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Abstract This paper deals with algorithms for detecting graph isomorphism (GI)
properties. The GI literature consists of numerous research directions, from highly
theoretical studies (e.g. defining the GI complexity class) to very practical appli-
cations (pattern recognition, image processing). We first present the context of
our work and provide a brief overview of various algorithms developed in such
disparate contexts. Compared to well-known NP-complete problems, GI is only
rarely tackled with general-purpose combinatorial optimization techniques; how-
ever, classical search algorithms are commonly applied to graph matching (GM). We
show that, by specifically focusing on exploiting isomorphism properties, classical
GM heuristics can become very useful for GI. We introduce a polynomial graph
extension procedure that provides a graph coloring (labeling) capable of rapidly
guiding a simple-but-effective heuristic toward the solution. The resulting algorithm
(GI-Ext) is quite simple, very fast and practical: it solves GI within a time in the
region of O(|V|3) for numerous graph classes, including difficult (dense and regular)
graphs with up to 20.000 vertices and 200.000.000 edges. GI-Ext can compete with
recent state-of-the-art GI algorithms based on well-established GI techniques (e.g.
canonical labeling) refined over the last three decades. In addition, GI-Ext also solves
certain GM problems, e.g. it detects important isomorphic structures induced in non-
isomorphic graphs.

Keywords Graph isomorphism · Polynomial extension · GI-Ext

1 Introduction

Graph encodings can describe a large variety of connected objects in virtually all
fields of science. The graph isomorphism (GI) problem and its generalizations are
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essential in large application areas directly dealing with similarity problems, e.g.
pattern and image recognition [1, 8, 9, 20, 28, 33, 35, 38, 39] or chemical infor-
matics [23, 31]. Furthermore, algorithms for these problems often find unexpected
applications in other more specific applications, from biometric identification or
scheduling to monitoring computer networks—numerous such examples are avail-
able in the literature [8, 10].

In theoretical computer science, GI is one of the few N P problems not proved
to be either in P or N P − P (we assume P �= N P) and a lot of effort has been
done to classify it. Although polynomial time algorithms are available for many
graph classes [3, 17, 27], all existing algorithms are still exponential for certain well-
known graphs classes—e.g. regular graph isomorphism is GI-complete [6, 40], that
is, if regular graphs can be tested for isomorphism in polynomial time, then so can
be any graphs. The exact GI algorithms are usually based on tree search procedures
with various pruning techniques [12, 13, 34, 36], or on comparing canonical graph
forms invariant under isomorphism [2, 4, 14, 15, 22, 29].

Numerous heuristic GI algorithms are also available, but they have been devel-
oped rather for graph matching (GM) than for GI. Indeed, heuristic optimization
algorithms are well adapted to practical matching problems that require finding a
best (but not necessarily perfect) isomorphism. In this context, one often defines
an objective function of similarity—a measure of closeness—and the best matching
is searched using (meta) heuristic methods. However, these heuristics are often
developed for specific applications and they are targeted to small and very small
graphs (i.e. hundreds or tens of vertices, see Section 4).

In order to put our work in context, we first present a brief overview of the
most related (exact or heuristic) approaches from the literature of GI and GM.
Even if this literature is very vast (hundreds of algorithms are available [10]), small
order graphs are commonly employed in practice (hundreds, maximum thousands
of vertices). Next, we introduce GI-Ext, a combinatorial optimization algorithm that
appears to identify isomorphisms very rapidly: it runs in low-order polynomial time
on numerous standard graph classes. We also show certain polynomial complexity
bounds for some cases. Numerical experiments are carried out for dense regular
graphs with up to 20,000 vertices, graphs from an existing GI-testing database,
complete benchmark sets from other papers, etc.

GI-Ext has three stages: (i) polynomial graph extension to propagate new isomor-
phism constraints from the initial edge structures, (ii) linear deterministic construc-
tion of an initial potential solution, and, if necessary, (iii) local search in the proximity
of this point. To our knowledge, an advantage of GI-Ext is the simplicity: no deep
discrete mathematics is needed for the first two stages and the (meta-)heuristic from
the last step is similar to methods used in GM combinatorial optimization algorithms.
We show evidence that the new approach competes well with state-of-the-art algo-
rithms on numerous graph classes. While certain crafted graphs might be approached
more effectively only using very recent canonical labeling techniques [22, 26], these
methods employ more complex mathematics based on refining work which began 3
decades ago [29]. Furthermore, GI-Ext is also very useful to detect large isomorphic
sub-structures induced in non-isomorphic graphs—e.g. we also provide experiments
on a GM problem.

The next section briefly outlines the problem notations and formulations.
Section 3 reviews certain exact and inexact methods from the large GI literature,
selecting the most relevant ideas in the context of our work. Next, in Section 4 we
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present several objective functions commonly employed by GM heuristic algorithms
and we also introduce our new function. Section 5 presents the GI–Ext algorithm
and the polynomial graph extension that supports its performance. The last section
shows numerical experiments on several graph families, followed by conclusions.

2 Graph Isomorphism (GI) and Graph Matching (GM) Definitions

We denote the input graphs by G(V, E) and G′(V ′, E′) and their adjacency matrices
by M and M’, respectively. The number of vertices (denoted by |G| or |V|) is
commonly referred to as the graph order. For graph isomorphism, we can consider
without loss of generality that V = V ′ = {1, 2, . . . , |V|}. A mapping between G and
G′ is represented by a bijective function on the vertex set h : V → V ′. We say that
h∗ is an isomorphism if and only if {i, j} ∈ E ⇔ {h∗(i), h∗( j)} ∈ E′; the graph isomor-
phism (GI) problem consists of determining whether or not such an isomorphism
exists.

For an optimization algorithm, the set of all bijections h constitute the search space
S. An objective function f (see examples in Eq. 2, Section 4) is employed to measure
the quality of each mapping h. The optimization GI problem requires finding the
minimum of f , e.g. a mapping h∗ such that f (h∗) = 0 if h∗ is an isomorphism. In this
context, the elements of S can also be referred to as search space potential solutions
(or configurations).

The mapping h : V → V ′ can be represented as a permutation of V when V = V ′,
i.e. it is encoded as an array [h(1), h(2), . . . h(|V|)] with all values pairwise different.

The value at position i represents the vertex association i
h→ j and (i, j)

h→ (i′, j′) is

a double (edge) association. A double association (i, j)
h→ (i′, j′) is a conf lict if h

violates the isomorphism constraint on (i, j), i.e. if either (i) {i, j} ∈ E and {i′, j′} /∈ E′,
or (ii) {i, j} /∈ E and {i′, j′} ∈ E′. Throughout the paper, we prefer to express the same
conditions simply as:

(i, j)
h→ (i′, j′) is a conf lict ⇐⇒ Mij �= Mi′ j′

Finally, a mapping h can also be encoded as a match matrix Ph, such that:

Phii′ = [h(i) = i′], (1)

where the square brackets operator is 1 if the predicate inside brackets is true and 0
otherwise.

Graph Matching While GI is a decision problem, graph matching (GM) usually
consists of finding the best matching between two graphs, i.e. the best mapping h.
An optimization algorithm can solve a GM problem in the same manner as a GI
problem—the only difference is that there might be no mapping h∗ such that f (h∗) =
0 (no isomorphism). One should be aware that there are several distinct problems
that are all referred to as GM, depending on the interpretation of “best matching”.
Thus, we only touch on the most GI-related research in this paper and we consider
GM formulations defining an objective function f . GM problems can also be stated
using algebraic analysis (using eigen decomposition, spectral graph theory), or using
probabilistic methods (e.g. determining the likelihood that a data graph was obtained
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from a model graph through a noisy process)—a classification can be found in [28,
Section 1.1].

