Algor (2013) 12:329–343

Proof Let X be a binary matrix respecting the projections H and V. X is hv-convex
if and only if the ones in each row i and column j form a contiguous interval, i.e.

n−1∑

j=1

xi, jxi, j+1 = hi − 1 and
m−1∑

i=1

xi, jxi+1, j = v j − 1.

So
m∑

i=1

n−1∑

j=1

xi, jxi, j+1 =
m∑

i=1

hi − m and
n∑

j=1

m−1∑

i=1

xi, jxi+1, j =
n∑

j=1

v j − n.

Thus f (X) =
m∑

i=1

n−1∑

j=1

xi, jxi, j+1 +
n∑

j=1

m−1∑

i=1

xi, jxi+1, j =
n∑

j=1

v j +
m∑

i=1

hi − m − n

= 2
m∑

i=1

hi − m − n since
n∑

j=1

v j =
m∑

i=1

hi.

��

3 Linearization

In this section we present an equivalent linear program to P by linearizing the objec-
tive function. The linearization method of quadratic programs replaces a quadratic
term by a new variable.

3.1 Classical Linearization

The classical linearization [12] consists in replacing each product by a new variable
and adding a set of linear constraints that force the equality between the new variable
and the product. In program P, we replace the product xi, jxi, j+1 by yhi, j and xi, jxi+1, j

by yvi, j. Since P is a maximization program, we add the following algebraic system
of inequalities to ensure yhi, j = xi, jxi, j+1

(I)
{

yhi, j ≤ xi, j i = 1, . . . , m; j = 1, . . . , n − 1 (I.a)

yhi, j ≤ xi, j+1 i = 1, . . . , m; j = 1, . . . , n − 1 (I.b).

We add also the following algebraic system of inequalities to ensure yvi, j = xi, jxi+1, j

(I I)
{

yvi, j ≤ xi, j i = 1, . . . , m − 1; j = 1, . . . , n (I I.a)

yvi, j ≤ xi+1, j i = 1, . . . , m − 1; j = 1, . . . , n (I I.b).



J Math Model Algor (2013) 12:329–343 333

Finally, we obtain the following equivalent binary linear program to P.

PLClassic1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
∑m

i=1

∑n−1
j=1 yhi, j + ∑m−1

i=1

∑n
j=1 yvi, j

s.t.
∑n

j=1 xi, j = hi i = 1, . . . , m (i)
∑m

i=1 xi, j = v j j = 1, . . . , n (ii)

yhi, j ≤ xi, j i = 1, . . . , m; j = 1, . . . , n − 1 (I.a)

yhi, j ≤ xi, j+1 i = 1, . . . , m; j = 1, . . . , n − 1 (I.b)

yvi, j ≤ xi, j i = 1, . . . , m − 1; j = 1, . . . , n (I I.a)

yvi, j ≤ xi+1, j i = 1, . . . , m − 1; j = 1, . . . , n (I I.b)

yhij ≥ 0 i = 1, . . . , m; j = 1, . . . , n − 1

yvij ≥ 0 i = 1, . . . , m − 1; j = 1, . . . , n

xij, yhij, yvij ∈ {0, 1} i = 1, . . . , m; j = 1, . . . , n.

Figure 1 shows an example of a 50 × 50 reconstructed matrix by PLClassic1.
Another possible version of classical linearization aims to replace the algebraic

system of inequalities (I) by 2yhi, j ≤ xi, j + xi, j+1 and (I I) by 2yvi, j ≤ xi, j + xi+1, j such
that yhij, yvij ∈ {0, 1}. We get the following binary program

PLClassic2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
∑m

i=1

∑n−1
j=1 yhi, j + ∑m−1

i=1

∑n
j=1 yvi, j

s.t.
∑n

j=1 xi, j = hi i = 1, . . . , m (i)
∑m

i=1 xi, j = v j j = 1, . . . , n (ii)

2yhij ≤ xi, j + xi, j+1 i = 1, . . . , m; j = 1, . . . , n − 1

2yvij ≤ xi, j + xi+1, j i = 1, . . . , m − 1; j = 1, . . . , n

xij, yhij, yvij ∈ {0, 1} i = 1, . . . , m; j = 1, . . . , n.

3.2 Compact Linearization

The compact linearization [14] uses a different idea. It replaces in P the product of a
binary variable and a linear expression by an integer variable. The objective function
of P can be rewritten as

f (X) =
m−1∑

i=1

n−1∑

j=1

xi, j(xi, j+1 + xi+1, j) +
n−1∑

j=1

xm, jxm, j+1 +
m−1∑

i=1

xi,nxi+1,n.

We replace each product xi, j(xi, j+1 + xi+1, j) in f (X) by an integer variable zi, j and
we introduce the following set of linear constraints

{
zi, j ≤ 2xi, j i = 1, . . . , m − 1; j = 1, . . . , n − 1
zi, j ≤ xi, j+1 + xi+1, j i = 1, . . . , m − 1; j = 1, . . . , n − 1.



