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Abstract In this paper, a well known problem called the Shortest Path Problem
(SPP) has been considered in an uncertain environment. The cost parameters for
traveling each arc have been considered as Intuitionistic Fuzzy Numbers (IFNs)
which are the more generalized form of fuzzy numbers involving a degree of accep-
tance and a degree of rejection. A heuristic methodology for solving the SPP has been
developed, which aim to exploit tolerance for imprecision, uncertainty and partial
truth to achieve tractability, robustness and low cost solution corresponding to the
minimum-cost path or the shortest path. The Modified Intuitionistic Fuzzy Dijkstra’s
Algorithm (MIFDA) has been proposed in this paper for solving Intuitionistic Fuzzy
Shortest Path Problem (IFSPP) using the Intuitionistic Fuzzy Hybrid Geometric
(IFHG) operator. A numerical example illustrates the effectiveness of the proposed
method.
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1 Introduction

Shortest path problem where the costs have vague values is one of the most studied
problems in fuzzy sets and systems area [23]. The authors in [27, 33, 50] outlined a
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model and an algorithm for computing a shortest path in a network having various
types of fuzzy arc lengths by a dynamic programming method. Variation of Shortest
path problem can be found in the papers [18, 43]. Shortest Path Problem with fuzzy
arc lengths have been solved by different methods by many authors [13, 14, 22, 23, 25–
27, 29, 31, 36, 39–41]. However, it seems that in the literature there is no investigation
on SPP with data in the form of intuitionistic fuzzy numbers which is a more
generalized form of fuzzy number. The major objective of this paper is to bridge
this gap, by posing and proposing a methodology for solving the SPP with IF arc
parameters, applying the different properties of IFSs.

Different operators for aggregating fuzzy numbers have been studied by many
authors. The authors in the papers [21, 59] present a wide range of fuzzy induced
generalized aggregation operators. Many authors have worked on aggregation op-
erators of IFNs. In the paper [54], Xu and Yager have developed some geometric
aggregation operators, such as the intuitionistic fuzzy weighted geometric (IFWG)
operator, the intuitionistic fuzzy ordered weighted geometric (IFOWG) operator,
and the intuitionistic fuzzy hybrid geometric (IFHG) operator. A new aggregation
operator called induced generalized intuitionistic fuzzy ordered weighted averaging
(IG-IFOWA) operator is proposed in the paper [45]. The authors in [57] develop a
series of operators for aggregating IFNs. Two new aggregation operators: induced
intuitionistic fuzzy ordered weighted geometric (I-IFOWG) operator and induced
interval-valued intuitionistic fuzzy ordered weighted geometric (I-IIFOWG) opera-
tor are proposed in the paper [20].

The concept of IFS can be viewed as an appropriate/alternative approach to define
a fuzzy set in case where available information is not sufficient for the definition of an
imprecise concept by means of a conventional fuzzy set [58]. In fuzzy sets the degree
of acceptance is considered only but IFS is characterized by a membership function
and a non-membership function so that the sum of both values is less than or equal to
one. The grade of a membership function indicates a subjective degree of preference
of a decision maker within a given tolerance and grade of a non-membership function
indicates a subjective degree of negative response of a decision maker within a given
tolerance.

Presently intuitionistic fuzzy sets are being studied and used in different fields of
science. Using this concept many authors have solved many practical problems [1–
8, 24, 30, 44, 46–49, 53–57]. Burillo et al. [10] proposed definition of intuitionistic
fuzzy number and studied perturbations of intuitionistic fuzzy number and the
first properties of the correlation between these numbers. The intuitionistic fuzzy
set has received more and more attention since its appearance. Gau and Buehrer
[19] introduced the concept of vague set. Chen and Tan [12] and Hong and Choi
[24] presented some techniques for handling multicriteria fuzzy decision making
problems based on vague sets. But Bustince and Burillo [11] showed that vague sets
are intuitionistic fuzzy sets. Mitchell [35] considered the problem of ranking a set of
IFNs to define a fuzzy rank and a characteristic vagueness factor for each IFN.

