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Abstract A matheuristic approach, where concepts from linear programming are in-
tegrated into an evolutionary algorithm, is proposed. It is tested on a problem arising
in wireless sensor networks: a topology with minimum total power expenditure, that
connects a source node to all the other nodes of the network, has to be identified.
Experimental results are presented.
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1 Introduction

Quantum computing was proposed in the early 1980s by Feynman and Benioff in
order to gain more computational power over classical computers (Kaye et al. [13]).
There has also been associated work in another direction in which certain principles
of quantum mechanics serve as an inspiration for the design of novel evolutionary al-
gorithms combined with computational intelligence (Han and Kim [11, 12], Mahdabi
et al. [18, 19]). Using quantum computation concepts to improve the performance
of the evolutionary algorithms on the digital computers led to the development of
Quantum inspired Evolutionary Algorithms (QEAs). In Han and Kim [11] a QEA
approach for solving optimization problems is proposed. This is the best known
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application of quantum-inspired concepts in evolutionary computing. QEA is based
on the concepts and principles of quantum computing such as quantum bits, linear
superposition of states, and quantum gates. It proposes the potential for using a
quantum representation instead of traditional representations (binary, numeric, or
symbolic) in an evolutionary algorithm.

The aim of the present paper is to show how concepts coming from linear
programming can be integrated into the QEA framework, leading to effective algo-
rithms. A problem arising in wireless sensor networks is considered to illustrate the
procedure.

Wireless sensor networks are composed of a set of devices that communicate
without using any permanently installed infrastructure by transmitting radio sig-
nals. The devices, called also nodes of the network, generally use omni-directional
antennae and their transmission range is determined by the power they employ in
the transmission of the messages. A device communicates directly with all the other
devices which are located within its transmission range, but it can also reach terminals
located out of its range using a multi-hop communication that simply consists of
making use of intermediate devices, called routers, that relay the data packets.
The devices, thus, are not only responsible for sending and receiving their own
data, but they possibly forward the traffic of other terminals (see e.g. Oliveira and
Pardalos [25]).

Since the very beginning of research in the area of wireless sensor networks, one
of the major issues has been saving power. Such an high attention for this factor is
easy to identify: the nodes of the network are typically equipped with low capacity,
tiny batteries, and they have to stay alive in the longest possible time horizon in
an environment which is usually characterized by reduced accessibility. Wireless
sensor networks are typically used in commanding actuators, monitoring events or
measuring values at locations difficult to be reached by people, or where a long
term sensing task is required. A tight management of the power budget is imposed
by all these factors. Examples of applications are habitat monitoring (Mainwaring
et al. [20]), civil structural monitoring (Kim et al. [14]) and environmental monitoring
(Doolin and Sitar [9]). Nodes can usually be characterized as low cost devices, and
are expected to be deployed in a potentially inaccessible area. Recharging the sensors
after the deployment might therefore not be an option, both for logistic and econom-
ical reasons. In this context, energy-efficiency becomes perhaps the most important
design criteria for sensor networks, since it directly impacts on the time the network
itself is kept in operation. Many sensor networking applications are intrinsically
about dissemination of information from a well-identified source node to all the
other nodes of the network, called destinations.

The total power consumption of a network is the sum of the powers assigned to
all devices and thus the Minimum Power Broadcast (MPB) problem consists in min-
imizing this sum subject to the constraint that messages originated from the source
are received by all the destinations.

The MPB problem is NP-hard (Cagalj et al. [4]) and has attracted a wide attention
in the scientific literature. In Wieselthier et al. [30] (see also Wieselthier et al. [31]) it
is first observed that the so called “node based” approach is more suitable for wireless
environment than the previously adopted “link-based” algorithms. They developed
the Broadcast Incremental Power (BIP) algorithm, which is a simple sub-optimal
heuristic for constructing minimum power broadcast trees in wireless networks. In
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this algorithm, new nodes are added to the tree on a minimum incremental cost
basis, until all intended destination nodes are included. Other techniques that have
been suggested for solving this problem include an internal nodes based broadcasting
produce (Stojmenovic et al. [29]), a localized algorithm (Cartigny et al. [5]), a cluster-
merge method (Das et al. [7]) and a swarm based procedure (Das et al. [6]). Some
refinement heuristic approaches, able to improve solutions provided by other meth-
ods, were presented in Das et al. [8]. A simulated annealing procedure was finally
proposed in Montemanni et al. [23], where the new method is shown to outperform
the previous approaches. Other contributions for variants of the MPB problem are
in Althaus et al. [1], Altinkemer et al. [2], Montemanni and Gambardella [22],
Montemanni et al. [24] and Yuan [32]. Specific studies for the MPB problem have
been carried out in Guo and Yang [10], where a flow-based formulation expressed
in terms of a mixed integer program has been proposed. In Leggieri et al. [16] (see
also Leggieri [15]) a variant of the MPB problem has been expressed in terms of a
set covering model and in Bauer et al. [3] a multi-commodity flow model and cut-
based models have been considered. These methods are able to solve to optimality
broadcasting problems with up to 30/40 nodes in one hour (on a modern computer).
A further mixed integer programming model, the relaxation of which is used to
produce lower bounds, is discussed together with some heuristic algorithms in Yuan
et al. [33].