334 J Math Model Algor (2013) 12:329–343

For each product xm, jxm, j+1 (resp. xi,nxi+1,n) we introduce yh j (resp. yvi) such that
yh j ≤ xm, j and yh j ≤ xm, j+1 (resp. yvi ≤ xi,n and yvi ≤ xi+1,n). Finally, we obtain the
following linear compact integer program

PLCompact

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
∑m

i=1

∑n
j=1 zi, j + ∑n−1

j=1 yh j + ∑m−1
i=1 yvi

s.t.
∑n

j=1 xi, j = hi i = 1, . . . , m (i)
∑m

i=1 xi, j = v j j = 1, . . . , n (ii)

zi, j ≤ 2xi, j i = 1, . . . , m − 1; j = 1, . . . , n − 1

zi, j ≤ xi, j+1 + xi+1, j i = 1, . . . , m − 1; j = 1, . . . , n − 1

yh j ≤ xm, j j = 1, . . . , n

yh j ≤ xm, j+1 j = 1, . . . , n − 1

yvi ≤ xi,n i = 1, . . . , m

yvi ≤ xi+1,n i = 1, . . . , m − 1

xij, yhij, yvij ∈ {0, 1} i = 1, . . . , m; j = 1, . . . , n.

zi, j ≥ 0 i = 1, . . . , m − 1; j = 1, . . . , n − 1

4 Convexification

A function of discrete variables is said to be convex if its extension to the convex hull
is a convex function of continuous variables. A function f is called concave if (-f) is
convex. Maximize a function f is equivalent to minimize (-f). Convex programming
concerns the minimization (resp. maximization) of a convex (resp. concave) objective
function under a convex constraint set. For example, we say that the quadratic
function f (R) = ∑p−1

i=1

∑p
j=i+1 ci, jrir j, where the variables ri are binary, is convex if

and only if
∑p−1

i=1

∑p
j=i+1 ci, jrir j ≥ 0 for all R ∈ R

p.

The convexification technique consists of finding an equivalent quadratic convex
reformulation of P. In matrix notation, the objective function of P can be rewritten
as f (X) = ∑m−1

i=1

∑n
j=1 xi, jxi+1, j + ∑m

i=1

∑n−1
j=1 xi, jxi, j+1 = XT QX, where X is an mn

binary vector containing the variables of an m × n matrix and Q is an mn × mn
matrix where the rows and columns are indexed by the elements of vector X. We
will apply two convexification methods.

4.1 Classical Convexification

Hammer and Rubin [16] propose a simple convexification method to convert
non convex 0-1 quadratic functions into convex functions by adding the term
−λ

∑m
i=1

∑n
j=1(x2

ij − xij), where λ is the minimum eigenvalue of Q. This addition
modifies each diagonal element of Q to ensure that the matrix Q − λI is a positive
semidefinite matrix. We call this program PCClassic1.

The current solvers solve integer mathematical programs with quadratic convex
objective function and linear constraints. Hence it is interesting to reformulate non
convex problems into convex problem. Moreover, in certain cases, it can be even



J Math Model Algor (2013) 12:329–343 335

interesting to reformulate a convex quadratic program. In our case, the objective
function f (X) of program P is not concave. To transform it into a concave function,
we add the term −α

∑m
i=1

∑n
j=1 x2

ij, where α is not less than the greatest eigenvalue of
the quadratic form of P. We note that

∑m
i=1

∑n
j=1 x2

ij = ∑m
i=1

∑n
j=1 xij = ∑m

i=1 hi = τ ,

i.e. the sum of the ones in matrix X. We get the following concave function: f̂ (X) =
f (X) − α

∑m
i=1

∑n
j=1 x2

ij = f (X) − ατ for X ∈ U(H,V). We denote by PCClassic2

the resulting convex program of P. To find the suitable value of α, we start by giving
the definition of the spectral radius of a matrix:

Definition 1 The spectral radius of a square matrix A, noted ρ(A), is defined by
ρ(A) = maxi(λi) where λi is an eigenvalue of A.

Lemma 1 The spectral radius of a square matrix A is less than or equal to any
norm of A.

Proposition 2 ρ(Q) ≤ 4 ∀m, n.

Proof The infinity norm of an n × n matrix A is ‖A‖∞ = maxi
∑n

j=1 aij. Thus
‖Q‖∞ = 4 and ρ(Q) ≤ 4. ��

We remind that the objective function of P is: f (X) = ∑m−1
i=1

∑n
j=1 xi, jxi+1, j +

∑m
i=1

∑n−1
j=1 xi, jxi, j+1 = XT QX. X is considered as a mn vector containing all the

variables, i.e. X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x11

x12
...

x1n

x21
...

xmn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Q is the mn × mn matrix of the quadratic form where the rows and the columns
are indexed by the elements of the vector X. We notice that each row of the matrix
Q contains at most four ones because each variable xij is included in at most four
products: xijxi+1, j, xijxi−1, j, xijxi, j+1, xijxi, j−1.