GM provides a more flexible approach to practical applications in which perfect
graph isomorphism is quite rare—e.g. two images of the same person are never
identical, but a graph matching algorithm can find them very similar. Depending
on the context, GM algorithms can also be referred to as error-correcting (or
error-tolerant) graph isomorphism, inexact (or partial) isomorphism, matching with
mismatches, etc. Graph matching problems often use edge-weighted, vertex-labeled
or attributed relational graphs (i.e. where both the edges and the vertices possess
weighted values). To deal with such graphs, labels can be encoded in the diagonal
elements of M and weights on the other elements.

3 A Brief Historical Algorithmic Overview

There are numerous research threads in the literature of both graph isomorphism
(GI) and graph matching (GM). While GI is more important from a theoretical view-
point, GM algorithms are more common in relatively-young practical applications
dealing with various types of similarity problems. Although there are several distinct
problems referred to as GM, most of them can be considered direct generalizations
of GI and they all have higher computational complexities. As such, exact GM
algorithms are limited to very small graphs (i.e. several tens of vertices [8, 37]) and
the GM literature is dominated by inexact algorithms. Most heuristic algorithms
available for GI were actually developed for specific applications involving GM
problems.

3.1 Exact Algorithms for Graph Isomorphism

As for the exact GI methods, the algorithm of Ulmann [36] is historically the
most famous. The main idea of the approach is to recursively (try to) construct
the match matrix Ph∗ of isomorphism h∗ using a backtracking algorithm; a refining
procedure prunes the search tree using a look-ahead technique that anticipates
isomorphism violations. This type of tree-search methods were first developed in the
early 1970s [13] and, since then, numerous pruning techniques have been proposed
to reduce the search space. Another example of such a backtracking strategy is the
algorithm of Schmidt and Druffel [34] that reduces the search tree using an initial
partition of the vertex sets. More recent algorithms are also available, for instance the
VF2 algorithm is very effective and much faster than the algorithm of Ullmann [12].

A drawback of tree search methods is that they can waste important time
exploring potential solutions (mappings) equivalent up to an automorphism (the
search space can have many symmetries). As such, a second approach for exact GI
resides in constructing canonical graph labelings (invariant under automorphism)
that can be more easily compared. In this context, the oldest and most established
algorithm is nauty [29], in which a canonical graph is associated to any input graph—
i.e. such that all isomorphic graphs have the same canonical graph. Constructing the
canonical graph is based on computing the automorphisms of the input graph. The
automorphism group is built with a partition refinement procedure that backtracks
through a tree of colorings (or ordered partitions) that correspond to potential
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automorphisms. In fact, automorphisms are discovered at the leaf nodes of the
tree—a leaf coloring encodes a bijective relation between |V| colors and |V| ver-
tices, corresponding to a re-labeling of V. A rigorous description of this process
requires complex mathematics, but, fortunately, there are high-quality descriptions
available [14, 15, 22].

Canonical labeling algorithms represent one of the most effective approach for
pure GI problems and important progress has been made in the last five years.
Indeed, there are at least two recent tools—bliss [22] and saucy [14, 15]—showing
impressive results in discovering automorphisms for large and sparse graphs. Fur-
thermore, canonical labeling techniques can be combined with three search methods
as in another very recent algorithm conauto [26] that uses precomputed graph
automorphisms to prune the search tree. Another popular strategy often employed
in GI is to consider graph vertex invariants; indeed, many examples of invariants are
available in the literature [18] and they are also essential for canonical labeling.

In a practical context, it is worth mentioning that the VFLib Graph Matching
Library provides implementations for VF2, Ulmann and Schmidt–Druffel, and that
the LEDA Library (Library of Efficient Data types and Algorithms) for VF2 and
conauto. However, bliss has been also implemented in a public library and it seems
very fast in finding canonical labellings for a large variety of graphs with different
types of regularities. Furthermore, saucy was used to find the automorphism group
for very sparse graphs using techniques adapted to this situation.

One should be aware there are many particular graph families that can be tested
for isomorphism in polynomial time: graphs of bounded degree (valence) [27], graph
of bounded genus (including planar graphs or trees) [17], or graphs with adjacency
matrices with bounded eigenvalue multiplicity [3]. For the general case, the best

theoretically-proved worst-case running time is O(e
√

|V| log(|V|)) [4] but this algorithm
is not typically used in practice. However, it is quite difficult to make absolute
comparisons of practical algorithms because they all have worst-case exponential
running times and their performance can vary from one graph class to another.
External factors should also be taken into consideration, e.g. different machines,
different programming languages, different implementation styles, etc.

3.2 Inexact Algorithms for Graph Isomorphism

Regarding the incomplete GI algorithms, a lot of research work is actually available
in the vast graph matching (GM) literature; many GM heuristic algorithms can be
directly applied to GI. We focus here on heuristic combinatorial optimization al-
gorithms that (try to) minimize certain measures of closeness between graphs, i.e. an
objective function f that reaches the minimum value f (h∗) = 0 only for isomorphism
mappings h∗ : G → G′. Finding the minimum value of such function f can also be
approached with other methods besides heuristics—tree-search, algebraic analysis,
algorithms based on probability theory, see more classifications in [8, 28, 37]—but
they lie outside the scope of this article.

The first closeness measures were proposed in the early 70’s [25, 33] and they are
based on the maximum common subgraph and on generalizations of the string editing
(Levenstein) distance. From a practical perspective, these measures are usually
computationally very demanding (e.g. the maximum common subgraph problem is
NP-complete [19]) and they are typically employed only in applications using small
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graphs—i.e. such NP-hard algorithms were used for molecular similarity [31], but
not for applications with larger graphs (i.e. image recognition). The editing distance
is also an NP-Hard problem [41], but, since many variants exist, some graph editing
distance algorithms are available to more applications [7, 35].

Since the introduction of these first theoretical indicators, the GM problems
gradually gained in importance and various new closeness measures were proposed,
especially for pattern and image recognition [1, 5, 9, 37] or chemistry informatics [23].
They usually present ad-hoc measures, using application-specific features that might
be difficult to express in a unified GI context. However, most GM encodings are
generalized GI encodings and the heuristics can be used in exactly the same way to
solve either GM or GI.

The optimization algorithms can be broadly classified into continuous methods
(i.e. using various continuous embeddings [20, 28]) or discrete heuristic algorithms
(i.e. Tabu search [38], genetic algorithms [9, 35, 37], estimation of distribution
algorithms [5], ant algorithms [32], etc.). More specific algorithms (i.e. using decision
trees, neural networks) are also available in the literature [1, 20, 28, 38] but they are
less related to our paper.

4 Objective Functions

Since most GM heuristics are developed for specific applications, they are typically
tested and compared with respect to the success of finding good solutions for
matching tasks inside these applications. GM optimization algorithms often work
with distinct graph representations and with different semantics—for example, the
edge weights can signify geometric distances, temporal causality, concept similarity,
etc.