The rest of the paper is organized as follows. In Section 2 the MPB problem is
formally defined. Section 3 describes a mixed integer linear programming formula-
tion, that will be then exploited within the novel evolutionary algorithm presented in
Section 4. Computational experiments are discussed in Section 5, while conclusions
are drawn in Section 6.

2 Problem Definition

A static wireless sensor network can be modeled in terms of a graph, by considering
the devices as nodes and the transmission links as arcs. Let G(V, A) be a directed
graph, where V represents the set of the devices and A the set of directed arcs which
connect all the possible pairs (i, j), with i, j ∈ V. Notice that A also contains loops
(i, i). A cost Pij is associated with each arc (i, j): Pij represents the minimum amount
of power that has to be assigned to node i in order to establish a direct connection
with node j. Following a simple signal propagation model proposed in Rappaport
[27], this value is proportional to the power of the distance dij with an environment-
dependent exponent γ whose value belongs to the interval [2,5]. Therefore, in the
sequel Pij := (dij)

γ . We however observe that all the presented results remain valid
also when more complex signal propagation models are considered.

We select a node s to be the source of the communication. The remaining nodes
are the so called destination nodes, which have to receive the messages periodically
generated in s. The nodes belonging to V \ {s} may act as routers or just being
reached by the message without propagating it.

Our purpose is to optimally allocate transmission powers to the nodes in such a
way that a connected topology emerges. It guarantees that the messages broadcasted
by the source node are reception by all the other nodes. Thus, for solving the MPB
problem we define a range assignment function ρ, which assigns to each node i ∈ V a
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Fig. 1 The Wireless Multicast
Advantage. Power
requirements are taken
proportional to the distances
between nodes in this example

transmitting power ρ(i). We aim at minimizing the amount
∑

i∈V ρ(i) while fulfilling
the constraint that the topology implied by the range assignment function ρ connects
the source to all the other nodes. Notice that in any efficient solution, ρ(i) must be
either zero or equal to Pij for some j (i.e., either node i does not transmit or uses
exactly the amount of power necessary to reach a target node j).

Since nodes are equipped with omni-directional antennae, any signal transmitted
by a node i ∈ V to a node j ∈ V is also received by all the nodes that are in the
transmission range of i i.e., if ρ(i) = Pij then every node k ∈ V such that Pik ≤ Pij

receives the signal. This is the so-called Wireless Multicast Advantage (WMA)
property (Wieselthier et al. [30]) and is summarized in the example of Fig. 1, where
nodes k and l are both reached when node i is transmitting to node j. Notice that
power requirements are proportional to the distances between nodes in the example.
However, the WMA property holds also when more complex signal propagation
models, with power requirements not proportional to distances, are adopted.

Notice that both the model and the approach we propose work also for problems
sharing the same structure, but with a different objective function. For example, it is
straightforward to adapt the model and the algorithm described in the remainder of
this paper to the problem where information has to be sent from some nodes of the
network to a unique destination node (data gathering instead of data dissemination),
or to the problem where the objective is min maxi∈V ρ(i) (see Montemanni [21]). The
choice of focusing the problem described in the beginning of the section is motivated
by the previous literature.