For an image of size 3 × 3, we get X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x11

x12

x13

x21

x22

x23

x31

x32

x33

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In our simulation, we choose α = 4 in PCClassic2.



336 J Math Model Algor (2013) 12:329–343

A third possible version of convexification consists of replacing the product xy by
−0.5((x − y)2 − x − y) which is equivalent for binary variables. We apply the method
of convexification, obtaining the following program PCClassic3

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max−0.5
(∑m−1

i=1
∑n

j=1

(
xi, j−xi+1, j

)2−xi, j−xi+1, j

)
−0.5

(∑m
i=1

∑n−1
j=1

(
xi, j−xi, j+1

)2−xi, j−xi, j+1

)

s.t.
∑n

j=1 xi, j = hi i = 1, . . . , m (i)
∑m

i=1 xi, j = v j j = 1, . . . , n (ii)
xij ∈ {0, 1} i = 1, . . . , m; j = 1, . . . , n.

4.2 Quadratic Convex Reformulation (QCR) Method

Billionnet et al. [6] developed the QCR method to convert 0-1 quadratic programs
into convex programs. They perturb all the terms of Q by adding new functions.
The QCR method was extended to the case of Mixed Integer Quadratic Programs
(MIQPs) [5]. We apply the QCR method by adding the following functions to f (X)

fα(X) = α

m∑

i=1

⎛

⎝
n∑

j=1

xi, j − hi

⎞

⎠

2

, gα(X) = α

n∑

j=1

(
m∑

i=1

xi, j − v j

)2

,

fλ(X) =
m∑

i=1

n∑

j=1

λi, j

(
x2

i, j − xi, j

)
.

The new objective function is fc(α,λ) = f (X) + fα(X) + gα(X) + fλ(X). It is easy
to verify that fα(X) = gα(X) = fλ(X) = 0 for each feasible solution X. So we
consider the following 0-1 parametric quadratic program depending on α and λ:

PCQCR

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max fc(α,λ)(X) = f (X) + fα(X) + gα(X) + fλ(X)

s.t.
∑n

j=1 xi, j = hi i = 1, . . . , m (i)
∑m

i=1 xi, j = v j j = 1, . . . , n (ii)

xij ∈ {0, 1} i = 1, . . . , m; j = 1, . . . , n.

In [6], the authors proved that the optimal values α∗ of α are equal to the values of
the dual variables associated with constraints of the form (a) and the optimal values
λ∗ of λ are equal to the values of the dual variables associated with constraints (c) in
the following semidefinite program SDP:

SDP

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
∑m

i=1

∑n−1
j=1 y j+(i−1)m, j+1+(i−1)m + ∑n

j=1

∑m−1
i=1 y j+(i−1)m,im+ j

s.t.
∑n

j=1 xi, j = hi i = 1, . . . , m (i)
∑m

i=1 xi, j = v j j = 1, . . . , n (ii)
−hixp,q+∑n

t=1 yt+(i−1)n,q+(p−1)m =0 i=1, . . . , m; p=1, . . . , m; q=1, . . . , n (a)

−v jxp,q+∑m
t=1 yn(t−1)+1,q+(p−1)m =0 j=1, . . . , n; p=1, . . . , m; q=1, . . . , n (b)

ym(i−1)+ j,m(i−1)+ j = xi, j i = 1, . . . , m; j = 1, . . . , n (c)
x ∈ R

mn

Y ∈ Smn.



J Math Model Algor (2013) 12:329–343 337

where Y is a semidefinite real matrix, and Smn represents the set of real symmetric
matrices of order mn.

5 Algebraic System

We propose a new formulation (S) of the reconstruction of hv-convex matrices. A
horizontal bar is a set of horizontally adjacent ones. A vertical bar is a set of vertically
adjacent ones. Thus a matrix is hv-convex if and only if it contains a single horizontal
bar per row and a single vertical bar per column.

We introduce two extra binary variables rij and cij such that rij = 1 if the horizontal
bar of row i starts in cell (i, j) and cij = 1 if the vertical bar of column j starts in cell
(i, j).

To ensure that ri, j = 1 if and only if a horizontal bar of ones starts in cell (i, j), we
add the constraints (iii.a) and (iii.b):

⎧
⎪⎪⎨

⎪⎪⎩

∑n−hi+1
j=1 ri, j = 1 i = 1, . . . , m (iii.a)

∑ j+hi−1
k= j xi,k ≥ hiri, j i = 1, . . . , m; j = 1, . . . , n − hi + 1 (iii.b)

∑ j−1
k=1 xi,k ≤ hi(1 − ri, j) i = 1, . . . , m; j = 2, . . . , n − hi (iii.c).

