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Abstract This paper investigates a production lot-size inventory model for perish-
able items under two levels of trade credit for a retailer to reflect the supply chain
management situation. We assume that the retailer maintains a powerful position and
can obtain full trade credit offered by supplier yet retailer just offers the partial trade
credit to customers. Under these conditions, retailer can obtain the most benefits.
Then, we investigate the retailer’s inventory policy as a cost minimization problem to
determine the retailer’s inventory policy. A rigorous mathematical analysis is used to
prove that the annual total variable cost for the retailer is convex, that is, unique and
global-optimal solution exists. Mathematical theorems are developed to efficiently
determine the optimal ordering policies for the retailer. The results in this paper
generalize some already published results. Finally, numerical examples are given to
illustrate the theorems and obtain a lot of managerial phenomena.

Keywords EPQ · Deteriorating items · Partial trade credit

1 Introduction

Achieving effective coordination among suppliers and retailers has become a per-
tinent research issue in supply chain management. A profitable decision policy
between a supplier and the retailers can be characterized by an agreement on
the trade credit scenario such as permissible delay in payments. The trade credit
financing produces two benefits to the supplier: (1) it should attract new customers
who consider it to be a type of price reduction; and (2) it should cause a reduction
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in sales outstanding, since some established customers will pay more promptly in
order to take advantage of trade credit more frequently. In real life business via
share marketing, trade credit financing becomes a powerful tool to improve sales
and profits in an industry.

In this regard, a number of research papers appeared which deal with the EOQ
problem under the condition of permissible delay in payments. Goyal [1] is the first
person to consider the economic order quantity (EOQ) inventory model under the
condition of trade credit. Shinn et al. [2] extended Goyal’s [1] model and considered
quantity discount for freight cost. Chung [3] presented the DCF (discounted cash
flow) approach for the analysis of the optimal inventory policy in the presence of
trade credit. Teng [4] assumed that the selling price is not equal to the purchasing
price to modify Goyal’s model [1]. Chung and Huang [5] extended this problem
within the economic production quantity (EPQ) framework and developed an
efficient procedure to determine the retailer’s optimal ordering policy.

However, the perishability of goods is a realistic phenomenon. In real-life situ-
ations there are certain products like volatile liquids, medicines, food stuff, blood
bank, materials, etc., in which the rate of deterioration due to vaporization, damage,
spoilage, dryness etc. is very large. Therefore, the loss due to deterioration should not
be ignored. Aggarwal and Jaggi [6] developed inventory model with an exponential
deterioration rate under the condition of permissible delay in payments. Chu et al.
[7] and Chung et al. [8] extended Goyal’s [1] model to allow for deteriorating items.
Chang et al. [9] and Chung and Liao [10] dealt with the problem of determining
the EOQ for exponentially deteriorating items under permissible delay in payments
depending on the ordering quantity. There are several interesting and relevant
papers related to trade credit such as Jamal et al. [11], Arcelus et al. [12], Abad and
Jaggi [13], and their references.

All the above articles assumed that the supplier would offer the retailer a delay
period and the retailer could sell the goods and accumulate revenue and earn interest
within the trade credit period. They implicitly assumed that the customer would pay
for the items as soon as the items are received from the retailer. That is, they assumed
that the supplier would offer the retailer a delay period but the retailer would not
offer any delay period to his/her customer. That is one level of trade credit. In most
business transactions, this assumption is unrealistic. Usually the supplier offers a
credit period to the retailer and the retailer, in turn, passes on this credit period to
his/her customers. Recently, Huang [14] modified this assumption to assume that the
retailer will adopt the trade credit policy to stimulate his/her customer demand to
develop the retailer’s replenishment model. That is two levels of trade credit. This
new viewpoint is more matched to real-life situations in the supply chain model.
Therefore, we want to extend Huang’s model [14] to investigate the situation under
which the retailer has the powerful decision-making right. That is, we want to assume
that the retailer can obtain the full trade credit offered by the supplier and the retailer
just offers the partial trade credit to his/her customer. The path of the trade credit
policy is illustrated in Fig. 1. In practice, this circumstance is very realistic.

The main purpose of this paper is to amend the paper of Huang [14] and Goyal
[1] with a view of making their model more relevant and so applicable to practice.
Here, we are taking into account the following factors: (1) the supplier is willing to
provide the retailer a full trade credit period for payments and the retailer offers the
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Fig. 1 Two-level trade credit
policy with partial trade credit
financing to common
customers

Supplier

Full trade credit period up to time M

Partial trade credit financing up to time 

Retailer

Common Customers

N

partial trade credit period to his/her customers; (2) the replenishment rate is finite;
(3) the selling items are perishable such as fruits, fresh fishes, gasoline, photographic
films, etc. At first, this model shows that there exists a unique optimal cycle time
to minimize the annual total variable cost for the retailer. Then, some theorems are
developed to determine the optimal ordering policies. We deduce some previously
published results of other authors as special cases. Finally, the theorems and the
algorithms are illustrated with the help of numerical examples.