3 A Mixed Integer Linear Programming Formulation

We can define for each i ∈ V, vi as the array whose components are the nodes of the
network ordered in non-decreasing order of power requirement, for a transmission
from node i (see Montemanni and Gambardella [22] and Leggieri [15]). In other
words, if j and l are two indices in {1, 2, . . . , |V|}, with j ≤ l, then vi

j and vi
l are

two nodes in V whose power requirements from i are related by Pivi
j
≤ Pivi

l
. Note

that vi
1 = i, with Pivi

1
= 0, by definition. We refer to vi as the power levels array for

node i. We also define pij = Pivi
j
∀i ∈ V,∀ j ∈ {1, 2, . . . , |V|}. The introduction of pijs



J Math Model Algor (2011) 10:145–162 149

is necessary to have a representation of the problem suitable for the evolutionary
algorithm. Notice that two consecutive power levels of a node i can share the same
power requirements, i.e. Pivi

j
= Pivi

j+1
. In this case the order of vi

j and vi
j+1 is arbitrary

chosen.
The basic idea of the formulation that we adopt for the MPB problem is that

each connecting structure must contain an arborescence, which is represented in our
case through a network flow model (see Magnanti and Wolsey [17]). One unit of
flow is sent from node s (the root of the arborescence) to each of the remaining
|V| − 1 nodes of the network. The variable 0 ≤ yij ≤ |V| − 1 (with i �= j) represents
the flow on arc (i, j) connecting nodes i and j. Variables y will model the arborescence
that guarantees connectivity for the topology emerging from the power assignments.
Binary xij variables regulate transmission powers:

xij :=
{

1 if ρ(i) = pij

0 otherwise.
∀i ∈ V,∀ j ∈ {1, 2, . . . , |V|}

that is, xij = 1 if the node i is assigned its j-th power level, i.e. it transmits to a power
such that it reaches node vi

j exacly. The following mixed integer linear programming
formulation arises (see Montemanni et al. [23]):

(F) min
∑

i∈V

|V|∑

j=1

pijxij (1)

s.t.
|V|∑

j=1

xij = 1 ∀i ∈ V (2)

(|V| − 1)

|V|∑

k=l:vi
l = j

xik ≥ yij ∀i, j ∈ V (3)

|V|∑

j=1

y ji −
|V|∑

j=1

yij =
{

|V| − 1 if i = s

1 otherwise
∀i ∈ V (4)

0 ≤ yij ≤ |V| − 1 ∀(i, j) ∈ A (5)

xij ∈ {0, 1} ∀i ∈ V,∀ j ∈ {1, 2, . . . , |V|} (6)

Constraints (2) state that each node has to transmit at exactly one transmission
level (level 1 corresponds to power 0). Constraints (3) connect flow variables y
with power variables x (the WMA property appears here). Equations 4 define the
flow problem to define the arborescence, while Eqs. 5 and 6 are domain definition
constraints.

In the context of the work presented in this paper, we are interested in the linear
relaxation of formulation F, which will be referred to as FLR. It is obtained by
changing constraints (6) with the following ones:

0 ≤ xij ≤ 1 ∀i ∈ V,∀ j ∈ {1, 2, . . . , |V|} (7)
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The optimal solution of the linear relaxation FLR not only guarantees a lower
bound for the cost of the original problem, but also provides potentially useful infor-
mation about promising network topologies that will be exploited by the evolution-
ary algorithm described in Section 4.

It is worth to observe that formulations with tighter linear relaxations, but with
longer solution times (see Leggieri [15]) could have been adopted instead of F. How-
ever, in the evolutionary framework we will propose in Section 4, the linear relax-
ation of the formulation has to be repeatedly solved with different cost coefficients,
and therefore a trade-off had to be made between quality of the linear relaxation
and the solution time.

4 A Linear Programming-based Evolutionary Algorithm

The algorithm we propose, the Linear Programming Evolutionary Algorithm
(LPEA) works by embedding principles from mathematical programming (in the
case of the MPB problem from the linear formulation FLR described in Section 3)
into a framework inspired by Quantum inspired Evolutionary Algorithms. The
resulting method is an evolutionary algorithm where operators are based on linear
programming. For this reason we will first introduce the main principles of QEAs,
then we will describe how operators from mathematical programming can be used
within a QEA-like algorithm to obtain the LPEA algorithm we propose for the MPB
problem.

4.1 Quantum Inspired Evolutionary Algorithms

Quantum inspired Evolutionary Algorithms are based on the concepts and principles
of quantum computing such as quantum bits, linear superposition of states, and quan-
tum gates (see Han and Kim [11]). The method belongs to the class of Estimation
Distribution Algorithms (EDAs, see Platel et al. [26]). A pseudo-code of QEAs is
provided in Fig. 2. The elements of the algorithm appearing in the pseudo-code will
be briefly summarized in the next sections.