Similarly to guarantee that ci, j = 1 if and only if a vertical bar of ones start in cell
(i, j), we add the constraints (iv.a) and (iv.b):

⎧
⎪⎨

⎪⎩

∑m−v j+1
i=1 ci, j = 1 j = 1, . . . , n (iv.a)

∑i+v j−1
k=i xk, j ≥ v jci, j j = 1, . . . , n; i = 1, . . . , m − v j + 1 (iv.b)

∑i−1
k=1 xi,k ≤ v j(1 − ci, j) j = 1, . . . , n; i = 2, . . . , m − v j (iv.c).

We remark that constraints (iii.c) and (iv.c) are redundant. In fact constraint (iii.c)
can be obtained by combining (i) and (iii.b).

Consider constraint (i):

∑n

j=1
xi, j = hi ⇒

∑ j−1

k=1
xi,k +

∑ j+hi−1

k= j
xi,k +

∑n

k= j+hi
xi,k = hi

⇒
∑ j−1

k=1
xi,k +

∑ j+hi−1

k= j
xi,k ≤ hi.

Apply constraint (iii.b):

∑ j+hi−1

k= j
xi,k ≥ hiri, j ⇒

∑ j−1

k=1
xi,k ≤ hi −

∑ j+hi−1

k= j
xi,k ≤ hi − hiri, j

∑ j−1

k=1
xi,k ≤ hi(1 − ri, j) ⇒ (iii.c).

Similarly, we prove that constraint (iv.c) is also redundant.



338 J Math Model Algor (2013) 12:329–343

Finally the system S is

S

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
j=1 xi, j = hi i = 1, . . . , m (i)

∑m
i=1 xi, j = v j j = 1, . . . , n (ii)

∑n−hi+1
j=1 ri, j = 1 i = 1, . . . , m (iii.a)

∑ j+hi−1
k= j xi,k ≥ hiri, j i = 1, . . . , m; j = 1, . . . , n − hi + 1 (iii.b)

∑ j−1
k=1 xi,k ≤ hi(1 − ri, j) i = 1, . . . , m; j = 2, . . . , n − hi (iii.c)

∑m−v j+1
i=1 ci, j = 1 j = 1, . . . , n (iv.a)

∑i+v j−1
k=i xk, j ≥ v jci, j j = 1, . . . , n; i = 1, . . . , m − v j + 1 (iv.b)

∑i−1
k=1 xi,k ≤ v j(1 − ci, j) j = 1, . . . , n; i = 2, . . . , m − v j (iv.c)

xij, ci, j, ri, j ∈ {0, 1} i = 1, . . . , m; j = 1, . . . , n.

6 Variable Fixing

Many computational tests proved that the running time of a mathematical program
strongly depends on the number of fixed variables. We try to fix certain variables
in any solution of P. This preprocessing step reduces the size of the feasible region
(sometimes all the variables can be fixed) before solving it by an exact method.

Definition 2 A cell (i, j) is 1-invariant if xij = 1 for any x ∈ U(H,V). A cell (i, j) is
0-invariant if xij = 0 for any x ∈ U(H,V). A cell is invariant if it is 1-invariant or
0-invariant.

Haber [15] gave necessary and sufficient conditions for a cell to be invariant.

Theorem 1 (Haber) Suppose that H and V are monotone. If cell (i, j) is 1-invariant
in U(H, V), then there exist two integers e and f with i ≤ e ≤ m and j ≤ f ≤ n such

that every matrix A ∈ U(H, V) has the following form: A =
[

1 A1
A2 0

]

, where 1 is

an e × f matrix in which all its entries are one, 0 is an (m − e) × (m − f ) matrix in
which all its entries are zero, A1 is an e × (m − f ) binary matrix, A2 is an (m − e) × f
binary matrix.

This theorem supposes that we have an initial matrix A ∈ U(H, V). This matrix
can be found, for example, by using the algorithm of Ryser [25]:

It is a greedy algorithm with complexity O(mn + max(mlogm; nlogn)). At each
stage (column) j, v j 1s are placed in column j in each of the hightest priority available
rows. If the number of available rows is less than v j, then the algorithm should stop



J Math Model Algor (2013) 12:329–343 339

T
ab

le
1

C
P

U
ru

nn
in

g
ti

m
e

(s
)

fo
r

lin
ea

ri
za

ti
on

m
et

ho
ds

#m
at

ri
x

σ
P

L
C

la
ss

ic
1

P
L

C
la

ss
ic

2
P

L
C

om
pa

ct
D

ir
ec

tu
se

C
pl

ex

So
l

Ŝo
l

T
im

e
So

l
Ŝo

l
T

im
e

So
l

Ŝo
l

T
im

e
So

l
Ŝo

l
T

im
e

10
×

10
,1

80
80

80
.8

8
0.

74
80

80
.5

2
1.

60
80

80
.8

9
0.

78
80

80
.9

0
89

.3
3

10
×

10
,2

36
36

38
.1

5
1.

52
36

37
.4

5
1.

59
36

37
.4

4
1.

40
36

37
.1

0
33

5.
27

10
×

10
,3

18
18

20
.0

9
1.