However, a common point is the construction of an objective function represent-
ing the measure of closeness that is minimized over the space S of all bijections
h : G → G′. We provide examples of such functions, as used by various papers in
different contexts:

f1(h)= α

|V|
∑

v∈V

cV(v, h(v)) + 1 − α

|E|
∑

e∈E

cE(e, h(e)) [9, Section 2.2]

f2(h)=||M−Ph M′ PT
h || [37, Section 2.2]

f3(h)=−1

2

∑

i∈V

∑

j∈V

∑

i′∈V

∑

j′∈V

P̂h
ii′ P̂

h
jj′Cii′ jj′ [20, Section 2.1] (2)

f4(h)=|V|+|V ′|−2 max{|Gc| : Gc �h(G) and Gc �G′} [7, 25]

f5(h)=min{Cost(Edt) : Edt =edit operations s. t. h(G)
Edt−→G′} [7, 30, 33]

The first function ( f1) evaluates attributed graphs using a measure of vertex
similarity (CV) and a measure of edge similarity (cE); their global contributions are
weighted using the α factor. It was utilized with three algorithms in order to carry
out a comparative study of optimization methods for image recognition [9]; the order
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of considered graphs is in the range 147–228 vertices. Related strategies, especially
Estimation Distribution Algorithms are presented in greater detail in [5].

The f2 function uses the match matrix Ph (see Section 2, Eq. 1) and a matrix norm
|| · ||. This function was tested with several algorithms and with various versions of
the matrix norm, but they always use graphs with 10–20 vertices [37]. The matrix P̂h

for f3 is a relaxed version of Ph, i.e. its elements are real numbers in [0, 1] and, for
any i ∈ V,

∑
i′∈V′ P̂h

ii′ = 1; Cii′ jj′ is a similarity measure between the vertex pairs (i, j)
in V × V and (i′, j′) in V × V. The experiments are performed on graphs from images
or randomly-generated with 100 vertices at maximum [20]. The same function is used
in a series of papers about molecular structures [23] with Simulated Annealing (SA)
and Tabu search, but small graphs are usually used.

Function f4 is a reformulation of a measure based on the order of the maximum
common subgraph. In this equation, the � relation denotes subgraph isomorphism;
if h∗ is an isomorphism, the inclusion becomes equality (i.e. Gc = h∗(G) = G′) and
f (h∗) = 0. Many other reformulations can be found in the literature [8, 25, 31] and it
was shown [7] that this measure is equivalent to a graph edit distance.

Graph editing distance (function f5) represent a large family of measures and
several heuristic algorithms were developed for them [35]. Typical algorithms using
such functions are often limited for graphs of small order, e.g. maximum 100
vertices [30, 35].

There exist several other application-specific functions (e.g. using angles [1] or
using various specific feature-based graph descriptions [39]), but the goal of the paper
is not to enter into complex formulas. However, a common point of all these objective
functions is that they require algorithms with high computational costs that are
usually applied on small graphs (|V| < 1,000), as GM problems are computationally
very demanding.

4.1 Proposed GI Approach and Objective Function

The simplest formulation of our measure of closeness between graphs is:

f (h) =
∑

1≤i< j≤|V|
[Mi, j �= M′

h(i),h( j)], (3)

where the square brackets represent an indicator that is 0 if the predicate (inside
the brackets) is false and 1 otherwise—if Mi, j �= M′

h(i),h( j), we say that the association

(i, j)
h→ (i′, j′) is a conflict. The objective of our proposed heurstics is to search for a

matching with the lowest number of conflicts.
This function can be seen as a particular case of f1 and f3 if we consider a

specific interpretation of the cost functions used by these functions. As such, it could
be directly compared with optimization algorithms using these function; however,
these algorithms were tested on smaller non-isomorphic graphs, making such a
comparison very difficult—GI-Ext is focused on finding isomorphisms, or, at least,
large similarities between graphs.

Recall that our algorithm encodes the function h as a permutation of V (see
Section 2). The neighborhood function (used by the local search to move from one
mapping to another) consists of swapping two elements (i, j) of this permutation, i.e.
h(i) takes the value of h( j) and h( j) takes the value of h(i). We write h := h+ <
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i, j > to denote that a move in the neighborhood is performed. This interchange
neighborhood has the advantage that it does not require re-computing the whole sum
of the objective function after each move; it is enough to compute only the variation
induced in the sum by the elements i and j.

Using this standard configuration encoding and neighborhood, we carried out
certain preliminary tests with several (meta-) heuristics algorithms. Simulated an-
nealing [21, 24] seemed to be the most promising: with a good choice of the annealing
schedule, it can slowly but surely converge from a random bijection to the isomor-
phism. However, for large graphs with many regularities, the algorithm could easily
get blocked into local optima; to avoid this, we use Iterated Local Search principles
so as “iterate” the cooling schedule (see also Section 5.2.3). Furthermore, in order to
deal with larger graphs, we propose to reinforce the algorithm by propagating new
isomorphism constraints from adjacency matrix M, as described in the next section.

5 A GI Algorithm Based on Graph Extensions

The first part of this section (Section 5.1) only presents the graph extension proce-
dure. Then, the second part (Section 5.2) provides the complete description of GI-
Ext, discussing the importance of applying the graph extension. The motivation for
the extended graphs arise from the following situation: if there is no edge between
vertex i and j in G (i.e. Mi, j = 0) and no edge between h(i) and h( j) in G′, then the

association (i, j)
h→ (h(i), h( j)) is not seen as a conflict—there is no mechanism to

directly detect whether (i, j) and (h(i), h( j)) are indeed compatible or not. But, by
exploiting the structure of the graph, one can find many conditions in which (i, j) and
(h(i), h( j)) are incompatible even if they are both disconnected (e.g. by checking the
shortest path between them).

5.1 Polynomial Graph Extension

5.1.1 Extension Construction

We define the |V| × |V| matrix MK, in which the element MK
i, j represents the number

of paths of length K (i.e. with K edges) from i to j. Obviously M1 = M, and we now
show that MK+1 can be computed in polynomial time from M and MK using the
following algorithm based on dynamic programming.

Algorithm 1 Polynomial time graph extension step

Input: MK

Result: MK+1

1. Set all elements of MK+1 to 0

2. For each {i, j} ∈ E with i < j
For k = 1 to |V|

• MK+1[i, k] = MK+1[i, k] + MK[ j, k]
• MK+1[ j, k] = MK+1[ j, k] + MK[i, k]
• MK+1[k, j] = MK+1[ j, k] and MK+1[k, i] = MK+1[i, k]
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The idea behind this algorithm is to notice that all the paths of length K + 1
between two vertices i and k are composed of an edge {i, j} and a path of length
K from j to k. Since the number of paths of length K from j to k is known, we only
need to sum up the number of paths of length K from all neighbors of i to k. To
achieve this, the algorithm lists all edges {i, j} ∈ E and adds all contributions of {i, j}
to paths i → j

K steps− · · · → k in the constructed MK+1 matrix.
The extended graph is straightforwardly defined as the weighted graph with vertex

set V and edge set EK defined as follows: if MK
ij �= 0, then {i, j} is an edge of weight

MK
ij in EK. If two graphs G and G′ are isomorphic, then their extended graphs are

isomorphic as well—because the same extension operations are applied in the same
manner for any two isomorphic vertices i and h∗(i).

5.1.2 Complete Extended Graphs

Once the matrices M1, M2, . . . MK are computed, one can construct a complete
extended matrix M such that:

M = a1 M1 + a2 M2 + · · · + aK MK, (4)

where a is a positive number. If a > max MK, then a ensures in Eq. 4 that two
different series of Mi’s, can not lead to identical complete extended matrices.

