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Abstract In this paper, a wavelet based methodology is presented for compression
of electrocardiogram (ECG) signal. The methodology employs new wavelet filters
whose coefficients are derived with beta function and its derivatives. A comparative
study of performance of different existing wavelet filters and the Beta wavelet filters
is made in terms of compression ratio (CR), percent root mean square difference
(PRD), mean square error (MSE) and signal-to-noise ratio (SNR). When compared,
the Beta wavelet filters give better compression ratio and also yields good fidelity
parameters as compared to other wavelet filters. The simulation result included
in this paper shows the clearly increased efficacy and performance in the field of
biomedical signal processing.

Keywords Beta wavelet · ECG compression · Huffman encoding

1 Introduction

An electrocardiogram (ECG) is the graphical representation of electrical impulses
due to ionic activity in the cardiac muscles of human heart. It is an important
physiological signal which is exploited to diagnose heart diseases because every
arrhythmia in ECG signals can be relevant to a heart disease [1]. ECG signals are
recorded from patients for both monitoring and diagnostic purposes. Therefore,
the storage of computerized ECG has become necessary. However, the storage has
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limitation which has made ECG signal compression as an important issue of research
in the biomedical signal processing. In addition, the transmission speed of real-time
ECG signal is also enhanced and economical due to ECG signal compression.

An ECG signal contains steep slopes QRS complexes and smoother P and T
waves. It is recorded by applying electrodes to various locations on the body surface
and connecting them to a recording apparatus. There are certain amounts of sample
points in ECG signal which are redundant and replaceable. ECG data compression
is achieved by elimination of such redundant data sample points. During the past
few decades, many schemes for ECG signal compression have been proposed. Most
of them are lossy compression techniques in which the reconstructed signal is not
exact replica of the original input signal. Generally, these techniques are classified in
categories: direct techniques transform and parameter extraction [2–6]. In the direct
scheme, several methods such as the amplitude zone time epoch coding (AZTEC),
and coordinate reduction time encoding system (CORTES), the turning-point (TP)
data reduction algorithm, the scan-along polygonal approximation (SAPA) and
differential pulse code modulation (DPCM) were developed. In these techniques, the
compression is achieved by eliminating redundancy between different ECG samples
in the time domain. They involve simple signal processing and yield minimum
distortion with good compression. A detailed review on these techniques is presented
in [7–12] and the references there in.

In the last two decades, a substantial progress has been made in the field of
data compression. So far, several efficient ECG compression techniques have been
reported in literature such as Linear Predictive Coding (LPC), Waveform coding
and Subband coding. In these techniques, more sophisticated signal processing
techniques are employed. Linear predictive coding is robust tool widely used for
analyzing speech and ECG signal in various aspects such as spectral estimation,
adaptive filtering and data compression. Several efficient methods [13–16] have been
accounted in literature based on linear prediction. While in subband decomposition,
spectral information is divided into a set of signals that can be encoded by using a
variety of techniques. Based on subband decomposition, various techniques [17–19]
have been devised for the ECG signal compression.

In the past, a marked researches have made in the many transformation methods
such as Discrete Cosine Transform (DCT), Fast Fourier Transform (FFT) and
Discrete Wavelet Transform (DWT) which are extensively used in data compression.
Here, compression is achieved by transforming original signal into another domain to
compact much of the signal energy into a small number of transformed coefficients.
In this way, many small valued transform coefficients can be discarded in the hope
of achieving better compression. Various techniques [20–25] have been developed
based on FFT and DCT. The discrete wavelet transform has been emerged as a
powerful tool for analyzing and extracting information from non-stationary signal
such as speech signal and ECG signal due to the time varying nature of these signals.
Non-stationary signals are characterized by numerous abrupt changes, transitory
drifts, and trends. Wavelet has localization feature along with its time-frequency
resolution properties which makes it suitable for analyzing non-stationary signals
such as speech and electrocardiogram (ECG) signals [26]. Recently, several other
methods [27–32] have been developed based on wavelet for compressing ECG signal.
The authors in [33–37] have developed a new orthogonal mother wavelet based on
Beta function as well as its derivatives for image compression.
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In above context, therefore, this paper presents a wavelet based methodology for
ECG signal compression using beta wavelets. The paper is organized as follows.
A brief introduction has been provided in this section on the existing compression
techniques of ECG signal. Section 2 discusses overview of discrete wavelet transform
(DWT), multiresolution analysis and beta wavelet. In Section 3, a compression
methodology based beta wavelet is presented. Finally, a comparison of results
obtained with beta wavelet and other wavelet filters is carried out in Section 4,
followed by concluding remarks in Section 5.