2 Assumptions and Notation

The mathematical model of the inventory system is developed on the basis of the
following assumptions and notation.

(i) Replenishment rate, P, is known and constant.
(ii) Demand rate, D, is known and constant and always P > D.

(iii) Shortage is not allowed.
(iv) Time horizon is infinite.
(v) A constant fraction, θ , assumed to be small, of the on-hand inventory gets

deteriorated per unit time, where 0<θ ≤ 1.
(vi) h: inventory holding cost per item per unit time; A: the replenishment

(ordering) cost per order; c: the unit purchase cost; and s: the unit selling price
of items of good quality, where s ≥ c.

(vii) Ic: the interest charged per $ in stocks per year by the supplier.
(viii) Ie: the interest earned per $per year, where Ic ≥ Ie.

(ix) M: the retailer’s trade credit period offered by supplier in years and N: the
customer’s trade credit period offered by retailer in years. It is assumed that
M ≥ N.

(x) α: the customer’s fraction of the total amount owed payable at the time of
placing an order within the delay period to retailer, where 0 ≤ α ≤ 1.

(xi) T and T∗ denote the cycle time in years and the optimal cycle time respec-
tively and Q∗ = DT∗ is the optimal order quantity.

(xii) The supplier offers the full trade credit to the retailer. When T ≥ M, the
account is settled at T = M, the retailer pays off all units sold and keeps
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his/her profits and the retailer starts paying for the interest charges on the
items in stock with rate Ic. When T < M, the account is settled at time T = M
and the retailer does not pay any interest charge.

(xiii) The retailer just offers the partial trade credit to his/her customer. Hence,
his/her customer must make a partial payment to the retailer when the item is
sold. Then his/her customer must pay off the remaining balance at the end
of the trade credit period offered by the retailer. That is, the retailer can
accumulate interest from his/her customer partial payment on (0,N] and from
the total amount of payment on [N,M] with rate Ie.

3 Model Formulation

A constant production rate starts at t = 0, and continues up to t = t1 where the
inventory level reaches the maximum level. Production then stops at t = t1, and the
inventory gradually depletes to zero at the end of the production cycle t = T due to
deterioration and consumption. Thereafter, during the time interval (0,t1) the system
is subject to the effect of production, demand and deterioration.

The graphical representation of this inventory system is clearly depicted in Fig. 2.
Then, the change in the inventory level can be described by the following differential
equation:

dI1 (t)
dt

+ θ I1 (t) = P − D, 0 ≤ t ≤ t1 (1)

with the initial condition I1(0) = 0.
On the other hand, in the time interval (t1, T), the system is affected by the

combined effect of demand and deterioration. Hence, the change in the inventory
level is governed by the following differential equation:

dI2 (t)
dt

+ θ I2 (t) = −Dt1 ≤ t ≤ T, (2)

with the ending condition I2(T) = 0.
The solution of the differential Eqs. 1 and 2 are respectively represented by

I1 (t) = P − D
θ

(
1 − e−θ t) , 0 ≤ t ≤ t1, (3)

Fig. 2 Graphical
representation of inventory
system

Inventory Level  

T

I1 (t)

I2 (t)
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I2 (t) = D
θ

(
eθ(T−t) − 1

)
, t1 ≤ t ≤ T. (4)

In addition, using the boundary condition I1(t1) = I2(t1), we obtain the following
equations:

(P − D)
(
1 − e−θ t1

) = D
(
eθ(T−t1) − 1

)
, t1 = 1

θ
ln

{
1 + D

P

(
eθT − 1

)}
(5)

4 Determination of Annual Total Cost Function

We now derive the annual total cost function for the retailer. The annual total rele-
vant cost consists of the following elements: ordering cost, holding cost, deterioration
cost, interest payable and interest earned. These components are evaluated as in the
following:

(a) Annual ordering cost = A
T .

(b) Annual stock holding cost (excluding interest charges)

= h
T

⎧
⎨

⎩

t1∫

0

I1 (t) dt +
T∫

t1

I2 (t) dt

⎫
⎬

⎭
(6)

= h
θ2T

(
θ t1 + e−θ t1 − 1

)
.P + h

θ2T

(
eθ(T−t1) − θT − e−θ t1

)
D

Since I1(t1) = I2(t1), which implies Eq. 6 can be rearranged as follows:
Annual stock holding cost

(
excluding interest charges

) = h
θT (Pt1 − DT) .

(c) Annual cost due to deteriorated units = c
T (P t1 − DT).