34
18

18
.6

7
0.

48
18

19
.1

8
1.

35
18

19
.0

2
19

5.
48

10
×

10
,4

20
20

22
.0

7
4.

99
20

21
.0

6
1.

99
20

21
.2

0
6.

80
20

21
.2

2
34

0.
84

20
×

20
,1

39
0

39
0

39
0.

00
0.

21
39

0
39

0.
00

0.
26

39
0

39
0.

00
0.

32
39

0
39

0.
00

15
.0

3
20

×
20

,2
15

4
15

4
15

5.
07

20
8.

64
15

4
15

5.
15

26
0.

47
15

4
15

5.
00

17
83

.5
6

15
4

15
5.

00
24

33
.5

8
20

×
20

,3
90

90
91

.0
0

19
25

.2
3

90
91

.0
6

96
7.

48
90

94
.9

3
36

00
.1

8
90

92
.0

0
34

33
.6

6
20

×
20

,4
46

46
46

.9
7

21
3.

40
46

46
.6

5
20

3.
23

46
46

.8
4

30
24

.8
0

46
46

.8
0

34
33

.5
9

30
×

30
,1

95
4

95
4

95
5.

00
34

.0
8

95
4

95
4.

54
78

.3
8

95
4

95
5.

05
10

6.
08

95
4

95
5.

08
33

3.
08

30
×

30
,2

41
0

41
0

41
0.

38
16

5.
15

41
0

41
0.

77
98

6.
73

41
0

41
1.

02
33

68
.7

2
41

0
41

0.
38

34
29

.1
9

30
×

30
,3

24
0

23
9

24
5.

42
36

00
.1

0
23

4
24

5.
30

36
00

.1
8

23
4

24
9.

13
36

00
.1

0
23

2
25

0.
13

36
00

.2
0

30
×

30
,4

19
4

19
3

19
8.

11
36

00
.1

0
19

4
19

7.
09

36
00

.1
3

18
8

20
0.

59
36

00
.1

1
18

8
20

0.
58

36
00

.3
8

40
×

40
,1

13
90

13
66

13
98

.1
4

36
00

.2
4

13
53

14
02

.2
1

36
00

.1
0

13
38

14
03

.1
5

36
00

.1
0

13
60

14
00

.2
9

36
00

.2
3

40
×

40
,2

76
2

75
7

76
6.

64
36

00
.1

1
74

8
76

7.
59

36
00

.0
8

73
2

77
0.

02
36

00
.1

7
75

5
76

7.
35

36
00

.6
0

40
×

40
,3

51
2

49
2

52
0.

37
36

00
.1

1
48

8
51

9.
49

36
00

.0
2

48
0

52
2.

22
36

00
.1

6
48

8
51

9.
17

36
00

.6
2

40
×

40
,4

27
4

25
3

28
8.

00
36

00
.5

3
26

5
28

3.
00

36
00

.1
9

25
8

29
0.

82
36

00
.1

3
24

9
29

2.
72

36
00

.5
7

50
×

50
,1

22
30

22
30

22
31

.0
9

42
4.

11
22

28
22

32
.4

0
36

00
.1

7
22

28
22

31
.5

4
36

00
.1

3
22

24
22

34
.4

2
36

00
.9

4
50

×
50

,2
11

66
11

33
11

72
.6

1
36

00
.2

4
11

24
11

74
.1

7
36

00
.1

6
11

03
11

76
.1

1
36

00
.2

2
11

22
11

74
.5

5
36

00
.0

1
50

×
50

,3
88

4
88

2
88

6.
46

36
00

.1
6

83
8

88
8.

76
36

00
.2

2
79

6
89

1.
59

36
00

.1
1

85
3

88
8.

32
36

00
.3

8
50

×
50

,4
59

4
56

4
60

5.
33

36
00

.3
2

57
0

60
6.

26
36

00
.1

1
53

1
61

1.
04

36
01

.3
6

55
7

60
0.

02
36

00
.5

2

T
he

bo
ld

it
em

s
re

pr
es

en
tt

he
ru

nn
in

g
ti

m
e



340 J Math Model Algor (2013) 12:329–343

T
ab

le
2

C
P

U
ru

nn
in

g
ti

m
e

(s
)

fo
r

co
nv

ex
if

ic
at

io
n

m
et

ho
ds

#m
at

ri
x

σ
P

C
C

la
ss

ic
1

P
C

C
la

ss
ic

2
P

C
C

la
ss

ic
3

P
C

Q
C

R

So
l

Ŝo
l

T
im

e
So

l
Ŝo

l
T

im
e

So
l

Ŝo
l

T
im

e
So

l
Ŝo

l
T

im
e

10
×

10
,1

80
80

80
.0

1
99

.3
8

80
80

.0
1

10
3.

42
80

80
.0

1
61

.2
4

80
80

.1
2

43
.2

2
10

×
10

,2
36

36
38

.1
7

36
03

.0
6

36
38

.3
1

36
03

.2
9

36
37

.3
1

36
00

.0
5

36
36

.9
9

96
7.