4.1.1 Representation of the Problem

A Q-bit is defined as the smallest unit of information which may be in the “1” state,
in the “0” state, or in a linear superposition of the two. With some approximations,
and according to our purposes, a Q-bit can be defined as the probability β that the
bit associated is “1”.1 The probability for “0” will be therefore 1 − β.

A Q-bit individual is defined as a string of Q-bits, and represents the solutions of
the combinatorial optimization problem under investigation. The Q-bit representa-
tion enables a Q-bit individual to probabilistically represent a linear superposition
of states (binary solutions). Indeed, each Q-bit individual can be viewed as a distri-
bution of promising solutions in the search space. In order to make the evaluation

1Note that in the original Quantum Inspired framework the probability of “1” is given by the square
of β. The simplified notation we use is functional to our purposes.
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Fig. 2 A pseudo-code for QEAs

phase possible, each Q-bit individual will be evaluated to form binary solutions
(see Section 4.1.3). A Q-bit individual provides therefore the representation of a
combinatorial optimization problem within a QEA.

4.1.2 Initialization Operator

Before starting the evolutionary phase of the algorithm, the population of Q-bit
individuals has to be initialized. Random values, equally likely values or values
coming from solutions obtained by fast-heuristics are usually adopted.

4.1.3 Evaluation Operator

In order to derive a solution of the original problem from a Q-bit individual, it is
necessary to transform each Q-bit into a binary value. This is usually done according
to the probabilities associated with each Q-bit. The cost of the solutions so obtained
is typically used to evaluate the quality of a Q-bit individual.

4.1.4 Evolutionary Operator

An evolutionary operator has to be defined to evolve the values of the Q-bits. The
rationale behind the evolutionary operator is that we would like Q-bits (and Q-
bit individuals with them) to evolve towards the bitwise representation of the best
solution b retrieved so far.

4.2 The LPEA for the MPB Problem

The idea behind the Linear Programming Evolutionary Algorithm is that the solu-
tion of the linear relaxation of a mixed integer linear programming formulation (FLR

in our case) typically provides useful information about the characteristics of the
optimal solution of the integer problem (F in our case). In our approach we will try
to exploit the information provided by the linear relaxation within an evolutionary
algorithm.
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4.2.1 Representation of the Problem

A parallel between x variables of the linear program FLR and Q-bits βk, associated
with individual k of the population, is introduced. Given the kth Q-bit individual of
the population, its Q-bit βk

ij will be “1” if node i transmits at its jth power level, i.e. it
reaches node vi

j exactly. With reference to the formulation discussed in Section 3, we
formally have:

βk
ij = xij (8)

Moreover, since Q-bits βk
ij correspond to xij variables, and thanks to constraints (2),

βk
ij values can be regarded as probabilities for a given individual k.

The evolving population is composed of NIND Q-bit individuals. The tuning of
parameter NIND will be analysed in Section 5.1.

4.2.2 Initialization Operator

The population of Q-bits individuals is initialized as follows.
One third of the individuals has the Q-bits initialized to the values of x variables

in the optimal solution of FLR, according to Eq. 8. One third of the individuals is
initialized at random values such that

∑|V|
j=1 βk

ij = 1 for each i ∈ V. One third of the
individuals is finally initialized in such a way that probabilities are evenly spread for
each node over the possible power levels: βk

ij = 1
|V| ∀i ∈ V, j ∈ {1, 2, . . . , |V|}.

The aim of the initialization phase we propose is to have the population starting
from different positions in the search space, with an emphasis to the most promising
region, which is likely to be represented by the optimal solution of the linear program
FLR. Notice that during the very first iteration (before the evolutionary algorithm is
applied for the first time) the individuals initialized at random or uniformly do not
necessarily correspond to feasible solutions of FLR.

Some computational experiments reported in Section 5.2 will support the initial-
ization strategy adopted.

4.2.3 Evaluation Operator

The probabilities defined by βk
ijs are used to generate heuristic solutions starting

from Q-bit individuals. The procedure is based on a probabilistic modification of the
Broadcast Incremental Power (BIP) constructive algorithm originally described in
Wieselthier et al. [30]. Notice that in our case a probabilistic framework is desirable
in order to generate different evaluations starting from a same Q-bit individual.