(d) According to assumption (xii), there are three cases to occur in interest charged
for the items kept in stock per year.

Case 1 T ≥ M (shown in Fig. 3)

Annual interest payable = cIc

T

T∫

M

I2 (t).dt

= cIc D
θ2T

{
eθ(T−M) − θ (T − M) − 1

}
.

Case 2 N ≤ T ≤ M (shown in Fig. 4)

In this case, annual interest payable = 0.
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Fig. 3 Total accumulation of
interest payable when T ≥ M

Inventory Level 

0 t1 M T Time

Case 3 0 < T ≤ N.

Similar as Case 2, annual interest payable = 0.
(e) According to assumption (xiii), three cases will occur in interest earned per

year.

Case 1 T ≥ M (shown in Fig. 5)

Annual interest earned = sIe

T

⎡

⎣
N∫

0

αDtdt +
N∫

N

Dtdt

⎤

⎦

= sIe

2T

[
M2 − (1 − α) N2

]
.

Case 2 N ≤ T ≤ M (shown in Fig. 6)

Annual interest earned = sIe

T

⎡

⎣
N∫

0

αDtdt +
T∫

N

Dtdt + DT (M − T)

⎤

⎦

= sIe D
2T

[
2MT − (1 − α)N2 − T2

]
.

Fig. 4 Total accumulation of
interest payable when T < M

Inventory Level 

0 t1 T M Time
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Fig. 5 Total amount of
interest earned when T ≥ M

Case 3 0 < T ≤ N (shown in Fig. 7)

Annual interest earned = sIe

T

⎡

⎣
T∫

0

αDtdt+αDT (N − T)

+DT (M − N)

⎤

⎦

= sIe D
2T

[
M − (1 − α) N − αT

2

]
.

From the above arguments, the annual total relevant cost for the retailer can be
expressed as TRC(T) = ordering cost + stock-holding cost + deterioration cost +
interest payable-interest earned.

T RC (T) =
⎧
⎨

⎩

T RC1 (T) ; T ≥ M (a)

T RC2 (T) ; N ≤ T ≤ M (b)

T RC1 (T) ; 0 < T ≤ N (c)
(7)

Fig. 6 Total amount of
interest earned when
N ≤ T ≤ M
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Fig. 7 Total amount of
interest earned when
0< T ≤ N

Where

T RC1 (T)= A
T

+ h + θ c
θ T

(P t1 − DT) + cIc D
θ2T

{
eθ(T−M) − θ (T − M) − 1

}

− sIe

2T

[
M2 − (1 − α) N2

]
,

(8)

T RC2 (T) = A
T

+ h + θ c
θ T

(P t1 − DT) − sIe D
2T

[
2MT − (1 − α) N2 − T2

]
, (9)

T RC3 (T) = A
T

+ h + θ c
θ T

(P t1 − DT) − sIe D
2T

[
M − (1 − α) N − αT

2

]
. (10)

Since TRC1(M) = TRC2(N) and TRC2(N) = TRC3(N), TRC(T) is continuous and
well-defined on T > 0. All TRC1(T), TRC2(T) and TRC3(T) are defined on T > 0.

5 Solution Procedure

To find the optimal solution (T∗, Q∗, TRC (T∗)), the following procedure are
consider.

Definition 1 A function f (x) defined on an open interval (a,b) is said to be convex
if for x, y ∈ (a, b) and each λ, 0 ≤ λ ≤ 1, we have f (λx + (1 − λ) y) ≤ λ f (x) +
(1 − λ) f (y).

Intermediate Value Theorem (In Real Analysis) Let g be a continuous function on
the closed interval [a,b ] and let g(a).g(b) < 0. Then there exists a number c ∈ (a, b)

such that g(c) = 0.

Lemma 1 If f (t) is a continuous function on (a,b) and if df
dt is non-decreasing, then

f (t) is convex.
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Proof Given x,y with a < x < y < b , define a function g on [0,1] by g (t) = t f (y) +
(1 − t) f (x) − f (ty + (1 − t) x). Our goal is to show that g is non-negative on [0,1].
Now g is continuous and g(0) = g (1) = 0. Moreover, dg(t)

dt = f (y) − f (x) −
(y − x)

df
dt .

For t + h > t, dg(t+h)

dt − dg(t)
dt = − (y − x)

[
df (t+h)

dt − df (t)
dt

]
. Since df

dt is non decreas-

ing, df (t+h)

dt − df (t)
dt > 0. It implies that dg(t)

dt is non-increasing on [0,1]. Let c be a point
where g assumes its minimum on [0,1] If c = 1, then g (t) ≥ g (1) = 0 on [0,1]. In this
case, g is non-negative. Suppose that c ∈ (a, b). Since g has a local minimum at c, we
have dg(c)

dt ≥ 0. But dg(t)
dt is non-increasing and so dg(t)

dt ≥ 0 on [0,c]. Consequently, g is
non-decreasing on [0,c] and hence g (c) ≤ g (0) = 0, then the minimum of g on [0,1]
is non-negative and so g > 0 on [0,1]. That is f (ty + (1 − t) x) ≤ t f (y) + (1 − t) f (x)

on [0,1]. This implies f (t) is convex. ��

6 Determination of the Optimal Cycle Length

Case 1 T ≥ M.