Dijkstra’s algorithm, conceived by Dutch computer scientist Edsger Dijkstra in
1956 and published in 1959, [15, 16] is a graph search algorithm that solves the single-
source shortest path problem for a graph with nonnegative edge path costs, produc-
ing a shortest path tree. This algorithm is often used in routing and as a subroutine
in other graph algorithms. Many authors have studied and worked on Dijkstra’s
algorithm for solving shortest path problems [9, 17, 28, 32, 34, 37, 38, 42, 51, 52].
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In this paper a SPP has been considered in an uncertain (IF) environment. The
costs (or time or distance etc.) required for traveling along the arcs of the network
are taken as the IFNs. The problem is to find the shortest path between two nodes.
This shortest path corresponds to that path which requires minimum total cost (or
time or distance etc.) of traveling from the source to the sink. Minimum total IF
cost corresponds to maximum aggregate degree of acceptance μij and the minimum
aggregate degree of rejection vij of the cost. IFHG operator has been used for
deducing the weighted aggregated IF value of two IFNs. In this paper, a modified
Dijkstra’s method has been developed in the Intuitionistic Fuzzy environment for
finding the weighted aggregated IFV of the minimum-cost path or the shortest path.
The shortest path can be easily constructed by working backwards from the terminal
vertex such that we go to that predecessor from whom the current vertex has got
its permanent label. Shortest Path Problem with fuzzy arc lengths has been solved
by different methods by many authors. However, it seems that in the literature
there is no investigation on SPP with data in the form of IFNs, which is more
generalized form of fuzzy numbers. This depicts the major contribution of this paper.
The proposed new methodology for solving IFSPP cannot be found in the literature
so far. The properties applied here have not been applied earlier for solving IFSPP.
These are the main significances of this paper.

The rest of the paper is organized as follows. Section 2 depicts the prelimi-
nary concepts of IFSs, IF value, IFNs, ranking of IF value and IFHG operator.
Section 3 describes the proposed method. In Section 4, a numerical example has
been solved using the proposed method, Section 5 depicts the results and discussions
and Section 6 concludes the paper.

2 Some Preliminary Concepts

2.1 Intuitionistic Fuzzy Set (IFS)

Atanassov [2] generalized the concept of fuzzy set [58], and defined the concept of
intuitionistic fuzzy set as follows.

Let a set X be fixed. An intuitionistic fuzzy set A in X is an object having the form:

A = {〈x, μA(x), νA(x)〉 |x ∈ X } (1)

where the functions μA : X → [0, 1] and νA : X → [0, 1] define the degree of
membership and the degree of non-membership of the element x ∈ X to A ⊂ X,
respectively, and for every x ∈ X, μA + νA(x) ≤ 1.

2.2 Intuitionistic Fuzzy Value (IFV)

The definition of Intuitionistic Fuzzy Value has been given by Xu [54].
If a membership function tA and a non-membership function fA be used to denote

the lower bounds on μA, then, the degree of membership of x in the intuitionistic
fuzzy set A is bounded to a subinterval [tA(x), 1− fA(x)] of [0, 1]. Gau and Buehrer
[19] called the interval [tA(x), 1− fA(x)], a vague value. However, Bustince and
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Burillo [11] showed that vague sets are intuitionistic fuzzy sets. For computational
convenience, in this paper, the interval [tA(x), 1− fA(x)] is called an intuitionistic
fuzzy value, and replaces Eq. 1 with

A = {〈
x,

[
tA (x) , 1 − fA (x)

]〉 |x ∈ X
}

(2)

correspondingly.
The intuitionistic fuzzy value [tA(x), 1- fA(x)] indicates that the exact degree of

membership μA(x) of x may be unknown. But it is bounded by tA (x) ≤ μA (x) ≤
1 − fA (x) where tA (x) + fA (x) ≤ 1.

2.3 Definition: Intuitionistic Fuzzy Number (IFN)

IFN was introduced by Burillo et al. [10]. According to them an IFN is an intuitionis-
tic fuzzy subset of the real line, normal, convex for the membership and concave for
the non-membership. With this idea every fuzzy number is an IFN. The definition of
IFN is given below

An intuitionistic fuzzy number Ãi is defined as follows:

(i) an intuitionistic fuzzy sub set of the real line
(ii) normal i.e., there is any x0 ∈ R such that μÃi (x0)=1

(
soνÃi (x0) = 0

)

(iii) a convex set for the membership function μÃi (x) i.e.,

μÃi (λx1 + (1 − λ) x2) ≥ min
(
μÃi (x1) , μÃi (x2)

)∀x1, x2 ∈ R, λ ∈ [0, 1]

(iv) a concave set for the non-membership function νÃi (x) i.e.,

νÃi (λx1 + (1 − λ) x2) ≤ max
(
νÃi (x1) , νÃi (x2)

)∀x1, x2 ∈ R, λ ∈ [0, 1]

2.4 Ranking of Intuitionistic Fuzzy Value

Chen and Tan [12] introduced a score function S of an IFV, which is represented as
follows.