Each time the evaluation operator is run, some artificial power requirements, that
will be used by the probabilistic BIP method and are based on the values of βk

ijs are
created as follows:

pij :=
{

0 if i = 1

pi( j−1) + (1 − βk
ij)(pij − pi( j−1)) otherwise

∀i ∈ V,

∀ j ∈ {1, 2, . . . , |V|} (9)

We perturb (sometimes heavily) the power requirements according to the prob-
abilities (Q-bits) associated with the Q-bit individuals. For example, if βk

ij → 1 for
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some i, j, the corresponding power level pij will be squeezed towards the previous
(original) power level pi( j−1). An example of application of the evaluation operator
is presented in Fig. 3. Notice that the rankings of power levels are still fulfilled:
pij ≤ pi( j+1) ∀i ∈ V,∀ j ∈ {1, 2, . . . , |V| − 1}.

The artificial power requirements pij defined in (9) are used within the following
probabilistic BIP-like construction heuristics, to evaluate a Q-bit individual. An
evolving set R, that contains nodes that are connected to s in the structure under
construction, is defined. In the beginning we set R := {s}, and we will stop when
R = V. We also initialize the current power Pow(i) of each node i at 0. At each
iteration, all possible extensions of the current partial solution Sol (which is empty in
the beginning) are considered, and a new arc (î, ĵ), with î ∈ R and ĵ ∈ V\R is selected
according to a Monte Carlo sampling technique (Robert and Casella [28]), where
probabilities are obtained by normalizing at 1 the sum of the following values:

eij := 1

pil − Pow(i) + 1
∀i ∈ R, j ∈ V\R : vi

l = j (10)

Observe that the definition of eij is based on the artificial power requirements, in turn
defined by βk

ij values. The selected arc is inserted into the partial solution Sol. All the
nodes in V\R which are covered (thanks to the Wireless Multicast Advantage) by
the newly selected arc are inserted into R and the power of the node î is updated
to pî ĵ.

A pseudo-code for the probabilistic BIP procedure is provided in Fig. 4.
After each run of the probabilistic BIP procedure, the Sweep local search

(Wieselthier et al. [30]) is executed on the solution obtained, in order to bring it down
to a local optimum. The sweep post-optimization procedure iteratively examine
nodes and reduce their transmission power by one level in case this does not discon-
nect the topology. The choice of running the Sweep local search so often, which might
appear time-consuming, is important in the economy of the algorithm we propose,
as suggested by the experimental analysis reported in Section 5.3. This conclusion
is also intuitively supported by the observation that the Sweep procedure is ex-
tremely fast in practice.

At each iteration the evaluation operator is run NOBS times for each Q-bit
individuals, and the best among the heuristic solutions obtained is selected as the
evaluation of the the Q-bit individual (see Mahdabi et al. [19]). A discussion about
the tuning of parameter NOBS will be discussed in Section 5.1.

Fig. 3 Evaluation operator. The artificial power requirement pij is created by adjusting the original
power requirement pij according to the Q-bit βk

ij : large values of βk
ij correspond to lower values

for pij
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Fig. 4 A pseudo-code of the probabilistic BIP procedure

4.2.4 Evolutionary Operator

The linear formulation FLR is at the basis of the evolutionary operator we propose.
Given a Q-bit individual k, for each node i we define the desired new power level
through the weighted average of βk

ij Q-bits as follows:

Wk
i :=

n∑

j=1

j · βk
ij +

⎛

⎝besti −
n∑

j=1

j · βk
ij

⎞

⎠ (� + Rand(−� · 0.1;� · 0.1)) (11)

where besti is the power level assigned to node i in the best solution retrieved so
far, � is a Q-bit evolutionary parameter that needs to be tuned (see Section 5.1).
Rand(A, B) is finally a function returning a random number in [A, B]. The range
adopted for random numbers was found experimentally, and is used to introduce
noise into the evolutionary framework. In the sum in the right hand side of Eq. 11,
each power level j of node i is weighted by its respective Q-bit βk

ij . The sum itself
returns the average power level for node i, according to the weights represented by
the Q-bits. An example of calculation of the desired value Wk

i is provided in Fig. 5.
Wk

i represents the target value for node i in the evolutionary phase of Q-bit
individual k. It is used to modify the objective functions (1) of FLR as follows:

min
∑

i∈V

|V|∑

j=1

(
pij

∣
∣Wk

i − j
∣
∣
)

xij (12)