The first derivative of TRC1(T) with respect to T is dT RC1(T)

dT = f1(T)

T2 , where

f1 (T)= −A + P(h+θ c)
θ

{
T dt1

dT − t1
}

+ cIc D
θ2

{
θ Teθ(T−M) − eθ(T−M) − θ M + 1

}

+ sIe D
2

{
M2 − (1 − α)N2

}
.

(11)

Then both f1(T) and T RC∗
1 (T) have the same sign and domain. The optimal value

of T, say , can be obtained by solving the equation f1 (T) = 0. We also have
df1(T)

dT = P(h+θ c)
θ

T d2t1
dT2 + cIc DTeθ(T−M) > 0, if T > 0. Hence f1(T) is increasing on

(0,∞) and so dT RC1
dT is increasing. From Lemma 1, TRC1(T) is a convex function

on (0,∞). Also lim
T→∞

f1 (T) = ∞ > 0 and f1 (0) = − [
A + sIe D

2

{
(1 − α) N2 − M2

}] +
cIc D
θ2

(
1 − θ M − e−θ M

)
. Since 1 − θ M < e−θ M, so we restrict attention to the condi-

tion A + sIe D
2

{
(1 − α)N2 − M2

}
> 0. Then we have f1(0) < 0. Hence we see that

dT RC1 (T)

dT

⎧
⎨

⎩

< 0;T ∈ (
0, T∗

1

)
, (a)

= 0;T = T∗
1 (b)

> 0;T ∈ (
T∗

1 ,∞)
, (c)

(12)

Provided that f1(0) < 0. Based upon the above arguments, the intermediate value
theorem yields that the optimal solution , not only exists but also is unique.

The similar procedure as described in Case 1 can be applied to the remaining two
cases.

Case 2 N ≤ T ≤ M.

The first derivative of TRC2(T) with respect to Tis dT RC2(T)

dT = f2(T)

T2 , where

f2 (T) = −A + P (h + θ c)
θ

{
T

dt1
dT

− t1

}
+ sIe D

2

{
T2 − (1 − α) N2} . (13)

Then both f2(T) and T RC∗
2 (T) have the same sign and domain. The optimal value

of T, say T∗
2 , can be obtained by solving the equation f2 (T) = 0. We also have
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df2(T)

dT = P(h+θ c)
θ

T d2t1
dT2 + sIe DT > 0, if T > 0. Hence f2(T) is increasing on (0,∞) and

so dT RC2(T)

dT is increasing. From Lemma 1, TRC2(T) is a convex function on (0,∞).

Also lim
T→∞

f2 (T) = ∞ > 0 and f2 (0) = −
[

A + sIe D(1−α)N2

2

]
< 0. Hence we have

dT RC2 (T)

dT

⎧
⎨

⎩

< 0; T ∈ (
0, T∗

2

)
, (a)

= 0; T = T∗
2 (b)

> 0; T ∈ (
T∗

2 ,∞)
, (c)

(14)

Based upon the above arguments, the intermediate value theorem yields that the
optimal solution, T∗

2 , not only exists but also is unique.

Case 3 0 < T ≤ N.

We have dT RC3(T)

dT = f3(T)

T2 , where

f3 (T) = −A + P (h + θ c)
θ

{
T

dt1
dT

− t1

}
+ sIeαD

2
T2. (15)

Then both f3(T) and T RC/

3 (T) have the same sign and domain. The optimal value
of T say T∗

3 , can be obtained by solving the equation f3 (T) = 0. We also have
df3(T)

dT = P(h+θ c)
θ

T d2t1
dT2 + sIeαDT > 0 if T > 0. Hence f3(T) is increasing on (0,∞) and

so dT RC3(T)

dT is increasing. From Lemma 1, TRC3(T) is a convex function on (0,∞).
Also lim

T→∞
f3 (T) = ∞ > 0 and f3 (0) = −A < 0. Hence we see that

dT RC3 (T)

dT

⎧
⎨

⎩

< 0; T ∈ (
0, T∗

3

)
, (a)

= 0; T = T∗
3 (b)

> 0; T ∈ (
T∗

3 ,∞)
, (c)

(16)

Based upon the above arguments, the intermediate value theorem yields that the
optimal solution, T∗

3 , not only exists but also is unique.
Finally, combining the above three cases we have the following Theorem 1.