05
10

×
10

,3
18

18
18

.0
0

26
61

.7
1

18
18

.0
1

25
18

.4
7

18
18

.0
0

61
8.

86
18

18
.0

1
43

0.
83

10
×

10
,4

20
20

24
.2

8
36

03
.3

0
20

23
.9

4
36

02
.7

5
20

22
.0

0
36

00
.0

7
20

23
.6

4
36

00
.0

7

20
×

20
,1

39
0

39
0

39
1.

00
3.

04
39

0
39

1.
02

2.
94

39
0

39
1.

00
12

.2
4

39
0

39
1.

00
36

00
.0

4
20

×
20

,2
15

4
15

1
18

2.
46

36
01

.3
6

14
8

18
2.

39
36

01
.9

4
15

4
18

0.
02

36
00

.8
6

15
4

18
0.

02
36

00
.0

0
20

×
20

,3
90

84
12

0.
12

36
00

.3
6

84
12

0.
18

36
01

.3
8

90
10

0.
00

36
00

.6
1

90
10

0.
01

36
00

.1
0

20
×

20
,4

46
42

75
.3

3
36

01
.7

2
42

75
.3

7
36

01
.2

7
46

70
.7

2
36

00
.1

4
45

75
.3

3
36

00
.2

1

30
×

30
,1

95
4

95
4

97
8.

52
36

01
.0

7
95

4
97

8.
45

36
01

.0
0

95
4

97
8.

83
36

00
.6

8
95

4
97

8.
40

36
00

.4
5

30
×

30
,2

41
0

39
4

45
9.

13
36

00
.6

7
39

4
45

9.
08

36
00

.7
7

40
2

45
0.

41
36

00
.6

3
40

0
45

0.
21

36
00

.1
7

30
×

30
,3

24
0

21
6

29
0.

12
36

00
.7

0
21

7
29

0.
08

36
00

.6
9

22
2

28
0.

09
36

00
.6

3
22

2
28

0.
18

36
00

.2
8

30
×

30
,4

19
4

17
9

24
3.

64
36

00
.7

1
17

2
24

3.
57

36
00

.6
4

18
0

24
0.

30
36

00
.2

6
18

8
20

0.
99

36
00

.4
1

40
×

40
,1

13
90

13
70

14
58

.0
8

36
01

.6
2

13
59

14
58

.0
8

36
00

.3
6

13
75

14
50

.0
5

36
00

.0
1

13
85

14
10

.0
3

36
00

.4
0

40
×

40
,2

76
2

74
7

83
2.

29
36

00
.3

4
73

8
83

2.
32

36
00

.3
3

75
0

80
0.

22
36

00
.0

7
75

0
80

0.
32

36
00

.0
1

40
×

40
,3

51
2

47
3

58
2.

08
36

00
.3

9
46

9
58

2.
08

36
00

.4
1

48
0

55
5.

07
36

00
.9

4
48

2
55

3.
22

36
00

.0
0

40
×

40
,4

27
4

23
8

34
6.

04
36

00
.5

8
23

2
34

6.
03

36
00

.3
6

24
0

34
6.

42
36

00
.2

1
24

4
34

6.
22

36
00

.3
7

50
×

50
,1

22
30

22
08

22
95

.7
4

36
00

.4
4

22
13

22
95

.8
0

36
00

.4
2

22
22

22
82

.2
4

36
00

.1
2

22
22

22
82

.4
8

36
00

.0
5

50
×

50
,2

11
66

11
19

12
55

.4
6

36
00

.1
9

11
18

12
55

.4
4

36
00

.1
7

11
26

12
22

.0
7

36
00

.8
4

11
20

12
22

.7
7

36
00

.1
7

50
×

50
,3

88
4

84
0

97
3.

81
36

00
.1

6
85

4
97

3.
78

36
00

.1
7

85
5

95
6.

00
36

00
.0

6
85

0
95

6.
41

36
00

.0
2

50
×

50
,4

59
4

53
3

68
5.

33
36

00
.2

7
54

3
68

5.
33

36
00

.3
3

54
7

66
0.

45
36

00
.9

2
54

0
66

5.
30

36
00

.8
5

T
he

bo
ld

it
em

s
re

pr
es

en
tt

he
ru

nn
in

g
ti

m
e



J Math Model Algor (2013) 12:329–343 341

and there is no solution. Row i is available at stage j if αi > 0. αi is the number of
1s not yet placed at the stage j of the algorithm. The hightest priority rows are those
having the greatest values αi.

7 Computational Results

Our mathematical programs are solved using the AMPL modeling language and Ilog
Cplex 11.0 solver. All our experiments were run on an AMD Athlon XP-M 1.7 GHz
PC with 512 MB of memory.