The costs are modified in such a way that the desired power levels Wk
i s are most likely

to be selected, while the other power levels are less and less attractive, proportionally

Fig. 5 Evolutionary operator. The desired power level Wk
i is obtained by moving the current average

power level from
∑n

j=1 j · βk
ij towards besti by a factor given by � + Rand(−� · 0.1;� · 0.1)
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to the distance from the wanted power levels. The power levels corresponding to
�Wk

i 	 and 
Wk
i � will typically have the cost coefficient reduced in Eq. 12, since the

absolute value will be below one. The remaining power levels will have the cost
coefficient increased, proportionally to the distance of their index from the desired
value Wk

i .
Notice that solving FLR will not necessarily take the desired power level Wk

i for
each node, but will produce a solution in which the power level stick as much as
possible to this desired values, while generating a “feasible” solution, according to
the (relaxed) problem constraints.

A variation of FLR is therefore solved for each Q-bit individual k, and the solution
of the linear program provides the new value βk

ij for each Q-bit. The choice of using
the linear formulation FLR for evolutionary purposes is also supported by some
experimental evidences that will be presented in Section 5.2.

4.2.5 Further Parameters

The LPEA procedure is interrupted after NIT consecutive iterations without any
improvement to the best known solution. We also adopt a multi-start approach:
the LPEA procedure is repeated (each time after a new initialization), but always
keeping the best solution retrieved so far, which is used by the evolutionary operator
(see Section 4.2.4). This helps to differentiate the search. The algorithm stops when
a maximum computation time allowed is elapsed.

5 Computational Results

The LPEA has been tested on networks with 10, 15, 20, 25, 30, 40, 50, 75 and 100
nodes. In each case, 50 networks have been randomly generated on a 5 × 5 grid2

with the signal propagation parameter γ set to 2 and the total power requirements of
the structures retrieved by each algorithm are averaged to obtain what we will refer
to as the mean tree power in the remainder of the section.

The algorithms have been coded in ANSI C, IBM ILOG CPLEX3 12.1 has been
used to solve linear programs. All the tests reported were carried out on a computer
equipped with an Intel Core 2 Duo 2.40 GHz processor and 4 GB of memory.

The termination criterion for the LPEA algorithm adopted in this study is a
maximum computation time which depends on the number of nodes considered,
as reported in Fig. 1. These computation times are the same required by the SA
algorithm described in Montemanni et al. [23], here used as a reference algorithm
for comparison purposes. As explained in Section 4.2.5, for the LPEA we will adopt
a multi-start mechanism for the allowed computation time (Table 1). Notice that pre-
liminary experiments suggested that the longer computation times (in the same order
of magnitude) would not lead to improvements both for the SA and for the LPEA
approaches.

2The instances can be obtained upon request to the corresponding author.
3http://www.cplex.com

http://www.cplex.com
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Table 1 Maximum computation times allowed

|V| 10 15 20 25 30 40 50 75 100
Max time (sec) 2 3 4 5 6 7 9 11 14

5.1 Parameters Tuning

We take the following settings as reference values for the parameters of the LPEA
algorithm (see Section 4.2): NIND = 6, NOBS = 3, NIT = 10, � = 0.5. We will modify
some of these values to see the reaction of the algorithm itself. Parameter NIND, reg-
ulating the number of individuals of the population, is not considered in the analysis
because preliminary tests suggested that it is not crucial: its role can be compensated
by operating on the remaining parameters.

The first parameters analyzed are NOBS, regulating the number of observation
carried out for each individual during each iteration (Section 4.2.3), and NIT, model-
ing the number of iterations of each restart of the LPEA procedure (Section 4.2.5).
These parameters were considered together in order to maintain the execution time
of each run of the algorithm comparable with that of the reference settings, leading
therefore to a fair comparison. We consider a configuration with NOBS = 5 and
NIT = 6 and another with NOBS = 10 and NIT = 3, and we compare the mean tree
powers obtained with those of the reference settings. The results obtained are sum-
marized in Fig. 6, from which it emerges that the reference configuration is the most
promising one for these parameters (lower mean tree power for all the network sizes
considered).
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Fig. 6 Tuning for NOBS and NIT. Mean tree powers (averages over 50 networks)
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A second set of experiments concerned parameter �, regulating the Q-bit evo-
lution speed during the evolutionary phase (see Section 4.2.4). A configuration
with � = 0.2 and one with � = 0.8 where considered together with the standard
one (� = 0.5). The results are plotted in Fig. 7. Also in this case, the standard
configuration clearly emerges as the most promising one.