The complete extended graph of order K is the weighted graph G with vertex
set V and with edges {i, j, Mij}. Two graphs are isomorphic if and only their com-
plete extended graphs are isomorphic. Indeed, if the initial graphs are isomorphic,
then so are the extended graphs, and so are the complete extended graphs—any
isomorphism relation is conserved by the sum (Eq. 4). In the other direction, if the
complete extended graphs are isomorphic, then M = M′

h∗(i),h∗( j) implies that M1
i, j =

M′1
h∗(i),h∗( j)—in Eq. 4, one can see a as the base of a numeral system. The sum (Eq. 4)

can be computed in polynomial time for any a ∈ O(|V|) with the appropriate data
structure. In practice, we execute our optimization algorithm on complete extended
graphs with a = 1; eventually, any resulting extended graph isomorphism is tested for
consistency on the initial graphs.

To search the isomorphism of complete extended graphs, we generalize our
objective function (see Eq. 3) for the complete extended matrix M:

f̄ (h) =
∑

1≤i< j≤|V|
[Mi, j �= M′

h(i),h( j)] (5)

If there exists an isomorphism h∗ : G → G′, then Mi, j = M′
h∗(i),h∗( j),∀i, j ∈ V and

f̄ (h∗) is 0; the isomorphism h∗ is the same for both the initial graphs and the extended
graphs. An optimization algorithm based on the classical objective function (see
Eq. 3) can be used in the same way to minimize the new objective function.

5.1.3 Incompatibility Detection Using Extended Edges

If only exact isomorphism is targeted, the matrices M1, M2, . . . MK can also be
used to discover incompatible (forbidden) associations: vertices (i, i′) ∈ V × V ′ that
can never be mapped by a graph isomorphism function. These forbidden associa-
tions might recall of the way other algorithms use ordered partitions (colors) for
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discovering automorphisms; however, we do not only partition the vertex set, but
these forbidden associations can discover impossible isomorphic mappings between
vertices of different graphs.

Definition 1 (Compatible and forbidden associations) Vertices (i, i′) ∈ V × V ′ are
compatible if and only if: (i) Mi,i = M′

i′,i′ and (ii) line i of M is equal to a permuted
line i′ of M′. An association i → i′ that is not compatible, is also called forbidden.

Indeed, if h∗ is an isomorphism, then all associations (i
h∗→ i′) are compatible

because each element MK
ij of line i of MK, can also be found in MK at line i′ and

column j′ = h∗( j). Therefore, any GI algorithm presented later in Section 5.2 avoids
associating two incompatible (forbidden) vertices. We introduce a matrix F encoding
these forbidden associations, such that if Fi,i′ = 1, the association i → i′ if forbidden
(i.e. the local search can never assign i′ to i). This matrix of forbidden associations
is empty at start (all elements are 0), and the extension routine gradually fills its
elements while constructing the matrices M1, M2, . . . MK.

The matrices M1, M2, M3, . . . are very rich in information that is implicitly
checked via the matrix F. Each edge value from the extended graph is in fact a a
hash function of some larger structures around it in the initial graph. Indeed, the
fact that an association i → i′ is not forbidden (i.e. Fii′ = 0) implies numerous hidden
conditions: i and i′ need to have the same degree (otherwise M2

i,i �= M′2
i′,i′ ), they need

to be part in the same number of triangles (otherwise, M3
i,i �= M′3

i′,i′ ), they need to have
the same number of 2-step neighbors, etc. Many other such theoretical conditions
can be derived and proved, but the goal of this specific paper is only to present a
very practical, high-speed algorithm; many more such conditions can be found by a
theoretical study of greater detail.

5.2 GI-Ext—Algorithm Applying the Extension Procedure

The GI-Ext algorithm (see Algorithm 2) consists of three stages: (1) graph extension,
(2) construction of an initial configuration (initial mapping), and (3) a heuristic
search for finding the optimal solution in the proximity of this initial configuration.
The first stage builds the information-rich extended adjacency matrix M and it
also provides a matrix F of forbidden vertex associations (used only for pure
isomorphism). The second stage tries to use this information for a linear construction
of an initial good mapping. The last stage is a heuristic that searches in the proximity
of the initial mapping so as to minimize f̄ (Eq. 5). This heuristic easily reduces
the number of conflicts because it implicitly exploits a large amount of structural
information hashed in the matrices M1, M2, M3, . . . , MK, and implicitly in M. Recall

that a double association (i, j)
h→ (i′, j′) is non conflicting for f̄ if and only if the

number of paths of length 1, 2, . . . , K between i and j (in G) are the same as for i′
and j′ (in G′)—which is equivalent to important similarities on the structures around
the edges {i, j} and {i′, j′}

We provide all details of the above-presented steps in the next three sections
(Sections 5.2.1, 5.2.2 and 5.2.3). Notice that the most important and GI-related steps
are Step 1 and Step 2; the heuristic search could be replaced by other method, or
even by an integer programming approach.
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Algorithm 2 GI-EXT algorithm
Input: Graphs G and G′
Result: True, False, or Undetermined (probably not isomorphic)

1. Repeat

- Graph extension step /*see Algorithm 1*/
- K := K + 1 /*initially, K = 1*/

Until a stopping condition /*see Section 5.2.1*/
is reached

- Construct matrix F of forbidden /*see Section 5.1.3*/
associations

- If incompatibility found Then Return False
2. Construct Initial Potential Solution /*see Section 5.2.2*/
- If isomorphism found Then Return True
3. Run Heuristic Search with stopping /*Section 5.2.3*/

conditions:

If isomorphism found Then Return True
If time elapsed Then Return Undetermined

5.2.1 Extension Application and Complexity: GI-Ext Step 1

Even if the graph extension procedure is polynomial, it represents by far the largest
computational cost. Recall that a step of this procedure (i.e. if we apply it once, so as
to construct MK+1 from MK) requires O(|E| · |V|) time. If we perform K extension
steps, the total complexity is O(K|E| · |V|). Thus, it is important to obtain a trade-off
between the number of steps (i.e. K) and the number of new derived constraints via
the extended matrix. Each higher value of K adds more constraints in the matrix F
(making the search space smaller) and it also adds new extended edges (the objective
function becomes more informative). In the beginning, the process starts with |E1| =
|E|, but the number of extended edges in EK increases with each new higher value of
K. Following empirical evidences, we chose to stop this extension procedure as soon
as |EK| ≥ 66%|V|2 or if the resulting EK values become heterogenous enough,e.g. if
all non-zero values of MK are pairwise distinct.

This strategy for setting K assures that, in practice, the final complexity of the
whole extension operation is in the region of O(|V|3). However, the complexity of
the procedure (i.e. O(K|E| · |V|)) is theoretically limited by O(|E| · |V|3) because K
can never reach |V|2. If each extension step discovers at least one new extended edge,
after at most K = 66%|V|2 steps the procedure stops (because EK has surely at least
66% elements). If there is extension step such that |EK| = |EK+1|, this means that
all i, j ∈ V that can be connected through K + 1 edges (of E), can also be connected
using a smaller number of edges. In this case, there already exists an extended edge
(in EK) between any two connected vertices of V (given any two vertices, they are
either disconnected or can be connected through K edges or less). This implies that
either |EK| = |V|2, or |EK| = |EK+1| < |V|2 and the graph is disconnected (in this
special case, the problem can be split).