We have used a set of square matrices of various sizes described and generated
in [3, 4]. In [1], the authors presented a systematic approach to generate hv-convex
binary matrices from uniform distributions each with a fixed number of components.
A component is a maximal hv-convex connected set. The proposed generating
algorithm is partially based on the decomposition studied in [11].

Results of the computational experiments evaluating the linearization methods
and directly using Cplex are summarized in Table 1. Recent versions of CPLEX
can treat non convex 0-1 quadratic problems. Table 2 displays computational ex-
periments concerning the convexification methods. Table 3 displays computational
experiments concerning PLClassic1, PLClassic1 with fixed variables and linear
system S. In these tables, the first column contains the size of the matrix and
the number of hv-convex components of the instance. For example (10 × 10, 3)

Table 3 CPU running time in seconds for linear system (S) and for linearization PLClassic1 with
fixed variables; (–) means that the solution has not been found within one hour

#martix σ PLClassic1 PLClassic1 with fixed variables Linear system S

Sol Ŝol Time Sol Ŝol Time % Fixed Sol Time

10 × 10,1 80 80 80.88 0.74 80 80.00 0.74 0 80 0.04
10 × 10,2 36 36 38.15 1.52 36 37.00 1.02 2 36 0.09
10 × 10,3 18 18 20.09 1.34 18 18.00 1.03 5 18 0.07
10 × 10,4 20 20 22.07 4.99 20 20.02 3.09 7 20 0.28

20 × 20,1 390 390 390.00 0.21 390 390.00 0.21 0 390 0.06
20 × 20,2 154 154 155.07 208.64 154 155.07 208.64 0 154 36.92
20 × 20,3 90 90 91.00 1925.23 90 91.00 1925.23 0 90 64.74
20 × 20,4 46 46 46.97 213.40 46 46.00 150.40 10 46 24.72

30 × 30,1 954 954 955.00 34.08 954 955.00 3600.19 0 954 0.79
30 × 30,2 410 410 410.38 165.15 410 410.00 3600.17 7 410 9.32
30 × 30,3 240 239 245.42 3600.10 240 240.13 3600.22 3 240 33.29
30 × 30,4 194 193 198.11 3600.10 194 195.51 3600.00 5 194 584.13

40 × 40,1 1390 1366 1398.14 3600.24 1390 1390.00 3600.50 0 1390 3015.45
40 × 40,2 762 757 766.64 3600.11 762 762.62 3600.01 9 762 3600.07
40 × 40,3 512 492 520.37 3600.11 510 514.33 3600.30 10 – 3600.00
40 × 40,4 274 253 288.00 3600.53 270 280.00 3600.12 15 – 3600.00

50 × 50,1 2230 2230 2231.09 424.11 2230 2230.03 202.10 20 2230 133.42
50 × 50,2 1166 1133 1172.61 3600.24 1155 1169.54 3600.22 13 – 3600.00
50 × 50,3 884 882 886.46 3600.16 884 885.76 3600.31 4 – 3600.00
50 × 50,4 594 564 605.33 3600.32 589 598.81 3600.02 31 – 3600.00

The bold items represent the running time



342 J Math Model Algor (2013) 12:329–343

denotes a square 10 × 10 matrix with 3 components. The second column displays the
maximal number of adjacent ones (see Proposition 1). The subcolumn labeled Sol
(respectively Ŝol) contains the integer (resp. continuous) solution provided by each
method. The subcolumn labeled “time” contains the CPU running time (in seconds)
required by Cplex within a time limit fixed to 1 hr. The subcolumn labeled “% Fixed”
displays the percentage of variables fixed in the preprocessing step.

We observe that the results given by the linearization methods are very similar.
We note also that all the methods give the optimal solution for the set of images of
size 10 × 10. From Tables 1 and 2, we conclude that the linearization methods are
better than the convexification methods. From Table 1, we conclude that the method
PCClassic1 outperforms the other linearization methods. From Table 2, we note that
PCQCR cannot provide a solution within an hour. For instances of small size, we
note that directly solving the system S is very fast. Finally, from Table 3, we remark
that in all the cases the method PCClassic1 is enhanced by fixing variables.

8 Conclusion

In this paper, we have considered the problem of reconstructing hv-convex binary
matrices. We have formulated the problem as a quadratic integer program. We have
proposed several techniques based on linearization and convexification to solve the
nonlinear related programs. Linearization combined with fixing variables seems to
be the best. Promising future research directions include generation of valid cutting
planes to improve the quality of solutions obtained.

Acknowledgements The authors express their deep gratitude to the anonymous referees, whose
comments have improved both the presentation and the readability of the paper.