5.2 Role of the Linear Program FLR

The aim of this section is to show that the linear relaxation FLR has a clear role
in the results obtained by the LPEA approach. For this purpose, we consider some
variants of the LPEA method. In the variant No LR init the linear program FLR is
not used during the initialization phase: the first lot of individuals is not anymore
initialized to the solution of FLR, but half of it is initialized like the second lot of
individuals, and half like the third one (Section 4.2.2). In the variant BIP init the
first set of individuals ( 1

3 ) is initialized to the solution provided by the BIP heuristic
(see Wieselthier et al. [30]) instead of to the solution of the linear relaxation FLR.
This should help to understand if the information brought by the linear relaxation
are more promising than those provided by a fast heuristic algorithm, or not. The
variant No LR evol implements a simplified evolutionary phase with respect to that
described in Section 4.2.4: Q-bits βk

ijs corresponding to node i and individual k take
the following values, based on Wk

i s:

βi,�Wk
i 	 = (

Wk
i − �Wk

i 	) ; βi,�Wk
i 	+1 = 1 − βi,�Wk

i 	; βij = 0 ∀ j �= �Wk
i 	, �Wk

i 	 + 1 (13)

In this case there is no feasibility adjustment guaranteed by FLR (βk
ijs are not

guaranteed to fulfill the relaxed problem constraints). Finally, a variant where no

Fig. 7 Tuning for �. Mean tree powers (averages over 50 networks)
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evolutionary phase is carried out (No Evo (RRLS)) is considered. The resulting
method can be seen as a Random Restart Local Search (RRLS).

It is important to stress that some of the variants of the LPEA method considered
will be intuitively able to perform more iterations than the original one in the given
computation time.

The results are plotted in Fig. 8, from which the importance of FLR both in the
initialization and evolutionary phases emerges. It is interesting to observed that BIP
init seems to preclude a satisfactory exploration of the search space. RRLS imple-
mentation presents similar exploration problems, confirming the importance of the
evolutionary phase.

5.3 Role of the Sweep Local Search

The aim of this section is to highlight the importance in the economy of the LPEA
approach of the Sweep local search, running during the evaluation phase (see
Section 4.2.3). We consider a variant of the LPEA approach where the Sweep
algorithm is not run after the probabilistic BIP procedure in the evaluation phase (No
Sweep). It is important to stress that the version without Sweep will be intuitively able
to perform more iterations in the given computation time than the original LPEA
algorithm.

In Fig. 9 we compare the results obtained by the modified algorithm with those of
the standard LPEA method. The plot highlights the role of the Sweep procedure
within the framework we propose. Notice that gap between the two algorithms
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Fig. 8 Role of the Linear Relaxation FLR. Mean tree powers (averages over 50 networks)
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Fig. 9 Role of the Sweep local search. Mean tree powers (averages over 50 networks)

analyzed reduces for the largest problems, but statistical tests confirm that using the
Sweep algorithm leads to better results.

5.4 Comparison with Other Algorithms

The new algorithm we propose is compared with some reference methods previously
appeared in the literature. The results of the experiments are summarized in Table 2.
In the first column of the table the different networks considered are identified by
their number of nodes. In the remaining columns the mean tree power obtained by
different algorithms are presented. Exact solutions obtained by the exact method
discussed in Leggieri et al. [16] are reported when it is possible to retrieve them
within one hour for each instance (in fact, up to 30 nodes), otherwise the table

Table 2 Mean tree powers
obtained by different
algorithms (averages over 50
networks)

|V| Exact BIP LPEA SA SA+LPEA

10 9.5450 11.1000 9.5450 9.5949 9.5450
15 10.1498 12.4973 10.1656 10.2179 10.1535
20 9.9337 12.1599 10.0543 10.0778 10.0072
25 9.9795 12.4551 10.1910 10.2516 10.1476
30 9.7356 12.0240 10.1682 10.0890 10.0178
40 n.a. 11.7506 10.2354 10.0609 10.0189
50 n.a. 11.6618 10.2627 10.1141 10.1086
75 n.a. 11.6265 10.4316 10.2901 10.2541
100 n.a. 11.5955 10.9905 10.6007 10.5796