Let ã = [
t̃a, 1 − f̃a

]
, be an intuitionistic fuzzy value, where

t̃a ∈ [0, 1], f̃a ∈ [0, 1], t̃a j + f̃a j ≤ 1

The score of ã can be evaluated by the score function S shown as:

S (̃a) = t̃a − f̃a (3)

where S (̃a) ∈ [−1, 1]. The larger the score S (̃a) , the greater the intuitionistic fuzzy
value ã.

Hong and Choi [24] defined an accuracy function H to evaluate the degree of
accuracy of the intuitionistic fuzzy value ã where H (̃a) ∈ [0, 1].

H (̃a) = t̃a + f̃a (4)

is the accuracy degree of ã where H (̃a) ∈ [0, 1]. The larger the value of H (̃a), the
more is the degree of accuracy of the degree of membership of the IFV ã.



J Math Model Algor (2012) 11:345–359 349

Based on the score function S and the accuracy degree H, in the following, Xu and
Yager [54] give an order relation between two IFVs, which is defined as follows:

Let ã = [
t̃a, 1 − f̃a

]
and b̃ = [

tb̃ , 1 − fb̃

]
be two IFVs, S (̃a) = t̃a − f̃a and S

(
b̃
) =

tb̃ − fb̃ be the scores of ã and b̃ respectively, and let H (̃a) = t̃a + f̃a and H
(
b̃
) =

tb̃ + fb̃ be the accuracy degrees of ã and b̃ respectively, then

• If S (̃a) < S
(
b̃

)
, then ã is smaller than b̃ , denoted by ã < b̃ (5)

• If S (̃a) > S
(
b̃

)
, then ã is greater than b̃ , denoted by ã > b̃ (6)

• If S (̃a) = S
(
b̃

)
, then

1. if H (̃a) = H
(
b̃
)
, then ã and b̃ represent the same information, denoted by

ã = b̃
2. if H (̃a) < H

(
b̃
)
, then ã is smaller than b̃ , denoted by ã < b̃

3. if H (̃a) > H
(
b̃
)
, then ã is greater than b̃ , denoted by ã > b̃ .

2.5 The IFHG Operator

The definition of IFHG operator was introduced by Xu in [54]. An IFHG operator is
a mapping IFHG: �n → �, which has an associated vector w = (w1, w2, w3, . . . , wn)

T

with w j > 0,
n∑

j=1
w j = 1 such that

IFHGω,w (̃a1, ã2, . . . , ãn) =
( ·

ãσ(1)

)w1

⊗
( ·

ãσ(2)

)w2

⊗ . . . ⊗
( ·

ãσ(n)

)wn

where
·
ãσ( j) is the jth largest of the weighted intuitionistic fuzzy values

·
ã j

( ·
ã j = ã

nω j

j , j = 1, 2, 3, . . . , n
)

, (7)

ω = (ω1, ω2, . . . , ωn)
T is the weight vector of ã j ( j = 1, 2, ....., n), with ω j > 0,

n∑

j=1
ω j = 1, and n is the balancing coefficient, which plays a role of balance.

Xu [53] developed a normal distribution based method for determining the

associated weights w = (w1, w2, w3, . . . , wn)
T with ω j > 0,

n∑

j=1
w j = 1 of the IFHG

operator, which is defined as follows:

w j = e
− ( j−μn)2

2σ2
n

∑n
i=1 e

− (i−μn)2

2σ2
n

, j = 1, 2, . . . , n. (8)

where μn is the mean of the collection of 1, 2, 3, . . . , n, and σn(σn > 0) is the standard
deviation of the collection of 1, 2, 3, . . . , n, i.e,

μn = 1
n

n (n + 1)

2
= n + 1

2
, σn =

√√√√ 1
n

n∑

i=1

(i − μn)
2 (9)
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The prominent characteristic of the method is that it can relieve the influence of
unfair arguments on the final results by assigning low weights to those “false” or
“biased” ones.