2 Discrete Wavelet Transform and Multiresolution Analysis

The Wavelet Transform has emerged as a powerful mathematical tool in many areas
of science and engineering, more so in the field of data compression. The concept
of wavelets was first introduced by Grossman and Morlet in 1984 to analyze signal
structures of very different scales, in the framework of seismic signals. The basic
principal of wavelet transform is that it decomposes the given signal in too many
functions by using property of translation and dilation of a single prototype function,
called a mother wavelet (ψ(t)), defined as

ψab (t) = |a|−1/2 ψ

(
t − b

a

)
, a, b ∈ R, a �= 0. (1)

When the parameters a and b are restricted to discrete values as a= 2−m, b = n2−m,
then, a new family of discrete wavelets are derived as:

ψmn(t) = 2m/2ψ
(
2mt − n

)
, m, n ∈ Z , (2)

where, the function ψ , the mother wavelet, satisfies
∫
R

ψ(t)dt = 0.

A continuous-time wavelet transform of a signal ( f (t)) is defined as

Wf (b , a) = |a| −1
2

∞∫
−∞

f (t) ψ∗
(

t − b
a

)
dt (3)

where, the asterisk denotes a complex conjugate and multiplication of |a| −1
2 is for

the energy normalization purposes so that the transformed signal will have the same
energy at every scale. Hence, the wavelets have adaptive nature, present a large time
base for analyzing the low frequency components, and have a better time resolution
for analyzing phenomena that are more transitory.

As a and b are continuous over R (over the real number), there is often redundant
in CWT representation of the signal. A more compact representation can be found
with a special case of WT, called the Discrete Wavelet Transform (DWT), where only
the required wavelet coefficients for the reconstruction of x(t) are kept. Substituting
Eq. 3 into Eq. 2, DWT of a signal f (t) is

DWTψ f (m, n) =
∞∫

−∞
f (t) ψ∗

(m.n) (t)dt (4)
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where,

ψm,n(t) = 2−mψ
(
2mt − n

)
(5)

However, for computing Eq. 4, an infinite number of terms are required. Therefore,
to overcome this problem, a new family of basis functions, called scaling functions
(φm,n(t)) was introduced, which are derived just similar to the wavelets:

φm,n(t) = 2−mφ
(
2mt − n

)
(6)

where, (φ(t)) is the mother scaling function. These scaling functions are complemen-
tary basis for wavelet function basis. Due to this, the multiresolution analysis (MRA)
of signal is possible.

MRA means decomposition a signal into different frequency bands. For MRA,
the average and the details features of the signal is found via scalar products
with scaling signals and wavelets. The algorithm of wavelet signal decomposition is
illustrated in Fig. 1.

At each step of DWT decomposition, there are two outputs: scaling coefficients
x j+1(n) and the wavelet coefficients y j+1(n). These coefficients are given as

x j+1(n) =
2n∑

i=1

g (2n − i) x j(n) (7)

and

y j+1(n) =
2n∑

i=1

h (2n − i) x j(n) (8)

where, the original signal is represented by x0(n) and j shows the scaling number.
Here g(n) and h(n) represent the low pass and high pass filters, respectively.
The output of scaling function is input of next level of decomposition, known as
the approximation coefficients. The approximation coefficients are low-pass filter
coefficients, and high-pass filter coefficients are detailed coefficients of any decom-
posed signal. The relation between the low-pass and high-pass filter and the scalar
function and the wavelet can be states as:

φ(t) =
∑

k

h(k)φ (2t − k) (9)

ψ(t) =
∑

k

g(k)ψ (2t − k) (10)

Fig. 1 Filter bank
representation of DWT
decomposition
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These low-pass h(n) and high filters g(n) has mirror image at quadrature frequency,
therefore filters satisfying this condition are known as the Quadrature Mirror Filters
(QMF), commonly used in many engineering signal processing applications [25].

2.1 Beta Function and its Properties

Beta distribution function gives the compact support to continuous wavelet [33]. The
Beta function is defined as [34–36]:

β (x, p, q, x0,x1) =

⎧⎪⎨
⎪⎩

( x − x0

xc − x0

)p( xl − x
xl − xc

)q

if x ∈ [x0, x1]

0 otherwise (11)

where, xc = (px1 + qx0) / (p + q)and also satisfies

β (x0) = β (x1) = 0 and β (xc) = 1 (12)

The derivatives of the Beta function are defined as:

dβ (x)

dx
= px1 + qx0 − (p + q) x

(x − x0) (x1 − x)
β (x) (13)

dβ (x)

dx x=xc

= dβ (x)

dx x=x0

= dβ (x)

dx x=x1

= 0,
p
q

= xc − x0

x1 − xc
(14)

and

d2β (x)

dx2 = β (x) A (x) (15)

where,

A (x)= 1
(x−x0) (x1−x)