Average n.a. 11.8745 10.2272 10.1441 10.0925
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entry is marked as “n.a.” (not available). We then consider BIP (see Wieselthier
et al. [30]), often regarded as a reference algorithm, the LPEA method discussed in
Section 4 (LPEA), SA+Sweep (see Montemanni et al. [23]), here referred as SA
for short, and SA+LPEA which means a variant of the LPEA where the initial best
solution is given by the solution returned by the SA+Sweep method. Notice that
the computation time required by SA+LPEA is twice the time required by SA and
LPEA. The last line of the table is devoted to the average tree powers over all the
instances considered.

The results summarized in Table 2 suggest that LPEA an effective approach. In
particular, it is able to retrieve solutions of quality comparable with those obtained
with SA, which can be regarded as state-of-the-art. It is however important to
observe that the quality of the solution provided by LPEA decreases (with respect to
those of SA) as the dimension of the networks increases. It is interesting to observe
that all the methods considered present performance degradation (with respect to
exact solutions) as the number of nodes increases, suggesting the hardness of the
problem itself. On the other hand, SA+LPEA is able to improve the solutions
provided by SA, even for the largest instances, on which LPEA alone was less
effective. This shows that LPEA is very effective in locally exploring the search space
around its starting solution, even when this starting solution is already an optimized
local minimum (like those provided by SA). In this context it is important to observe
that running either SA or LPEA for twice the time reported in Table 1 does not lead
to any improvement over those reported in Table 2. For this reason the SA+LPEA
approach appears particularly appealing.

To evaluate the robustness of the heuristic methods considered, we took the first
instance of each network size considered, and we run each algorithm fifty times
on it. The average and best results obtained (together with standard deviation) are
reported in Table 3 for methods LPEA, SA and SA+LPEA. The results suggest
that LPEA is more consistent than SA in retrieving quality solutions (comparable
average results, lower standard deviation), but SA is able to retrieve higher quality
best solutions over the fifty runs considered. This indicates that sometimes SA is
probably able to explore a wider search space than LPEA, although in a less accurate
way. The method LPEA+SA is confirmed to be able to take the best out of methods
SA and LPEA, leading to improved solutions.

Table 3 Mean tree powers obtained by different algorithms on one random instance for each
network size (statistics over 50 runs)

|V| LPEA SA SA+LPEA

Average StDev Best Average StDev Best Average StDev Best

10 9.4661 0.0134 9.4557 9.4563 0.0039 9.4557 9.4557 0.0000 9.4557
15 12.8586 0.0497 12.8374 13.4654 0.6210 12.8374 12.8412 0.0188 12.8374
20 13.5103 0.1802 13.3779 13.8953 0.5050 13.3779 13.4518 0.0396 13.3779
25 9.7807 0.0000 9.7807 9.8119 0.1665 9.7807 9.7807 0.0000 9.7807
30 11.9339 0.0730 11.8645 11.7876 0.1814 11.6471 11.6554 0.0843 11.5399
40 12.0005 0.2595 11.6261 11.7395 0.3465 11.3563 11.5532 0.1208 11.2439
50 9.4391 0.3100 9.2391 9.3928 0.3127 9.0130 9.1722 0.1039 8.9373
75 9.4956 0.1442 9.4154 9.5755 0.2995 9.2213 9.3690 0.0765 9.1968
100 11.3742 0.0000 11.3742 11.1476 0.5377 10.3982 10.7290 0.4236 10.3881

Average 11.0954 0.1144 10.9968 11.1413 0.3305 10.7875 10.8898 0.0964 10.7509
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6 Conclusion

A novel matheuristic approach, the Linear Programming-based Evolutionary Al-
gorithm has been proposed for the minimum power broadcast problem in wireless
sensor networks. The new method uses linear programming within the operators of
an evolutionary algorithm.

Computational experiments show that the new algorithm is able to retrieve good
quality solutions when used alone. Moreover, the method proposed can be used
as a refinement tool, able to successfully explore the search space around already
optimized solutions, retrieving improved solutions.

It has been shown that linear programming can be effectively integrated within an
evolutionary algorithm for the problem considered. Future research will investigate
the application of similar paradigms to other optimization problems.
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