5.2.2 Linear Construction of Initial Start Conf iguration: GI-Ext Step 2

This step incrementally constructs an initial mapping h using a linear procedure that
tries to associate all i ∈ V only to compatible values h(i) = i′ ∈ V ′ (such that Fii′ = 0).
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All vertices i ∈ V are first sorted according to their number of compatible vertex
associations (i, i′)—i.e. the number of zeros in row i of F. The complete mapping is
constructed by assigning all i ∈ V in this order,i.e. starting with those with the lowest
number of compatible associations (leaving less i′ ∈ V choices available). For each

vertex i ∈ V, we associate a vertex i′ from V ′, such that the new association i
h→ i is

as consistent as possible with the previously associated vertices (i.e. introduces the
minimal number of conflicts). The result of this process is an initial configuration
possibly with inconsistent (conflicting) edge associations that can be minimized
(reduced) using local search.

5.2.3 Local Search: GI-Ext Step 3

The solution encoding and the neighborhood are defined in Section 4.1 and we
consider the extended objective function f̄ (see Eq. 5). The search algorithm starts
from configuration h constructed in Step 2.

Repairing Descent Procedure Let us first describe a simple Descent procedure.
At each iteration, one searches for a conflict (i, j) of h (i.e. a pair (i, j) such that
Mi, j �= M′

h(i),h( j)) that needs to be repaired. To effectively “repair” a conflicting

(i, j)
h→ (h(i), h( j)), the descent procedure searches for a vertex k ∈ V such that

Mi, j = M′
h(i),h(k) and Mi,k = M′

h(i),h( j). The (i, j) conflict can be solved by swapping
the values of h( j) and h(k)—we say that a move < j, k > is carried out and the
mapping h becomes h+ < j, k >. However, such a move can theoretically generate
other conflicts in the graph and the procedure also checks that the � value of the
move—i.e. �( j, k) = f̄ (h) − f̄ (h+ < j, k >); the move is performed only if the �

value is positive.
In case there is no conflict that can be repaired by such a move, the descent

procedure tries all possible moves (i.e. swaps (i, j)). If it finds any positive �(i, j), the
move h = h+ < i, j > is executed and the process goes on to the next iteration. In
this manner, the value of function f continually decreases until either f (h) = 0 (i.e.
the problem is solved) or until no move can improve the objective function (local
optima).

Iterated Simulated Annealing In order to avoid local optima, we introduce a Simu-
lated Annealing (SA) algorithm that works as follows. At each iteration, a random
move (i, j) is picked up and this leads to one of the following situations: (i) if
�(i, j) ≥ 0, perform the move, or (ii), if �(i, j) < 0, accept the move with probability
e

�(i, j)
T , where T is the temperature parameter [24]. The cooling schedule changes the

temperature by a cooling factor α < 1 such that T becomes αT after a number
of iterations R(relaxation time). By starting with a very large initial T = Tstart,
numerous “up” moves are accepted and the search process is allowed to leave the
initial local optima. As the temperature decreases, fewer and fewer “up” moves are
accepted and the process is led toward a new region and toward a new local optimum.

When the temperature becomes low enough and no new moves are accepted, the
descent procedure is executed again so to perform intensification in the proximity
of the potential solution provided by SA. After reaching another local optimum
via descent, SA is applied again. In this context, one can also consider SA as a
perturbation operator of an iterated descent search. This might recall Iterated Local
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Search principles, and, indeed, the general search process consists of a loop of SA
and descent. The general search process is the following:

RepairingDescent()
Tstart = maxStartTempSA

1. SA(Tstart,α, R)
2. RepairingDescent()
3. Tstart = Tstart · γ

4. if Tstart ≈ 0 then Tstart = maxStartTempSA
5. go to 1 while a stopping condition is not met.

By performing numerous rounds of Simulated Annealing (Step 1) and Repairing
Descent (Step 2), many regions and local optima are visited. The SA start temper-
ature decreases (Step 3) along the general search process so as to steadily decrease
perturbations strength after each descent. This proved very useful in practice: the
general search process starts out by performing strong perturbations (i.e. SA takes
the search to regions quite far from the current local optimum), but, after a while, the
general search process is gradually stabilized, i.e. perturbations become weaker and
weaker. If the general search process gets into a local minimum that it can not leave
(start SA temperature almost zero resulting in very weak perturbations), the whole
strategy is restarted by resetting the SA start temperature (Tstart is reset in Step 4).

The stopping condition is either to find the solution or to reach a limit of time; we
used both predefined limits (e.g. 1,000 seconds in Fig. 4), but we prefer a time limit
defined as the equal of the time spent by the extension procedure (e.g. in Section 6.5),
so as to ensure a theoretical polynomial time for GI-Ext. The other parameters were
calibrated with minimal tunning effort, resulting in Tstart = 100,000, α = 0.9, γ = 0.1
and R = 100,000. By searching a perfect optimal value for each parameter, one could
skew the results slightly more in GI-Ext’s favor, but not enough to upset our main
conclusions.

5.2.4 Final Remarks

To summarize, GI-Ext is a Las Vegas algorithm, returning one of the following: (i)
the graphs are surely isomorphic (if the linear construction or the heuristic finds
a solution), (ii) the graphs are surely not isomorphic (if there are vertices with all
possible associations forbidden by the matrix F) and (iii) the isomorphism status can
not be determined in the given time but the graphs are probably not isomorphic. The
third case occurs only very rarely, on crafted instances with many regularities.

Note that GI-Ext can also be used to discover isomorphic substructures induced in
non-isomorphic graphs. In this case, it only returns a suitable matching and a value of
the objective function f on the original graphs (Section 6.5); the information related
to forbidden associations (matrix F) is not used so as to report the graphs as not
isomorphic.

6 Numerical Results, Discussions and Conclusion

For graph isomorphism, there is no common standardized benchmark on which all
algorithms are tested, and, each of the previous papers introduced certain particular
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graph classes. As such, we present numerical experiments using both previous graph
classes, as well as new instances that we consider relevant in our context. More
exactly, we test GI-Ext on the following test instances:

1. the graph classes from the database for benchmarking graph isomorphism algo-
rithms [16]: bounded valence graphs, mashes, randomly-generated graphs—this
paper already showed the performance of other four algorithms on this test data
set;

2. the graph classes on which the nauty algorithm was tested [29];
3. regular graphs—a difficult graph class that can also arise naturally in practice:

(a) the sparse random regular considered in the bliss paper [22];
(b) dense regular graphs with up to |V| = 20,000 vertices and |V|(|V|−1)

2 ≈
200.000.000 edges;

4. strongly regular graphs—this class captures much of the difficulties of the GI
problem,i.e. it represents crafted specially-constructed instances;

5. distorted isomorphic pairs of random graphs for a graph matching problem.

The running time is routinely expressed as a function of |V|. A classical method
to obtain information whether this function is polynomial or exponential consists of
plotting the log-log graph of the running time. This representation has the advantage
that a polynomial function of the form xβ becomes a straight line of slope β.
Furthermore, the slope of the running time function is machine independent, so we
can easily compare algorithms developed on different machines in different contexts.
Note that the results on higher order graphs are more reliable because they can better
express the exponent of the leading term of a polynomial function of |V|.

6.1 The Graph Database

The database due to De Santo et al. [16] provides numerous instances of several
widespread graph classes. These instance were used to compare four GI algorithms
(Ulmann, SD, Nauty and VF2). The first class is represented by a family of random
graphs with densities between 0.01 and 0.1. In fact, random graphs have been tested
by most papers for indicative purposes, but they are not particularly challenging (it is
known since 1980 that a straightforward O(|V|2) algorithm can be applied to almost
all such graphs [2]).