[
1

(x1−x)
− 1

(x−x0)
−(p+q) (x+1)+ px1+ px0

]
(16)

The nth derivative of the Beta function is derived as:

ψn (x)= dn

dxn
β (x)=

[
(−1)n n! p

(x−x0)
+ n! q

(x1−x)n+1

]
β(x) + Pn(x) P1 β(x)

+∑
Ci

n

[
(−1)n (n − i)! p

(x − x0)
n+1+i + (n − i)! q

(x1 − x)n+1−i

]
P1(x) β(x) (17)

where, P1(x) = p
x−x0

− q
x1−x .

In addition to these, Beta function also satisfies some other properties such as

(i) Oscillation: The average of Beta function and its derivatives are zero similar to
other wavelet functions. In order to satisfies these conditions, the Beta wavelet
is defined as [34]

ψβ(x) = β (x , p, q, x0, x1) − β (x , p, q, x1, x2) where x0 < x1 < x2. (18)
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Table 1 Filter coefficients
of Beta wavelet

Filter tap Beta 2nd derivative Beta 3rd derivative

1 −0.00000000000107 0.00000000000015
2 0.00000908751724 −0.00000097034562
3 −0.01520588663582 0.00196406188196
4 0.31545681509525 −0.08260135730784
5 0.59802880777005 −0.03659498793811
6 0.18893408149005 0.39544617271356
7 −0.08723905153544 0.54800796970913
8 0.00001614629973 0.18695253117361
9 −0.01317449742417
10 0.00000107753734

∞∫
−∞

ψβ(x) dx = 0,

∞∫
−∞

ψ ′
β(x) dx = 0 and

∞∫
−∞

ψ ′′
β (x) dx = 0. (19)

(ii) Localization with Admissibility Condition: The Beta function and its deriva-
tives are localized as it has compact support (zero outside [x0, x1] ) and also
satisfies the property of wavelet, i.e. admissibility:

∞∫
−∞

∣∣ψ̂β (ω)
∣∣2

|ω| dw < ∞,

∞∫
−∞

∣∣ψ̂ ′
β (ω)

∣∣2

|ω| dw < ∞ and

∞∫
−∞

∣∣ψ̂ ′′
β (ω)

∣∣2

|ω| dw < ∞

(20)
where, ψ ′

β(ω) = d
dω

ψβ(ω) and ψ ′′
β (ω) = d2

dω2 ψβ(ω).
(iii) Scaling and Shifting: In addition to the above two properties, the Beta wavelets

also hold the property of scaling and shifting. The detailed discussion on the
Beta wavelet and its derivative is given in [33–36] and the references therein.

In this paper, a new wavelet family based on Beta function and its derivatives is
exploited for ECG signal compression. Table 1. shown the filter coefficients of Beta
function derivatives and Fig. 2 represents the plot of those derivative filters.
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Fig. 2 Plot of filter coefficients a Beta 2nd Derivative and b Beta 3rd Derivative
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3 Methodology for ECG Signal Compression

In this paper, the beta wavelet filters are used for the ECG signal compression.
For ECG compression, three most commonly used steps are DWT decomposition,
thresholding and Quantization, and Entropy encoding [26–28]. A typical block
diagram of the methodology is depicted in Fig. 3.

Step 1: In this step, the mother wavelet is chosen, and then DWT decomposition
is performed on the ECG signal. Several different criteria can be used for
selecting the optimal wavelet filter. For example, the optimal wavelet filter
must minimize the reconstructed error variance and also maximize signal
to noise ratio (SNR). In general, the mother wavelets are selected based on
the energy conservation properties in the approximation part of the wavelet
coefficients. Then, decomposition level for DWT is selected which usually
depends on the type of signal being analyzed or some suitable criteria such
as entropy. Here, the beta wavelets are used as the mother wavelet and 4
level decomposition of DWT is applied on the ECG signal.