Theorem 1

(i) If A + sIe D
2

{
(1 − α) N2 − M2

}
> 0, then T∗

1 is the unique optimal solution to the
cost function TRC1(T).

(ii) T RCi (T) (i = 2, 3) has the unique optimal solution T∗
i (i = 2, 3) on the interval

(0,∞).

7 Decision Rule of the Optimal Replenishment Cycle Time

In this section, we develop efficient decision rules to find the optimal cycle time for
the retailer. From the definition of TRC(T), we have

T RC (T) =
⎧
⎨

⎩

T RC1 (T) ; T ≥ M, (a)

T RC2 (T) ; N ≤ T ≤ M (b)

T RC3 (T) ; 0 < T ≤ N, (c)
(17)

Fortunately, at T = M, TRC1(M) = TRC2(M) and at T = N, TRC2(N) = TRC3(N),
then TRC(T) is continuous and well defined on T > 0. Since TRC(T) is continu-
ously differentiable function of T with a derivative that changes sign only once at
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T∗
i (i = 1, 2, 3) from negative to positive, it follows that TRC(T) assumes its global

minimum at the point T∗. However, a closed-form solution is not readily available
from Eq. 17a–c, but by the Intermediate value theorem, we can establish a fairly
straightforward procedure to determine the optimal replenishment time to simplify
the solution procedure. Let T = M and N, we obtain from Eqs. 11, 13 and 15 that

T RC/

1 (M) = T RC/

2 (M) = 1

M2

[
−A + P (h + θ c)

θ

(
T

dt1
dT

− t1

)

T=M

+ sIe D
2

{
M2 − (1 − α) N2}

]
,

T RC/

2 (M) = T RC/

3 (M) = 1

N2

[
−A + P (h + θ c)

θ

(
T

dt1
dT

− t1

)

T=N
+ sIe D

2
αN2

]
.

For convenience, let

�1 = −A + P (h + θ c)
θ

(
T

dt1
dT

− t1

)

T=M
+ sIe D

2

{
M2 − (1 − α) N2

}
, (18)

�2 = −A + P (h + θ c)
θ

(
T

dt1
dT

− t1

)

T=N
+ sIe D

2
αN2. (19)

We have �1 − �2 = P(h+θ c)
θ

[(
T dt1

dT − t1
)

T=M
−

(
T dt1

dT − t1
)

T=N

]
+ sIe D

2

{
M2 − N2

}
.

Using Lemma 2, we shall find that �1 ≥ �2.

Lemma 2

(i) T dt1
dT − t1 > 0 and (ii)

(
T dt1

dT − t1
)

T=M
>

(
T dt1

dT − t1
)

T=N
.

Proof Let h (T) = T dt1
dT − t1, then h/ (T) = T d2t1

dT2 > 0 if T > 0. Hence h(T) is increas-
ing for all T > 0. Consequently, h (T) > h (0) = 0 if T > 0 and also h (M) > h (N)

as M > N. Thus, we have T dt1
dT − t1 > 0 and

(
T dt1

dT − t1
)

T=M
>

(
T dt1

dT − t1
)

T=N
. This

completes the proof. Now, we give the following theorems for the decision rule of
the optimal replenishment cycle time T∗.

(i) Suppose that A + sIe D
2

{
(1 − α) N2 − M2

}
< 0, then we obtain �1 > 0 from

Eq. 18. From 14 and 16, we notice that for i = 2,3

dT RCi (T)

dT

⎧
⎨

⎩

< 0; T ∈ (
0, T∗

i

)
, (a)

= 0; T = T∗
i (b)

> 0; T ∈ (
T∗

i ,∞)
, (c)

(20)

Then we have the following theorem to determine the optimal cycle time.
��

Theorem 2

(a) If �2 ≥ 0, then T RC(T∗) = T RC(T∗
3 ) and T∗ = T∗

3 .
(b) If �2 < 0, then and T∗ = T∗

2 .
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Proof

(a) If �2 ≥ 0, then we have f2(N) = f3(N) ≥ 0; that is T RC/

2(N) = T RC/

3(N) ≥ 0.
Equation 20a–c imply that (i) TRC2(T) is increasing on [N, ∞], (ii) TRC3(T)

is decreasing on (0, T∗
3 ] and increasing on [T∗

3 , N]. Combining (i), (ii) and
Eq. 17a–c, we see that TRC(T) is decreasing on (0, T∗

3 ] and increasing on
[T∗

3 , ∞). Consequently, T∗ = T∗
3 .