The mesh-connected graphs (2D, 3D, and 4D) represent a more regular and more
difficult class. They are generated from a mesh—i.e. a regular grid of connected
nodes (graph vertices). Each vertex is connected with a fixed number of mesh
neighbors (i.e. 4, 6 or 8 for 2D, 3D, and respectively 4D meshes), except those at the
border that have fewer neighbors. Irregular meshes are obtained by adding certain
edges (according to a noise level between 0.2 and 0.6), and in some sense, regular
meshes are more difficult. We provide running times only for 3D regular meshes and
4D irregular meshes with 0.6 noise, but very similar plots were obtained for other
graphs from this class.

The most difficult class from the database (for GI-Ext) is represented by the
bounded valence graphs, i.e. graphs that have the degree (the valence) of each vertex
limited by a certain value (3, 6 or 9). The database includes graphs with a fixed
valence (degree 3, 6 or 9). An easier class has been obtained by moving some edges,
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resulting in irregular bounded valence graphs. We report results on the most difficult
class (9-bounded valence graphs), both the standard and the modified version.

Figure 1 shows the results on all the above mentioned graph classes. The instances
are available on line (amalfi.dis.unina.it/graph/) and they have a maximum order
of 1296; each class contains graphs with different intermediate values of |V|. All
graphs were solved in polynomial time by GI-Ext. The two lines in Fig. 1 have slope
2 and 3.1 showing that the running time of GI-Ext is always between O(|V|2) and
O(|V|)3.1. The lower bound is due to the fact that we do not use sparse matrices and
the minimum complexity is always O(|V|2), as GI-Ext works with many |V| × |V|
matrices. The upper bound is mostly due to the graph extension procedure that
performs many steps for the bounded valence graphs. While GI-Ext is polynomial
on all classes, nauty and ulmann are exponential in some cases (i.e. regular meshes,
see [16, Fig. 2]). On the other hand, VF2 is polynomial, too, but it is difficult to
compare its slope with GI-Ext. We do not have this information for VF2, but, in
absolute times, VF2 seems to be faster on certain instances and slower on others. We
only mention that the tests we performed confirm this, but we would prefer not to
provide detailed figures on behalf of other algorithms (their running speed can vary
greatly from one machine to another).

Finally, we also tested GI-Ext on non-isomorphic pairs of graphs from the data-
base; in this case, the decision of non-isomorphism was reached more rapidly, without
needing to run the heuristic—because the extension procedure finds vertices i ∈ V
with no compatible association i → i′ ∈ V ′ (via the matrix F). However, the total
speed-up is limited because the running time is still a polynomial of the same order
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Fig. 1 Log-log graph of the running time of GI-Ext on instances provided by the graph database
[16]. Numerous other experiments not detailed in the paper confirm that any two graphs from the
database can be processed within a time bounded by the two plotted slopes (of β = 3.1 and β = 2,
respectively)

http://amalf/i.dis.unina.it/graph/
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of magnitude—the number K of extension steps is the same for both isomorphic
and non-isomorphic graphs. Generally speaking, non-isomorphism conflicts could
be determined earlier if one checks the number of forbidden associations of matrix
F earlier (e.g. after each extension step), but we prefer to focus here on a unique
algorithm version.

6.2 Graph Classes from the Nauty Paper

The nauty program was tested on several graph classes [29, pp. 79–82] and its running
time was plotted on log-log graphs (Fig. 3.1, p. 80), in the same manner as we do.
Recall that a polynomial function of the form xβ becomes a linear function of slope
β on the log-log graph; for each considered class, we also provide the β slope reported
in the nauty paper:

1. random graphs of density 0.5 (β = 2.0);
2. m-dimensional cube (β = 2.3);
3. random circular graphs (β = 2.2)—a circular graph with vertices {1, 2, . . . , |V|} is

built by connecting all i and j such that |i − j| ∈ W, where W is a set of cardinal
5 in {1, 2, . . . , � |V|−1

2 �};
4. regular graphs with degree 6 and 20 (built essentially by superimposing 2-regular

graphs with no common edge);
5. strongly regular graphs with up to 60 vertices.

Figure 2 plots the results of GI-Ext on the first three graph classes above—all
graphs were re-generated at orders between 100 and 1,000. The case for the rest of
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Fig. 2 Log-log graph of the running time of GI-Ext on the graph classes considered in the nauty
paper. We also show two lines of slope β = 3.3 and β = 2.1
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the graph classes (i.e. regular and strongly regular graphs) is taken into consideration
in greater detail in Sections 6.3 and 6.4. However, this figure shows that GI-Ext has
a polynomial run time on the first three classes; the exponent (i.e. slope on the log-
log graph) is between 2.1 and 3.3. It seems that nauty is faster (β is between 2.0 and
2.3), but GI-Ext is however polynomial. The complexity of GI-Ext is in the region of
O(|V|3) and it is due to the extension step. As such, it never reaches O(|V|4)—in fact,
the complexity of the extension operation is theoretically bounded (see Section 5.2.1).

6.3 Regular Graphs

We consider regular graphs essential, because they are at the same time difficult
and quite general. Unlike more complex crafted graph classes, regular graphs can
often arise naturally in applications, as for example: graphs from images considering
each pixel as a vertex with 8 (or 4) neighbors, graphs of a circuit design in which
all components have a fixed number of logical inputs and outputs (e.g. binary logic
gates), graphs associated with k-satisfiability problems, etc. Furthermore, regular
graph isomorphism is GI-complete [6, 18, 40], i.e. if regular graphs can be solved
in polynomial time, so can be any graph class.

Sparse regular graphs have been considered several times in the literature (e.g.
a class of 6-regular and 20-regular graphs since the nauty paper), but we consider
it might be more important to test dense regular graphs. Note that the graphs of
bounded degree d << |V| are known to be solvable in polynomial time [27] since
the early 1980s. Furthermore, we provide results on regular graphs with hundreds of
millions of edges (our largest dense regular graph has 20,000∗19,999

2 edges). To the best
of our knowledge, it is for the first time a graph isomorphism algorithm has been
tested on such graph sizes.

6.3.1 Sparse Regular Graphs

First, we test the 3-regular graphs introduced in [22] and report results in Table 1.
We compare the running time of GI-Ext with the running times of saucy, nauty,
and bliss—the figures for these three algorithms are taken from the bliss paper [22].
Following the format from this paper, for each graph order, we report the minimum
and maximum solving time required by GI-Ext. In the bliss paper, each algorithm

Table 1 Running time comparison for GI-Ext and canonical labeling algorithms on 3-regular graphs

|V| GI-Ext Nauty Saucy Bliss
Tmin[s]–Tmax[s] Tmin[s]–Tmax[s] Tmin[s]–Tmax[s] Tmin[s]–Tmax[s]

1,000 0.36–0.42 9.00–9.08 1.11–1.18 0.06–0.07
2,000 1.52–1.71 117.13–120.74 8.57–8.63 0.27–0.3
3,000 3.47–3.94 Time out 28.34–28.44 0.64–0.71
4,000 8.47–10.03 Time out 62.22–64.50 1.09–1.20
5,000 18.27–21.39 Time out 122.23–129.40 1.70–1.93
6,000 17.48–20.35 Time out 208.65–215.22 2.65–2.98
7,000 29.88–35.72 Time out 335.10–365.94 3.61–4.04
8,000 53.12–57.56 Time out 499.67–508.16 4.87–5.49
9,000 79.15–93.71 Time out Time out 7.43–8.28
10,000 123.99–150.09 Time out Time out 7.90–8.74

Other algorithms not using canonical labeling techniques seem slower than nauty
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was allowed a maximum time of 600 seconds and we are convinced our machine
would report similar time values for saucy and nauty (Columns 3 and 4), i.e. the same
numbers multiplied by a constant. Notice that the values for the canonical labeling
algorithms represent only the time of processing one graph—finding an isomorphism
would also require labeling the second graph. To test GI-Ext, we first construct a
randomly-permuted copy of the input graph, and only then we apply the search on
both graphs.