Step 2: After computing the wavelet transform of the ECG signal, compression in-
volves truncating wavelet coefficients below a threshold value which make
a fixed percentage of coefficients equal to zero. Two different approaches
are available for calculating thresholds. The first type is known as Global
Thresholding which involves taking the wavelet decomposition of the signal
and keeping the largest absolute value coefficients. In this, the threshold
value is set manually, this value is chosen from DWT coefficient (0. . . .x j

max),
where x j

max is the maximum value of coefficients. The second approach is
known as Level Thresholding in which the threshold value is calculated
using Birge-Massart strategy [37]. In this paper, global thresholding is ap-
plied. Thereon, the quantization is performed on the truncated coefficients.
In the quantization process, the wavelet coefficients are quantized using
uniform step size which depends on three parameters: maximum (Mmax)
and minimum (Mmin) values in the signal matrix, and the number of

Fig. 3 Methodology for ECG
signal compression
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quantization level (L). Once these parameters are found, then step size (�)
is computed by

� = (Mmax − Mmin) /L (21)

Then the input signal is divided into L + 1 level with equal interval size ranging
from Mmin to Mmax to plot the quantization table. When the quantization is done,
then quantized values are fed to the next stage of compression and these three
parameters defined above are stored in a file as they are required for creating the
quantization table during the reconstruction step. The actual compression is achieved
at this stage. In this paper, 8-bit uniform quantization is employed for the ECG signal
compression.

Step 3: In this step, signal compression is further achieved by efficiently encod-
ing the truncated small-valued coefficients. The quantized data contains
same redundant data which is waste of space. To overcome this problem,
Huffman encoding is used. In this, the probabilities of occurrence of the
symbols in the signal are computed. After that, these are arranged according
to the probabilities of occurrence in descending order and build a binary
tree and codeword table. Form these codeword’s eliminate the redundant
data. Finally, the compressed ECG signal data values are obtained.

4 Results and Discussions

In this section, a wavelet based methodology has been used for the ECG signal com-
pression. Different ECG records have been obtained from MIT-BIH Arrhythmia
Database and the wavelet filters designed with 2nd and 3rd derivative of Beta function
is exploited for ECG signal compression. Several examples are included to illustrate
the effectiveness of the beta wavelet filters in the field of data compression. The
performance of the beta wavelet filters can be evaluated by considering the fidelity
of the reconstructed signal to the original signal. For this, the following fidelity
assessment parameters are considered [8, 38, 39]:

• Compression ratio (CR):

CR = Length of Original Signal
Length of Compressed signal

(22)

• Percent root mean square difference (PRD):

PRD =
(

Reconstructed noise energy
Origional signal energy

)1/2

× 100

=
√∑ [

x(n) − y(n)
]2

∑
x(n)2 × 100 (23)

• Mean square error (MSE):

MSE = 1
2

∑
n

|x(n) − y(n)|2 (24)
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• Signal to noise ratio (SNR):

SNR = 10 log10

{ ∑
x2(n)∑ |x(n) − y(n)|2

}
(25)

Table 2 lists the simulation results obtained with beta wavelet filters (2nd and 3rd

derivatives) at global thresholding (Threshold = 0.15). Figure 4 shows the plot of the
original ECG signals (MIT-BIH Rec.100 M, 69) and its reconstructed version with
beta wavelet filters.

It can be seen from Table 2 that a significant compression ratio is achieved with
the wavelets filters based on beta function. The average compression ratio obtained
with 2nd derivative beta wavelet filter is 4.34%, while in case of 3rd derivative is
4.33% for the single level decomposition. It is also evident that the good fidelity
measures can be achieved with the beta wavelet within acceptable range [8]. The
average PRD obtained with beta wavelet filters is 5.14% in 2nd derivative and 4.70%
in 3rd derivative. PRD in range of 2–10% have been acceptable in practice [8, 38].
Other parameters (MSE and SNR) have also been improved. When beta wavelet
filters (2nd and 3rd derivatives) are compared, the beta wavelet filter based on 3rd

derivative gives better performance in term of compression ratio, while 2nd derivative

Table 2 Fidelity assessment parameters in proposed algorithm with use of Beta wavelet at single
decomposition level

Signal Beta wavelet Original Compressed CR PRD MSE SNR
filter signal length signal length

MIT-BIH 2nd 1014 972 4.17 4.17 1.09 × 10−4 27.51
Rec. 100:
M, 69

MIT-BIH 2nd 1014 963 5.06 3.02 4.13 × 10−4 30.42
Rec. 112:
M, 54

MIT-BIH 2nd 1014 974 3.96 8.79 2.50 × 10−3 21.29
Rec. 117:
M, 69

MIT-BIH 2nd 1014 971 4.18 4.59 3.89 × 10−5 26.80
Rec. 210,
M, 89

MIT-BIH 3rd 1014 972 4.17 3.24 6.65 × 10−5 29.65
Rec. 100:
M, 69

MIT-BIH 3rd 1014 963 5.05 2.81 3.56 × 10−4 31.06
Rec. 112:
M, 54

MIT-BIH 3rd 1014 974 3.96 8.53 2.40 × 10−3 21.53
Rec. 117:
M, 69

MIT-BIH 3rd 1014 972 4.16 4.24 3.34 × 10−5 27.46
Rec. 210:
M, 89
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Reconstructed ECG Signal (MIT-BIH Rec.100 M, 69) using Beta3 Wavelet
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Fig. 4 The original ECG signals (MIT/BIH-100) and its reconstructed version based on the Beta
wavelet with 2nd and 3rd derivative filter

performs better in terms of fidelity measures for higher level of signal decomposition
form Table 3. Therefore, beta wavelet can be effectively used for the ECG signal
compression.