Let
·
ãσ( j) =

[
t ·
ãσ( j)

, 1 − f ·
ãσ( j)

]
then we have

IFHGω,w (̃a1, ã2, . . . , ãn) =
⎡

⎣
n∏

j=1

t
w j

ã·
σ( j)

,

n∏

j=1

(
1 − f ·

ãσ( j)

)w j

⎤

⎦ (10)

and the aggregated value derived by using the IFHG operator is also an intuitionistic
fuzzy value.

3 The Proposed Method

A connected network with given arcs and nodes in which s is the source node and e is
the end (sink) node is considered. The problem is to find the shortest path between
s and e with respect to the cost (or time or distance etc.) parameter related to each
arc. This parameter is considered to be in terms of IFNs c̃ij = (

μij, νij
)
, where μij

represents the degree of acceptance that the arc i − j will be included in the shortest
path with respect to the cost for traveling along the arc i − j. Similarly νij represents
the degree of rejection that the arc i − j will be included in the shortest path with
respect to the cost for traveling along the arc i − j. From the IFSs, the IF value for
each arc of the network is considered in the form of [tA(x), 1- fA(x)] described earlier
in Section 2.2. The weight vector ω = (

ω12, ω13, . . . , ω23, ω24, . . . , ωij, . . . , ωn
)T , where

each ωij related to arc i − j is considered as the opinion of the expert regarding the
IF cost c̃ij required for traveling along the arc i − j, 0 ≤ ω j ≤ 1.

3.1 The Modified Intuitionistic Fuzzy Dijkstra’s Algorithm (MIFDA)

Input: Let G = (V, E) be a simple weighted network with intuitionistic fuzzy
parameters for the arcs. ‘s’ is the starting point and ‘e’ is the terminal point.

Output: (a) Weighted aggregated IFV of the minimum-cost path or the shortest
path w.r.t. the total intuitionistic fuzzy cost for traveling through the
shortest path.

(b) the shortest path.

Let L(x) denote the label of the node ‘x’ which represents the weighted aggre-
gated IFV for the path from the node ‘s’ to the node ‘x’. The weight vector
ω = (

ω12, ω13, . . . , ω23, ω24, . . . , ωij, . . . , ωn
)T , where each ωij related to arc i − j is

considered as the opinion of the expert regarding the IF cost c̃ij required for traveling
along the arc i − j, 0 ≤ ω j ≤ 1.

Step1: Let P = φ, where P is the set of those nodes which have permanent labels
and T = {all nodes of the network G}. At first, the permanent label to ‘s’ has
been assigned as L(s) = (1, 0), (initially),‘s’ is the starting node, so definitely
it will be present in the shortest path. This is represented by the IFN (1, 0)
where 1 represents the degree of acceptance and 0 represents the degree of
rejection of the fact that node ‘s’ is in the shortest path.
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Also, L(x) = (0, 1)∀x ∈ T and x �= ‘s’
Step2: That node ‘v’ in T is selected which has the highest score value of its label,

called the permanent label of ‘v’ (i.e., L(v)). Then P = P ∪ {v} and T = T −
(v). Again the node in T with highest score value of its label is selected. The
new label of a node‘x’ in T is given by

L (x) = max {old L (x) , IFHG (L (v) , c (v, x))} , (11)

where c(v, x) is the IF cost for traveling along the arc v − x.
The associated weights w j > 0 of the IFHG operator are evaluated using

Eqs. 8 and 9 where
n∑

j=1
w j = 1. Then using the IFHG operator of the Eq. 10 of

Section 2.5 described in this paper, the aggregated value of L(v)and c(v, x)

are derived which are also in terms of intuitionistic fuzzy value. The max
function is used for evaluating the maximum of the two IFNs using the Eqs.
3, 5 and 6. If there is no difference between two scores, then the accuracy
degrees are calculated by using Eq. 4.
It has been assumed that c(v, x) = (0, 1), if there is no edge joining the node
‘v’ directly to the node ‘x’.