Interesting conclusions can be drawn from Table 1. Only bliss and GI-Ext can
solve the largest graphs in a short time and they are both polynomial. It seems
that other approaches (without canonical labeling techniques) can not compete
in polynomial time—at least not well-known algorithms provided by the VFLib
Graph Matching Library (amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html). By
installing this well-coded library (provided by the graph database paper [16]), since
the input 3-regular graphs are also published on-line (via the bliss paper, www.tcs.hut.
fi/Software/benchmarks/ALENEX-2007/), one can easily check the timing of other
(non canonical labeling) algorithms, but we do not provide details here.

However, bliss obtains running times nearly inferior to O(|V|2) as it takes profit
from refined sparse data structures achieved from an engineering effort. Notice
that our GI-Ext implementation does not use sparse data structures, and so, it can
never reach a complexity below O(|V|2). GI-Ext executes K extension steps of total
complexity O(K · |E||V|) = O(K · 3|V|2) and, since K is in O(|V|) for these sparse 3-
regular graphs, the complexity of GI-Ext is in the region of O(|V|3). While saucy also
seems to run in O(|V|3), GI-Ext is better in terms of absolute times—and one should
be aware that the saucy column reports just the time of generating the automorphism
group (not the final labeling).

6.3.2 Dense Regular Graphs

It is important to also test dense regular graphs because GI-Ext is not (yet) optimized
for sparse structures. We tried several values of the degree d (at least 1

10 |V|) and the
hardest graphs were those with d = 1

2 |V| (for larger densities, one can complement
the graph). Therefore, we generated pairs of random regular graphs of degree 1

2 |V|
with |V| ranging from 1,000 to 20,000. We do not claim that these regular graphs
are generated uniformly at random, but the theory of generating such structures is a
difficult issue (see Appendix presenting the generation procedure).

Figure 3 plots the running time of finding the isomorphism between two copies of
a random regular graph (i.e. for each graph, we obtain a copy by randomly permuting
its vertices—as for all tested classes). This figure directly confirms that the running
time of the GI-Ext is polynomial. Note that GI-Ext is available on-line and it can be
very easily tested using several graph input formats.1

1www.lgi2a.univ-artois.fr/∼porumbel/giext/; there is also a permanent mirror (an exact copy) at
sites.google.com/site/danielporumbel/giext/. All provided results are obtained on a 2.79GHz com-
puter, by compiling the programs using gcc with the -O2 optimization flag.

http://amalf/i.dis.unina.it/graph/db/vf/lib-2.0/doc/vf/lib.html
http://www.tcs.hut.f/i/Software/benchmarks/ALENEX-2007/
http://www.tcs.hut.f/i/Software/benchmarks/ALENEX-2007/
http://www.lgi2a.univ-artois.fr/~porumbel/giext/
http://sites.google.com/site/danielporumbel/giext/
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6.4 Strongly Regular Graphs

The strongly-regular graphs represent the hardest instances, more difficult than
simply regular graphs. To the best of our knowledge, only two papers [22, 26] provide
results on such graphs with |V| > 100, and they do not claim to be polynomial.
However, efficient algorithms for strongly regular graphs seem to require canonical
labeling techniques (i.e. based on computing automorphism groups). In this section,
we provide however results on Paley dense strongly-regular graphs; these graphs
can be generated for any prime |V| of the form 4k + 1, and so, we can easily
investigate the run time as a function of |V|. Many other classes of strongly-regular
graphs are presented in the bliss paper, but we do not claim there are many
algorithms without canonical labeling techniques that compete well with bliss on this
data set.

Figure 4 shows the running time function for strongly-regular Paley graphs, giving
evidence that GI-Ext is able to solve small strongly-regular graphs (tens or hundreds
of vertices). While GI-Ext is not yet perfected to deal with this class, one might notice
that bliss or saucy are based on canonical labeling work which began 30 years ago
with nauty. We share the view of the saucy paper that the description of this theory
has to “delve into the depths of discrete mathematics”; GI-Ext is much simpler,
and so, it could be more easily (re-)implemented without requiring understanding
complex theories. In this sense, we consider the simplicity rather as an advantage
than as a drawback. Furthermore, the next section shows a different advantage over
canonical labeling: GI-Ext can also be employed for certain graph matching problems
arising naturally in practice. Indeed, since it does not depend on global structures
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Fig. 4 The running time of GI-Ext on strongly-regular Paley graphs

like the automorphism group, GI-Ext can also construct only a partial isomorphism
between two graphs,i.e. to (try to) find the largest set of vertex associations respecting
the isomorphism constraints.

6.5 Graph Matching Example—Partial Graph Isomorphism

Recall that the problem addressed by GI-Ext can actually be expressed as follows:
find the mapping h : V → V ′ such that f (h) is minimum—see also Eq. 3, Section 4.1.
If the input graphs are isomorphic, then the problem is equivalent to finding isomor-
phism h∗ such that f (h∗) = 0. But in the general case, minimizing f is equivalent with
minimizing the number of edges (in any of the two graphs) not associated to edges in
the other graph.

A mapping h : V → V ′ that satisfy Mij = Mh(i),h( j)∀i, j ∈ Ṽ is a Ṽ-partial isomor-
phism. We say that the largest set Ṽ verifying this property indicates the partial
isomorphism order: |Ṽ|

|V| . In this sense, an isomorphism is a partial isomorphism
of order 100%. Discovering partial isomorphisms could be very useful in certain
applications. For example, consider taking satellite images of an area at different
moments of time: if a new construction arises between the two moments, the
associated graphs are essentially identical with the only difference the one of the
graphs contain some additional vertices (corresponding to the new construction).
Establishing a partial isomorphism could be very useful to detect unchanged parts in
the two satellite images.

To test GI-Ext in finding partial isomorphisms, we consider the following problem.
Assume G and G′ are isomorphic via h∗ : V → V ′ and let G(U) be the subgraph
induced by a subset U . In practice, G(U) is obtained by erasing vertices V − U from
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V (along with their edges). In our tests, we will erase a number of vertices from 1
to 5%|V| and we (try to) construct a partial isomorphism on the remaining vertices
U . The operations needed to run exactly the same GI-Ext program on input graphs
G(U) and G′ are the following: (i) add |V| − |U | dummy singleton vertices to U
because the GI-Ext specification is written for graphs of equal order; (ii) disable the
matrix F of forbidden associations because we do not target exact isomorphism any
more; and (iii) run GI-Ext with a polynomial time stopping condition (allowing the
same amount of time as used by the extension procedure) and let hU the best solution
ever reached. We evaluate the successfulness of GI-Ext according to the order of
the partial isomorphism hU —it is essentially the pourcentage of vertices i such that
hU (i) = h∗(i).