(b) If �2 < 0, then we have f2(N) = f3(N) < 0; that is T RC/

2(N) = T RC/

3(N) < 0.
Equation 20a–c imply that (i) TRC2(T) is decreasing on [N, T∗

2 ] and increasing
on [T∗

2 , ∞), (ii) TRC3(T) is decreasing on (0, N]. Combining (i), (ii) and
Eq. 17a–c, we see that TRC(T) is decreasing on (0, T∗

2 ] and increasing on
[T∗

2 , ∞). Consequently, T∗ = T∗
2 . ��

(ii) Suppose that A + sIe D
2

{
(1 − α) N2 − M2

}
> 0, then all T∗

i (i = 1, 2, 3) are
well-defined. From (12), (14) and (16), we notice that for i = 1,2,3.

dT RCi (T)

dT

⎧
⎨

⎩

< 0; T ∈ (
0, T∗

i

)
, (a)

= 0; T = T∗
i (b)

> 0; T ∈ (
T∗

i , ∞)
, (c)

(21)

Then we have the following theorem to determine the optimal cycle time.

Theorem 3

(a) If �1 > 0 and �2 ≥ 0, then T RC(T∗) = T RC(T∗
3 ) and T∗ = T∗

3 .
(b) If �1 > 0 and �2 < 0, then T RC(T∗) = T RC(T∗

2 ) and T∗ = T∗
2 .

(c) If �1 ≤ 0 and �2 < 0, then and T∗ = T∗
1 .

Proof

(a) If �1 >0 and �2 ≥0, then we have f1 (M)= f2 (M)>0 and f2 (N) = f3 (N) ≥ 0;
that is, T RC/

1 (M) = T RC/

2 (M) > 0 and T RC/

2 (N) = T RC/

3 (N) ≥ 0. So T∗
1 <

M, T∗
2 < M, T∗

3 < Nand T∗
2 < N. Equation 21a–c imply that (i) TRC1(T) is

increasing on [M, ∞), (ii) TRC2(T) is increasing on [N,M], (iii) TRC3(T)

is decreasing on (0, T∗
3 ] and increasing on [T∗

3 , N]. Combining (i)–(iii) and
Eq. 17a–c, we see that TRC(T) is decreasing on (0, T∗

3 ] and increasing on
[T∗

3 ,∞). Consequently, T∗ = T∗
3 and T RC (T∗) = T RC

(
T∗

3

)
.

(b) If �1 >0 and �2 <0, then we have f1 (M)= f2 (M)>0 and f2 (N) = f3 (N) < 0;
that is, T RC/

1 (M) = T RC/

2 (M) > 0 and T RC/

2 (N) = T RC/

3 (N) < 0. So T∗
1 <

M, T∗
2 < M, T∗

3 > Nand T∗
2 > N. Equation 21a–c imply that (i) TRC1(T) is

increasing on [M,∞), (ii) TRC2(T) is decreasing on [N, T∗
2 ] and increasing on

[T∗
2 , M], (iii) TRC3(T) is decreasing on [0,N]. Combining (i)–(iii) and Eq. 17a–

c, we see that TRC(T) is decreasing on (0, T∗
2 ] and increasing on [T∗

2 ,∞) .
Consequently, T∗ = T∗

2 and T RC(T∗) = T RC(T∗
2 )

(c) If �1 ≤0 and �2 <0, then we have f1 (M)= f2 (M) ≤ 0and f2 (N) = f3 (N) < 0;
that is, T RC/

1 (M) = T RC/

2 (M) ≤ 0 and T RC/

2 (N) = T RC/

3 (N) < 0. So T∗
1 >

M, T∗
2 > MT∗

3 > Nand T∗
2 > N. Equation 21a–c imply that (i) TRC1(T) is

decreasing on [M, T∗
1 ] and increasing on [T∗

1 ,∞), (ii) TRC2(T) is decreas-
ing on [N,M], (iii) TRC3(T) is decreasing on [0,N]. Combining (i)–(iii) and
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Eq. 17a–c, we see that TRC(T) is decreasing on (0, T∗
1 ] and increasing on

[T∗
1 ,∞). Consequently, T∗ = T∗

1 and T RC(T∗) = T RC(T∗
1 )

Generally speaking, Theorem 2 explains that after computing, we can immediately
determine which one of T∗

1 , T∗
2 or T∗

3 is optimal. ��

8 Special Case

In this section, we obtain some previously published results of other authors as
special cases.

a) Huang’s model [14]

Here, we let θ→0, P → ∞, s = c and α = 0. Applying the above conditions, Eqs. 8–
10 yield that

T RC4 (T) = A
T

+ DTh
2

+ cIc D
2T

(T − M)2 − cIe D
2T

(
M2 − N2

)
,

T RC5 (T) = A
T

+ DTh
2

− cIe D
2T

(
2MT − N2 − T2

)
,

T RC5 (T) = A
T

+ DTh
2

− cIe D (M − N) .