Step3: STOP. The process of finding the nodes with permanent label is repeated
until ‘e’ gets a permanent label.
The above steps do not actually list the shortest path from the starting node
to the terminal node; it only gives the weighted aggregated IFV of the IF
cost of traveling the shortest path giving its degree of acceptance and the
degree of rejection for the shortest path.

Step4: The shortest path can be easily constructed by working backwards from
the terminal node such that one moves to that predecessor from whom the
current node has got its permanent label.

Step5: End
In Step 2 for calculating the IFHG (L(v), c(v, x)), one has to proceed as
follows:
ω j = the weight to be considered as the opinion of the expert regarding
the IF cost c̃ij required for traveling along the arc i − j. The normalized
weight vectors for evaluating IFHG (L(v), c(v, x)) are calculated whenever
required.
Considering the IF values ãp = [

t̃ap , 1 − f̃ap

]
of the p = 1, 2, . . . , q arcs, the

weighted IF values ã·
p, p = 1, 2, . . . , q for the q arcs are calculated using Eq.

7 as
·
ãp =

[
t
qxω̃ jp

ãp
,

(
1 − f̃ap

)qxω̃ jp
]

(12)

Now, by using the ranking method (utilizing the scores S
( ·

ãp

)
by using

Eq. 3) of the IFVs described in Section 2.3, the pth largest of the weighted

IFVs
·
ãp

( ·
ãp = ã

nω̃ jp
p , p = 1, 2, 3, ......, q

)
is identified as

·
ãσ(p). (If there is no

difference between two scores, then it is required to calculate the accuracy

degrees H
( ·

ãp

)
by using Eq. 4. After that the alternatives

·
ãp are ranked

in accordance with the accuracy degrees.) Then using the IFHG operator
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shown in Eq. 10, the weighted aggregated IFV for (L(v), c(v, x)) are derived
in the form of [t j, 1 − f j] and hence the corresponding weighted aggregated
IFN

(
r j

) = (
t j, f j

)
for IFHG (L(v), c(v, x)) are obtained which can be used

for evaluating L(x) using Eq. 11.

4 Numerical Illustration

Example A network has been considered with nodes s, a, b , c, d, e as shown in
Fig. 1. The Intuitionistic Fuzzy Costs for traveling along the respective arcs and their
weights (ω j) decided by experts are given in Table 1. The objective is to find the
shortest path from the node s to the node e so that the total IF cost of traveling
is minimum. Here the given costs are in the form of IFNs c̃ij = (

μij, νij
)
, where μij

represents the degree of acceptance that the arc i − j will be in the shortest path with
respect to the cost for traveling along the arc i − j. Similarly vij represents the degree
of rejection that the arc i − j will be in the shortest path with respect to the cost for
traveling along the arc i − j.

Here ω j = the weight to be considered as the opinion of the expert regarding the
IF cost c̃ij required for traveling along the arc i − j.

The normalized weight vectors for evaluating IFHG (L(v), c(v, x)) are calculated
whenever required.

Solution The proposed algorithm MIFDA described in Section 3.1 of this paper has
been applied for solving this example.

Iteration 1

Step1: At first P = φ, T = {s, a, b , c, d, e}. Let the label of ‘s’ i.e., L(s) = (1, 0)

L(x) = (0, 1)∀x ∈ T and x �= ‘s’.
Then v = s, P = {s}, T = {a, b , c, d, e}

(0.5, 0.2)

(0.4, 0.5) (0.6, 0.2)
(0.5,0.1) (0.4, 0.3)

(0.6, 0.3)
s e

(0.6, 0.2)
(0.7, 0.2) b d (0.7, 02)

(0.6, 0.3)

a c

Fig. 1 Network with IF costs
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Table 1 Data for IF Costs for
traveling along the respective
arcs of the given network

Arcs (i − j) Intuitionistic Fuzzy Costs Weights (ω j)
along these arcs c(i, j)

sa (0.4, 0.5) 0.3
sb (0.7, 0.2) 0.6
bd (0.6, 0.3) 0.6
de (0.7, 0.2) 0.8
ac (0.5, 0.2) 0.5
ce (0.6, 0.2) 0.6
sd (0.6, 0.2) 0.6
ba (0.5, 0.1) 0.4
ad (0.4, 0.3) 0.4
bc (0.6, 0.3) 0.5

Now, the permanent labels of the nodes present in T are evaluated using
Eq. 11.