Figures 5 and 6 depict the plots of performance obtained with beta wavelet at
different global thresholding. As it can be observed from the simulation results
included in the figures that the compression ratio (CR) is increased at higher
threshold values, while the quality of reconstructed signal is degraded. Thus, by
choosing appropriate threshold value, good compression ration can be achieved with
preserving all clinical information.

A comparison of the developed wavelet filters with other existing wavelet filters is
carried out and it is graphically illustrated in the Fig. 7. For this, ECG records (MIT-
BIH Rec. 100: M 69) have been taken from MIT-BIH Database and the performance
measures obtained in each wavelet filters using same methodology and at same
threshold value is listed in Table 2. As, it can be seen that the performances of the
beta wavelet filters are significantly improved as compared to earlier known wavelet
filters in terms of all performance measuring parameters for the biomedical signal
compression.

The simulated results compare with the other algorithms or methods [10, 38]
results show the presented results of ECG compression based on Beta wavelet is
better than the others. From the Fig. 4, it’s clearly represented the reconstructed
ECG signal after compression is identical to original signal based on Beta2 and Beta3
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Table 3 A comparison of performance of different wavelet filters with ECG signal (MIT-BIH Rec.
100: M 69) at fourth decomposition level

Wavelet filters CR PRD MSE SNR (dB)

Db8 8.18 11.18 7.15 × 10−4 19.26
Db10 7.94 11.98 8.15 × 10−4 18.69
Coif5 7.64 8.33 4.13 × 10−4 21.71
Sym5 8.53 9.54 5.38 × 10−4 20.57
bior4.4 10.63 18.13 1.70 × 10−3 15.52
Beta2 8.46 8.13 3.88 × 10−4 21.92
Beta3 8.65 8.88 4.69 × 10−4 21.09

The significance of bold data shows the improved performance of Beta wavelet as compared to other
existing wavelets.

Fig. 5 Performance based on
the Beta wavelet filter with 2nd

Derivative

0.01 0.05 0.10 0.15 0.20 0.25 0.30
0

5

10

15

20

25

30
Performance based on Beta2

Threshold value

P
er

fo
rm

an
ce

R
es

ul
t

CR

PRD

SNR

Fig. 6 Performance based on
the Beta wavelet filter with 3rd

Derivative

0.01 0.05 0.10 0.15 0.20 0.25 0.30
0

5

10

15

20

25

30

Threshold value

P
er

fo
rm

an
ce

R
es

ul
t

Performance based on Beta3

CR
PRD
SNR



246 J Math Model Algor (2012) 11:235–248

0.01 0.05 0.10 0.15 0.20 0.25 0.30
4

6

8

10

C
R

Compression Ratio

db8
db10
beta2
beta3

0.01 0.05 0.10 0.15 0.20 0.25 0.30
0

5

10

15

20

PR
D

PRD

0.01 0.05 0.10 0.15 0.20 0.25 0.30
0

0.5

1

1.5
x 10-3

Threshold valueThreshold value

Threshold value Threshold value

M
SE

Mean square error

0.01 0.05 0.10 0.15 0.20 0.25 0.30
15

20

25

30

SN
R

Signal-to-noise ratio

(a)                  (b) 

(c)                (d)

Fig. 7 Comparison of performance of the Beta wavelet filters (2nd and 3rd derivatives) and other
existing wavelet filters. a Compression ratio (CR) b PRD c SNR d MSE

wavelets at the obtained fidelity parameters (PRD, SNR and MSE). Its means the
applying wavelet is optimal for the biomedical signal compression with preserving
signal information.

5 Conclusions

A wavelet based methodology is presented for the ECG signal compression. In this
methodology, beta wavelet filters are exploited for signal compression, which are
derived using beta function and its derivatives. Simulation results included in this
paper clearly show the key advantageous features of the beta wavelet filters over
others in the field of biomedical signal processing. It is found that the beta wavelet
filters yields more compression with preserving all clinical information. All fidelity
measuring parameters are improved. Therefore, it is concluded that it can be very
effectively used in ECG signal compression.
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