Equation 17a–c will be reduced as follows:

T RC (T) =
⎧
⎨

⎩

T RC4 (T) ; T ≥ M, (a)

T RC5 (T) ; N ≤ T ≤ M (b)

T RC6 (T) ; 0 < T ≤ N, (c)
(22)

Let T∗
4 =

√
2A+cD{M2(Ic−Ie)+N2 Ie}

D(h+cIe)
, T∗

5 =
√

2A+cDN2 Ie
D(h+cIe)

, T∗
6 =

√
2A
D h . Then T RC/

i

(
T∗

i

) =
0 for i = 4,5,6. Equation 22a–c are consistent with Eq. 1a–c in Huang’s model [14],
respectively. Hence, Huang’s model [14] is a special case of this model.

b) Goyal’s model [1]

When θ→0, P → ∞, s = c, N = 0 and α = 0, let
T RC7 (T) = A

T + DTh
2 + cIc D

2T (T − M)2 − cIe DM2

2T , T RC8 (T) = A
T + DTh

2 −
cIe D

(
M − T

2

)
, T∗

7 =
√

2A+cDM2(Ic−Ie)

D(h+cIc)
, T∗

8 =
√

2A
D(h+cIe)

. Then T RC/

i

(
T∗

i

) = 0 for i =
7,8. Equation 17a–c will be reduced as follows:

T RC (T) =
{

T RC7 (T) ; T ≥ M, (a)

T RC8 (T) ; 0 ≤ T ≤ M (b)
(23)

Equation 23a, b will be consistent with Eqs. 1 and 4 in Goyal [1] model, respectively.
Hence, Goyal model [1] will be a special case of this paper.
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9 Numerical Example

The purposes of the numerical analysis are as follows:

1. To obtain the optimal solutions for two cases of the cost functions for the retailer.
2. To use sensitivity analysis to highlight the influence of the parameters associated

with the model.

9.1 Numerical Examples

The following numerical examples are given to illustrate the above solution proce-
dure.

Example 1 Let A = $150/order, D = 250units/year, P = 3000units/year, s = $75/ unit,
c = $50/unit, h = $15/unit/year, Ic = $0.15/$/year, Ie = $0.10/$/year , M = 0.1 year,
N = 0.05 year, θ = 0.05, α = 0.05, then �1 = −92.138 < 0, . These conditions satisfy
Theorem 3(c). Hence solving equation f1(T) = 0 by Newton–Raphson method, we
obtain T∗ = T∗

1 = 0.115, Q∗ = 287.61 and T RC (T∗) = T RC
(
T∗

1

) = 1119.83. The
two dimensional graph of the annual total cost function TRC(T∗) of the retailer
is presented in Fig. 8. The graph reveals that there exists a corresponding optimal
solution T∗ which minimizes the annual total cost for the retailer. Also, Fig. 8 shows
that TRC(T) is strictly convex function of T. As a result, we are sure that the
optimum solution obtained is indeed the global optimum solution for the annual
total cost function for the retailer.

Example 2 Let A = $100/order, D = 2500units/year, P = 4000units/year, s = $75/
unit, c = $50/unit, h = $15/unit/year, Ic = $0.15/$/year, Ie = $0.10/$/year, M =
0.1 year, N = 0.05 year, θ = 0.05, α = 0.05, then �1=53.45 > 0, . These conditions
satisfy Theorem 3(b). Hence solving equation f2(T) = 0 by Newton–Raphson
method, we obtain T∗ = T∗

2 = 0.0834, Q∗ = 208.50 and T RC (T∗) = T RC
(
T∗

2

) =
1056.79. The two dimensional graph of the annual total cost function TRC(T∗) of
the retailer is presented in Fig. 9. The graph reveals that there exists a corresponding
optimal solution T∗ which minimizes the annual total cost for the retailer. Also, Fig. 9

Fig. 8 The optimal annual
total cost for various values
of T
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shows that TRC(T) is strictly convex function of T. As a result, we are sure that the
optimum solution obtained is indeed the global optimum solution for the annual total
cost function for the retailer.

Example 3 Let A = $50/order, D = 2500units/year, P = 4000units/year, s =
$100/ unit, c = $50/unit, h = $15/unit/year, Ic = $0.15/$/year, Ie = $0.10/$/year,
M = 0.1 year, N = 0.08 year, θ = 0.05, α = 0.05, then �1 = 80.96 > 0, �2 =
6.46 > 0. These conditions satisfy Theorem 3(a). Hence solving equation f3(T)=0
by Newton–Raphson method, we obtain T∗ = T∗

3 = 0.0752, Q∗ = 188.12 and
T RC (T∗) = T RC

(
T∗

3

) = 728.57. The two dimensional graph of the annual total cost
function TRC(T∗) of the retailer is presented in Fig. 10. The graph reveals that there
exists a corresponding optimal solution T∗ which minimizes the annual total cost for
the retailer. Also, Fig. 10 shows that TRC(T) is strictly convex function of T. As a
result, we are sure that the optimum solution obtained is indeed the global optimum
solution for the annual total cost function for the retailer.