L (a) = max {old L (a) , IFHG (L (s) , c (s, a))}
or L (a) = max {(0, 1) , IFHG ((1, 0) , (0.4, 0.5))}
or L (a) = max {[0, 1] , IFHG ([1, 1] , [0.4, 0.5])} (13)

Now for finding IFHG ([1, 1], [0.4, 0.5]), the corresponding normalized
weight is given by ω = ( 1

1.3 , 0.3
1.3

) = (0.769, 0.231).

Therefore,
·
ã1 = [

12x0.769, 12x0.769
] = [1, 1],

·
ã2 = [

0.42x0..231, 0.52x0.231
] =

[0.655, 0.726]

S
( ·

ã1

)
= 1 − (1 − 1) = 1, S

( ·
ã2

)
= 0.655 − (1 − 0.726) = 0.381

Hence, S
( ·

ã1

)
> S

( ·
ã2

)

Thus,
·
ãσ(1) = [

1,1
]
,

·
ãσ(2) = [0.655, 0.726],

Now since there are two IFVs for L(v) and c(v, x), taking n = 2, using the
normal distribution based method developed by Xu [53], for determining
the associated weights w = (w1, w2) i.e., by using Eqs. 8 and 9 the following
associated weights for the IFHG operator are obtained:

For n = 2, μn = 1.5, σ 2
n = 0.250, w = (w1, w2) = (0.5, 0.5) . (14)

Then the weighted aggregated IFV for IFHG([1, 1], [0.4, 0.5]) in the form
of

[
t1, 1 − f1

]
and hence the corresponding weighted aggregated IFN r1 =

(t1, f1) derived by using the IFHG operator (Eq. 10) and the weights w =
(w1, w2) = (0.5, 0.5) of Eq. 14 has been deduced as follows:

IFHGω,w (ã1, ã2, ã3) =
⎡

⎣
2∏

j=1

t
w j
·
ãσ( j)

,

2∏

j=1

(

1 − f ·
ãσ( j)

)w j
⎤

⎦

= [
10.5 X0.6550.5, 10.5 X0.7260.5]

= [0.809, 0.852] = [
t1, 1 − f1

]



354 J Math Model Algor (2012) 11:345–359

The corresponding weighted aggregated IFN for IFHG ([1, 1], [0.4, 0.5]) is
given by r1 = (t1, f1) = (0.809, 0.148).
Then from Eq. 13 and using Eqs. 3–6,

L (a) = max {(0, 1) , (0.809, 0.148)} = (0.809, 0.148)

The score of L(a) is given by S(L(a)) = 0.661
Similarly, L (b) = max {old L (b) , IFHG (L (s) , c (s, b))}

or L (b) = max {(0, 1) , IFHG ((1, 0) , (0.7, 0.2))}
or L (b) = max {[0, 0] , IFHG ([1, 1] , [0.7, 0.8])} (15)

Now for finding IFHG ([1, 1], [0.7, 0.8]), the corresponding normalized
weight is given by ω = ( 1

1.6 , 0.6
1.6

) = (0.625, 0.375).

Therefore,
·
ã1 = [

12x0.625, 12x0.625] = [1, 1],
·
ã2 = [

0.72x0..375, 0.82x0.375
] =

[0.765, 0.846]

∴ S
( ·

ã1

)
= 1 − (1 − 1) = 1, S

( ·
ã2

)
= 0.765 − (1 − 0.846) = 0.611

Hence, S
( ·

ã1

)
> S

( ·
ã2

)

Thus,
·
ãσ(1) = [

1,1
]
,

·
ãσ(2) = [0.765, 0.846],

Now since there are two IFVs for L(v) and c(v, x), taking n = 2, using the
normal distribution based method developed by Xu [53], for determining
the associated weights w = (w1, w2) i.e., by using Eqs. 8 and 9 the following
associated weights for the IFHG operator are obtained, which is the same as
in Eq. 14:

For n = 2, μn = 1.5, σ 2
n = 0.250, w = (w1, w2) = (0.5, 0.5).