References

1. Balázs, P.: A framework for generating some discrete sets with disjoint components by using
uniform distributions. Discrete Appl. Math. 406, 15–23 (2008)

2. Balázs, P.: Reconstruction of canonical hv-convex discrete sets from horizontal and vertical
projections. In: 13th International Workshop on Combinatorial Image Analysis. Lecture Notes
in Computer Science, vol. 5852, pp. 280–288. Playa del Carmen, Mexico (2009)

3. Balázs, P.: A benchmark set for the reconstructin of hv-convex discrete sets. Discrete Appl. Math.
157, 3447–3456 (2009)

4. Balázs, P.: Benchmark collections for the reconstruction of hv-convex discret sets. http://www.
inf.u-szeged.hu/pbalazs/benchmark/benchmark.html (2010). Accessed 11 Sept 2009

5. Billionnet, A., Elloumi, S., Lambert, A.: Extending the QCR method to general mixed-integer
programs. Math. Program. 131, 381–401 (2012)

6. Billionnet, A., Elloumi, S., Plateau, M.-C.: Improving the performance of standard solvers for
quadratic 0-1 programs by a tight convex reformulation: the QCR method. Discrete Appl. Math.
25, 1185–1197 (2007)

7. Chang, S.: The reconstruction of binary patterns from their projections. Commun. ACM 14,
21–25 (1971)

8. Chrobak, M., Dürr, C.: Reconstructing hv-convex polyominoes from orthogonal projections. Inf.
Process. Lett. 69, 283–289 (1999)

9. Dahl, G., Flatberg, T.: Optimization and reconstruction of hv-convex (0, 1)-matrices. Discrete
Appl. Math. 151, 93–105 (2005)

10. Del Lungo, A.: Polyominoes defined by two vectors. Theor. Comp. Sci. 127, 187–198 (1994)

http://www.inf.u-szeged.hu/pbalazs/benchmark/benchmark.html
http://www.inf.u-szeged.hu/pbalazs/benchmark/benchmark.html


J Math Model Algor (2013) 12:329–343 343

11. Flajolet, P., Zimmermann, P., Van Custem, B.: A calculs for the random generation of labelled
combinatorial structures. Theor. Comp. Sci. 132, 1–35 (1994)

12. Fortet, R.: Applications de l’algèbre de boole en recherche opérationnelle. RAIRO Rech. Opér.
4, 5–36 (1959)

13. Gale, D.: A theorem on flows in networks. Discrete Math. 187, 1073–1082 (1957)
14. Glover, F.: Improved linear integer programming formulation of non linear integer problems.

Manage. Sci. 22, 445–460 (1975)
15. Haber, R.M.: Term Rank of 0,1 Matrices. Rendiconti del Seminario Matematico della Università

di Padova, vol. 30, pp. 24–51 (1960)
16. Hammer, P.L., Rubin, A.A.: Some remarks on quadratic programming with 0-1 variables.

RAIRO Rech. Opér. 3, 67–79 (1970)
17. Herman, G.T., Kuba, A.: Discrete Tomography: Foundations, Algorithms and Applications.

Birkhauser (1999)
18. Irving, R.W., Jerrum, M.R.: Three-dimensional statistical data security problems. SIAM J. Com-

put 23, 170–184 (1994)
19. Jarray, F., Costa, M.-C., Picouleau, C.: Approximating hv-convex binary matrices and images

from discrete projections. In: 14th Discrete Geometry for Computer Imagery. LNCS, vol. 4992,
pp. 413–422. Lyon, France (2008)

20. Kuba, A.: The reconstruction of two-directionally connected binary patterns from their two
orthogonal projections. Comput. Vis. Graph. Image Process. 27(3), 249–265 (1984)

21. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. New York (1988)
22. Ourmazd, A., Kisielowski, C., Schwander, P., Baumann, F.H., Seibt, M., Kim, Y.: An approach

to quantitative high-resolution transmission electron microscopy of crystalline materials. Ultra-
microscopy 58, 131–155 (1995)

23. Pinzani, R., Barcucci, E., Del Lungo, A., Nivat, M.: Reconstructing convex polyominoes from
horizontal and vertical projections. Theor. Comp. Sci. 155(2), 321–347 (1996)

24. Prause, G.P.M., Onnasch, D.G.W.: Binary reconstruction of the heart chambers from biplane
angiographic image sequence. IEEE Trans. Med. Imag. 15, 532–559 (1996)

25. Ryser, H.: Combinatorial properties of matrices of zeros and ones. Can. J. Math. 9, 371–377
(1957)

26. Shliferstein, A.R., Chien, Y.T.: Switching components and the ambiguity problem in the recon-
struction of pictures from their projections. Pattern Recogn. 10, 327–340 (1978)

27. Wang, Y.: Characterization of binary patterns and their projections. IEEE Trans. Comput. 24,
1032–1035 (1975)

28. Woeginger, G.: The reconstruction of polyominoes from their orthogonal projections. Inf.
Process. Lett. 77, 225–229 (2001)


	Reconstructing Convex Matrices by Integer Programming Approaches
	Abstract
	Introduction
	Some Definitions and Notation
	Linearization
	Classical Linearization
	Compact Linearization

	Convexification
	Classical Convexification
	Quadratic Convex Reformulation (QCR) Method

	Algebraic System
	Variable Fixing
	Computational Results
	Conclusion
	References