Figure 5 plots the order of the partial isomorphism returned by GI-Ext, as a
function of the number of erased vertices |V − U |; the initial input graphs had
|V| = 1,000 and density 50%. A conclusion of this figure is that, if one erases a vertex
in one graph (i.e. |V − U | = 1), GI-Ext can still identify almost 100% of the initial
isomorphism. This is not possible with canonical labeling algorithms that depend on
computing the automorphism groups of the whole graphs.

Notice that associations i → h∗(i) are not regarded as “correct” when i is a
neighbor of a vertex in V − U . Indeed, such associations would not be isomorphic
for f because the edge structures around them are not the same (i ∈ V and h∗(i) ∈ V ′
have different degrees in G(U) and G′). Essentially, this is the reason GI-Ext can
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important isomorphic substructures (induced graphs), accounting for 80%|V| even after erasing 50
vertices (out of 1,000)
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not reconstruct the isomorphism on all non-erased vertices—the isomorphism can be
reconstructed only on the vertices not connected to the erased ones.

Most of the typical graph isomorphism algorithms work only on the whole graphs
and can not be adapted to partial isomorphism. The graph extension procedure con-
structs vertex extended labels not only to partition the vertices of an individual graph;
they also indicate pairs of vertices i ∈ V and i′ ∈ V ′ that can be put isomorphically

into correspondence. An association i
h→ i′ might satisfy the isomorphism constraints

only if i and i are compatible (see Definition 1). As such, the extension procedure has
a far more general applicability than pure graph isomorphism.

Gi-Ext is more adapted to partial isomorphism than to subgraph isomorphism
problems because partial isomorphism focuses only on induced subgraphs—i.e. not
general subgraphs, the whole structure on Ṽ is preserved via a partial isomorphism
h (GI-Ext is useful on identifying isomorphisms between this type of structures).
The problem from this section is more related to the maximum common subgraph
problem because it is reasonably to consider that the best partial isomorphism shares
many vertex associations with the solution of the maximum common subgraph
problem. Recall that, in this final experiment, we allow for the heuristic part the
same time as for the first polynomial steps. This results in a total polynomial time
theoretically bounded by O(|E| · |V|3)—but it is O(|V|2) in practice. However,
GI-Ext can deal with graphs with thousands of edges, while smaller graph sizes
are commonly considered in the literature of the maximum common subgraph
problem [11].

6.6 Final Remarks on Speed and Memory Requirements

In terms of memory costs, the spatial complexity of GI-Ext is O(|V|2) as we use
a bounded number of matrix structures of size |V| × |V| (we record only the last
matrix of the series M1, M2, . . . , MK). This is easily confirmed by experimentation:
GI-Ext requires about 30 × |V|2 bytes of free RAM. It is only the memory restriction
of our machine (16 GB) that prevented us from testing dense graphs with more than
20.000 vertices. For certain matrices we used 8-bit integers (i.e. for F), but we used
unsigned long 64-bit integers for the elements of M. However, for large values of
K, there might exist elements exceeding 264 − 1; therefore, we consider all addition
operations in the Arithmetic Modulo 264 (in our C++ implementation, the variables
are encoded so that 264 − 1 + 1 = 0). This observation does not change the fact that
f̄ (h∗) = 0 if h∗ is an isomorphism, because if Mi, j = M′

h(i),h( j), then Mi, j = M′
h(i),h( j)

(Modulo 264). However, it is still theoretically possible to have the Modulo equality
without the non-Modulo equality; this never happens in practice but we can easily
verify any reported f̄ solution with the objective function f (Eq. 3).

Finally, we note that the graph extension procedure can be easily parallelized.
That would skew the results more in GI-Ext’s favor, but not enough to change our
main conclusions. However, the goal of the paper is not to enter into such technical
speed-up discussions and we only mention that we roughly reduced by half the
running time by using 4 processors; all graphs from the library [16] could be solved
in less than one second. The openMp library provided easy-to-use directives for the
parallelization of the For loops of Algorithm 1—technical details about the parallel
program are also available on-line (see page 19, Footnote 1).



J Math Model Algor (2011) 10:119–143 141

7 Conclusion

To conclude, GI-Ext is a flexible algorithm, very useful for both pure isomorphism
and for certain more general matching problems. Experimental tests show that it
is effective in finding isomorphisms for several graph classes, including complete
benchmarks from other papers. While very recent GI canonical labeling algorithms
are based on work which began 30 years ago, we propose a viable new alternative
that competes well with these state-of-the-art methods. Although GI-Ext has the
inconvenience of not being exact, it has the advantage of being quite simple and it
can be implemented without needing deep mathematics. It can deal with difficult
(dense and regular graphs) with hundreds of millions, even billions of edges (more
than in many experiments reported by previous algorithms).

One of our main ideas is related to the O(|E| · |V|2) extension routine that is
used to construct complete extended graphs in polynomially bounded time—i.e.
O(|E| · |V|3). The complete extended structure is actually a hash code of the initial
graph; each extended vertex along with its extended edges encode a wealth of
information of the initial graph structure on a large proximity around this vertex.
While classical graph matching heuristic algorithms only (try to) reduce violated
constraints involving neighboring vertices, the extended graph enables GI-Ext to
detect and prevent a larger class of isomorphism violations, between apparently
compatible vertices—so as to seriously constrict the search space.

Last but not least, notice that, while we used the extension operations in con-
junction with a heuristic, the interest in complete extended graphs is not limited to a
heuristic context. Our extension techniques could be quite easily used to construct an
exact procedure, e.g. by replacing the local search with a branch and bound algorithm
or with an integer programming solver. In practical terms, the implementation would
pose however certain technical issues —e.g. classical integer data structures would
not be long enough to record elements of matrix M. Finally, notice that the matrix
F of incompatible associations can be inserted in other existing methods (including
canonical labeling algorithms) in order to enhance their performance.

Appendix: Simple Generation of Regular Graphs

To generate a pair of random regular graphs G and G′, we first construct a random
bijection σ : V → V ′ and all operations that we apply to vertex i ∈ V, will also be
applied to σ(i) ∈ V ′. The construction of G is incremental, i.e. a (d + 1)-regular graph
is constructed on top of a d-regular graph. Please note that if one needs a regular
graph of degree d >

|V|
2 , one can generate it using the complementary of a (|V| − d)-

regular graph; as such, it is enough to consider the case d ≤ |V|
2 .

To construct a (d + 1)-regular graph from a d-regular graph, let i and j be any two
(random) vertices of degree d. If {i, j} /∈ E, insert an edge between i and j and their
degree becomes d + 1. If {i, j} ∈ E, the algorithm searches an edge {i′, j′} such that:
(i) {i, i′} /∈ E and (ii) { j, j′} /∈ E (such an edge was always found, there are more than
(|V| − d)2 > (

|V|
2 )2 pairs (i′, j′) satisfying (i)–(ii) and they are not all unlinked). The

last operation consists of incrementing the degree of i and j by linking i to i′, j to j′
and by disconnecting i′ and j′.
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In this manner, we were able to increment the degree of any two pairs of vertices
i and j of degree d. We repeat this operation |V|

2 times until all vertices increment
their degree (|V| needs to be even), and, thus, the d-regular graph is transformed
into a (d + 1)-regular graph. Examples of generated graphs are publicly available on
the website with the source code (see Footnote 1, page 19), both in an adjacency
matrix format and in a list-of-edges format. Although difficult to theoretically prove,
one can see these graphs have and important random component and no specific
particularities.
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