Then the weighted aggregated IFV for IFHG([1, 1], [0.7, 0.8]) in the form
of

[
t2, 1 − f2

]
and hence the corresponding weighted aggregated IFN r2 =

(t2, f2) derived by using the IFHG operator (Eq. 10) and the weights w =
(w1, w2) = (0.5, 0.5) of Eq. 14 has been deduced as follows:

IFHGω,w(ã1, ã2, ã3) =
⎡

⎣
2∏

j=1

t
w j
·
ãσ( j)

,

2∏

j=1

(

1 − f ·
ãσ( j)

)w j
⎤

⎦

= [
10.5 X0.7650.5, 10.5 X0.8460.5]

= [0.875, 0.920]

= [
t2, 1 − f2

]

The corresponding weighted aggregated IFN for IFHG ([1, 1], [0.7, 0.8]) is
given byr2 = (t2, f2) = (0.875, 0.080).
Then from Eq. 15, L (b) = max {(0, 1) , (0.875, 0.080)} = (0.875, 0.080). The
score of L(b) is given by S(L(b)) = 0.795.
Proceeding similarly, we can get the labels of the other nodes present in T
and their scores. These values are given in Table 2.
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Table 2 Results of Iteration 1

Nodes (x) ω w = (w1, w2) L(x) S(L(x))

a ω =
(

1
1.3 , 0.3

1.3

)
= (0.769, 0.231) (0.5, 0.5) (0.809, 0.148) 0.661

b ω =
(

1
1.6 , 0.6

1.6

)
= (0.625, 0.375) (0.5,0.5) (0.875, 0.080) 0.795

c ω = (1, 0) (0.5, 0.5) (0, 1) −1

d ω =
(

1
1.6 , 0.6

1.6

)
= (0.625, 0.375) (0.5, 0.5) (0.826, 0.080) 0.746

e ω = (1, 0) (0.5, 0.5) (0, 1) −1

The significance of bold entry represent the highest scores and the corresponding node gets the
permanent label in that iteration

Step2: The node ‘b ’ in T is selected which has the highest score value 0.795 of its
label L(b) = (0.875, 0.080). Hence L(b) is the permanent label of ‘b ’. Then
v = b , P = P ∪ {b} and T = T − (b) i.e., P = {s, b} and T = {a, c, d, e}.

Iteration 2

Step1: Then using Eq. 11, the new labels of all the nodes in T are evaluated
proceeding in the same manner. The results are shown in Table 3.

Step2: The node ‘d’ in T is selected which has the highest score value 0.746 of its
label L(d) = (0.826, 0.080). Hence L(d) is the permanent label of ‘d’. Then
v = d, P = P ∪ {d} and T = T − (d) i.e., P = {s, b , d} and T = {a, c, e}.

Iteration 3

Step1: Then using Eq. 11, the new labels of all the nodes in T are evaluated
proceeding in the same manner. The results are shown in Table 4.

Step2: The node ‘a’ in T is selected which has the highest score value 0.661 of its
label L(a) = (0.809, 0.148). Hence L(a) is the permanent label of ‘a’. Then
v = a, P = P ∪ {a} and T = T − (a) i.e., P = {s, b , d, a} and T = {c, e}.

Iteration 4

Step1: Then using Eq. 11, the new labels of all the nodes in T are evaluated
proceeding in the same manner. The results are shown in Table 5.

Step2: The node ‘e’ in T is selected which has the highest score value 0.601 of its
label L(e) = (0.708, 0.185). Hence L(e) is the permanent label of ‘e’ and
v = e.

Table 3 Results of Iteration 2

Nodes (x) ω w= (w1,w2) L(x) S(L(x))

a ω = (0.6, 0.4) (0.5, 0.5) (0.809, 0.148) 0.661

c ω =
(

06
1.1 , 0.5

1.1

)
= (0.545, 0.455) (0.5, 0.5) (0.737, 0.187) 0.550

d ω =
(

0.6
1.2 , 0.6

1.2

)
= (0.5, 0.5) (0.5, 0.5) (0.826, 0.080) 0.746

e ω = (1, 0) (0.5, 0.5) (0, 1) −1

The significance of bold entry represent the highest scores and the corresponding node gets the
permanent label in that iteration
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Table 4 Results of Iteration 3