9.2 Effect of Changing the Inventory Model Parameters

Here, we consider the following example. Let A = $150/order, D = 2500units/year,
P = 3000units/year, s = $75/ unit, c = $50/unit, h = $15/unit/year, Ic = $0.15/$/year,
Ie = $0.10/$/year , M = 0.1 year, N = 0.05 year, θ = 0.05, α = 0.05.

The sensitivity analysis is performed by varying different parameters and is given
in Table 1. It is important to discuss the influence of key model parameters on the
optimal solutions. The effect of changing the parameters is shown in Table 1. Based
on Table 1, we have the following comments.

(a) The larger the value of s, the smaller value of the optimal cycle time, the optimal
order quantity and the smaller the value of the annual total relevant cost. That
is, when the unit selling price is increasing, the retailer will order less quantity
to take the benefits of the trade credit more frequently.

(b) As production rate increases, TRC(T∗) increases; so it is not advisable to
increase the production rate without the prior knowledge about the demands.

Fig. 9 The optimal annual
total cost for various values
of T
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Fig. 10 The optimal annual
total cost for various values
of T

(c) A higher value of the deteriorating rate θ results in lower values for the optimal
cycle time, T∗ and the optimal economic order quantity, Q∗ and a higher value
for the annual total relevant cost, TRC(T∗). It tells us that the retailer will
order less quantity to avoid the items deteriorating when the deterioration rate
θ increases.

(d) The larger the value of N, the larger the value of the optimal cycle time and the
higher the value of the annual total relevant cost. That is, when the customer’s
trade credit period offered by the retailer is increasing, the retailer will order
more quantity to accumulate more interest to compensate the loss of interest
earned when longer trade credit period is offered to his/her customer.

(e) The larger the value of α, the smaller the value of the optimal cycle time T∗,
the smaller value of order quantity Q∗ and the lower the value of the optimal
annual total relevant cost TRC(T∗). That is, when the customer’s fraction of the

Table 1 Sensitivity analysis
for various inventory
parameters

Parameter T* Q* T RC (T*)

S 50 0.127 317.07 1,318.99
75 0.115 287.61 1,119.83

100 0.107 266.97 905.03
125 0.099 246.36 672.37

P 3000 0.115 287.61 1,119.83
3500 0.105 262.54 1,405.76
4000 0.098 244.89 1,566.26
4500 0.094 234.64 1,702.13

θ 0.02 0.116 290.43 1,090.01
0.04 0.115 288.73 1,107.94
0.06 0.115 286.49 1,131.66
0.08 0.114 284.29 1,155.19

N 0.02 0.109 273.71 975.14
0.04 0.112 280.83 1,049.33
0.06 0.118 295.67 1,203.79
0.08 0.135 337.17 1,402.31

α 0.02 0.115 288.19 1,125.93
0.04 0.114 287.92 1,123.08
0.06 0.113 287.41 1,117.79
0.07 0.111 286.72 1,112.14
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total amount owed payable at the time of placing an order offered by the retailer
is increasing, the retailer will order less quantity and increase order frequency.
The retailer can accumulate more interest under higher order frequency and
higher customer’s fraction of the total amount owed payable at the time of
placing an order offered by the retailer.

10 Summary and Conclusion

The results of this paper not only provide a valuable reference for decision-makers
in planning and controlling the inventory but also provide a useful model for many
organizations that use the decision rule to improve their total operation cost. In
this paper, we formulated a production lot-size inventory model for deteriorating
items that investigates retailer’s decision making right in a supply chain under some
realistic features. First, the supplier is willing to provide the retailer a full trade
credit period for payments and the retailer offers the partial trade credit period to
his/her customers Second, the replenishment rate is finite. Lastly, the selling items
are perishable such as fruits, fresh fishes, gasoline, photographic films, etc. These
assumptions are consistent with economic senses. We develop some effective and
easy-to-use theorems to help the decision maker to find the optimal replenishment
policy. Theorems 1, 2 and 3 give the decision rules of the optimal ordering policy for
the retailer. Then we deduce Haung’s model [14] and Goyal’s model [1] as particular
cases of this paper. Numerical examples are given to illustrate all effective theorems
and obtained a lot of managerial insights.

A future study will further incorporate the proposed model into more realistic as-
sumptions, such as probabilistic demand, allowable shortages, or quantity discounts.

Acknowledgements The author is grateful to the editor and the anonymous referees for their
helpful comments and suggestions on improving this paper.
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