Nodes (x) ω w= (w1,w2) L(x) S(L(x))

a ω = (1,0) (0.5,0.5) (0.809, 0.148) 0.661

c ω = (1,0) (0.5,0.5) (0.737, 0.187) 0.550

e ω =
(

0.6
1.4 , 0.8

1.4

)
= (0.429, 0.571) (0.5,0.5) (0.751, 0.150) 0.601

The significance of bold entry represent the highest scores and the corresponding node gets the
permanent label in that iteration

Table 5 Results of Iteration 4

Nodes (x) ω w= (w1,w2) L(x) S(L(x))

c ω =
(

0.3
0.8 , 0.5

0.8

)
= (0.375, 0.625) (0.5,0.5) (0.737, 0.187) 0.550

e ω = (1,0) (0.5,0.5) (0.751, 0.150) 0.601

The significance of bold entry represent the highest scores and the corresponding node gets the
permanent label in that iteration

Step3: Since ‘e’ is the terminal node which has got its permanent label, so we
STOP the process here. L(e) = (0.751, 0.150) represents the weighted
aggregated IFV of the minimum-cost path or the shortest path w.r.t. the total
intuitionistic fuzzy cost for traveling through the shortest path.

Step4: The shortest path can be easily constructed by working backwards from the
terminal node ‘e’ such that one moves to that predecessor from whom the
current node has got its permanent label. Moving backwards, the minimum-
cost path or the shortest path comes to be s → d → e.

5 Results and Discussions

The final result can be seen from the Table 5. Here it can be seen that L(e) = (0.751,
0.150) is the weighted aggregated IFN for the path s → d → e having the highest
score of (0.751–0.150) = 0.601 in Iteration 4. This implies that the path s → d → e
is the most preferable path having the degree of acceptance 0.751 and the degree
of rejection 0.150 for the weighted aggregated IF cost of this path. Hence the path
s → d → e is the most preferable path i.e., the minimum-cost path i.e., the shortest
path w.r.t. the total intuitionistic fuzzy cost for traveling through the shortest path.
Thus the discrete uncertain knowledge about the cost of traveling along the arcs
in the form of IFV has been accumulated mathematically by the proposed method
MIFDA resulting into a definite solution which is in terms of IFV and hence in
terms of IFNs. For bigger problems, computer programs can be written for the
proposed methodology. By a modification of the well known Dijkstra’s Algorithm
for incorporating the Intuitionistic Fuzzy arc parameters and applying the IFHG
operator successfully, a new and efficient heuristic algorithm has been proposed
in this paper which can take care of both optimistic and pessimistic opinion of the
decision maker. Two types of weights have been considered in this algorithm. ω is
the opinion of the expert regarding the IF cost c̃ij required for traveling along the
arc i − j which has been again normalized. Also, the associated weights w j > 0 of the
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IFHG operator are evaluated using successfully the Eqs. 8 and 9 where
n∑

j=1
w j = 1.

Uses of these two weights have helped the proposed algorithm to efficiently bring
more accurate results. A numerical example shows the effectiveness of the proposed
method. Since there is no other work on shortest path using Intuitionistic Fuzzy
parameters for the arcs, numerical comparison of this work with other works could
not be done. In future, this work can be extended for multi-criteria shortest path
problem with data in the form of IFNs.

6 Conclusions

SPP is a very important area of study and are applied in various real life problems.
In this paper, a new and innovative methodology has been proposed to solve SPP
in an uncertain environment. In real life situations, precise values of costs or time
or distances related to the arcs of a network may not be available. To incorporate
the uncertainty, fuzzy numbers may be considered to represent the imprecise pa-
rameters. The most general type of fuzzy numbers i.e., IFNs have been considered
here to represent the uncertain costs of traveling through each arc. IFNs represent
both the optimistic and pessimistic opinion of the decision maker. IFHG operator,
which is an important area of IFSs have been applied successfully to develop the
proposed methodology MIFDA. This type of Shortest Path Problems (SPPs) with
IF costs has never been posed or solved earlier to this work in the literature. This
type of real life problem has been solved efficiently using the proposed MIFDA,
applying successfully the different existing theories of IFSs. This signifies the major
contribution of this paper. In future some other methods can be proposed to
solve such problems and the results may be compared. Computer programs can be
developed to implement the proposed methodology for large networks.
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