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Abstract A new n log n algorithm for the scheduling problem of n independent jobs
on m identical parallel machines with minimum makespan objective is proposed and
its worst-case performance ratio is estimated. The algorithm iteratively combines
partial solutions that are obtained by partitioning the set of jobs into suitable families
of subsets. The computational behavior on three families of instances taken from the
literature provided interesting results.
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1 Introduction

In this paper, the scheduling problem of n independent jobs on m parallel machines
is considered. All processors are assumed to be identical, that is, the time required
to execute a job does not depend on the processor used. Each job may be scheduled
independently of the others and the execution, once started, cannot be interrupted
(nonpreemptive environment). The objective is to minimize the makespan, that
is, the total time required to complete all jobs. Following the standard three field
scheduling problems classification scheme of Graham et al. [13], this problem is
denoted as P||Cmax.
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Despite the simplicity of the statement, the problem is hard to solve: it has
been proven that P||Cmax is NP-hard in the strong sense for an arbitrary m ≥ 2
[10, 18]. For large instances, one needs to rely on good heuristic algorithms to provide
near-optimal results. Heuristic algorithms are classified into constructive algorithms
and improvement algorithms. The list scheduling family of Graham [11, 12], which
includes the Largest Processing Time (LPT), and the MultiFit Decreasing (MFD)
algorithm of Coffman et al. [4], belongs to the first category. Hochbaum and Shmoys
[14] presented a polynomial approximation scheme (PTAS) that seems to be, in some
sense, the best possible. More precisely, for each ε, Hochbaum and Shmoys provided
an algorithm that runs in O(( n

ε
)

1
ε2 )-time and has a relative error at most ε. The

LPT algorithm runs in O(nlog(n))-time and its worst-case ratio is equal to 1 + m−1
3m ,

whereas the MFD algorithm runs in O(nlog(n) + tnm)-time and a worst-case ratio
is equal to 1 + 2

11 + 1
2t [9, 19], where t represents the number of times that a bin

packing problem is solved by using the Lowest Fit Decreasing algorithm (Coffman,
Garey and Johnson). Improvement algorithms have been proposed, for example,
by França et al. [6], Anderson et al. [1] and Frangioni et al. [8]. Surveys have been
provided by Cheng and Sin [3], Lawler et al. [15] and Chen et al. [2]; an overview of
existing results and of recent research areas is presented in the handbook edited by
Leung [16].

Paletta and Pietramala [17] provided an approximation algorithm that firstly
constructs a set of disjoint partial solutions and then iteratively combines the partial
solutions in order to get a feasible solution to the scheduling problem. The initial
partial solutions are obtained by partitioning the set of jobs into p families of subsets
satisfying suitable properties in such a way that the elements of the related processing
times m-set are as close to each other as possible.

In this paper, the algorithm of Paletta and Pietramala is modified by changing
both the procedure used to partition the jobs into partial solutions and the rule
used for selecting which two partial solutions are to be combined; the proofs of the
assertions on the algorithm are simplified, and, furthermore, the same worst-case
performance ratio is obtained. Moreover, the algorithm runs in O(nlog(n))-time as
the LPT algorithm.

The organization of this paper is as follows. In Section 2 the definition and
the properties of the used partitions of the jobs are introduced. In Section 3 the
description of the algorithm is contained. In Section 4 the proof of the assertions on
the performance of the algorithm is given. Finally, the computational results obtained
on three families of instances taken from the literature are presented in Section 5.

2 Definitions and Preliminary Results

Let I = {1, ..., i, ..., n} be the set of n independent jobs, M = {1, ..., j, ..., m} be the set
of m identical parallel processors and A = {t1, ..., ti, ..., tn} be the set of processing
times of the jobs.

The set of jobs is partitioned in m · p subsets Pr
j, r = 1, . . . , p, j = 1, . . . , m in such

a way that in the p-family S = {S1, . . . , Sr, . . . , Sp}, each Sr = {Pr
1, . . . , Pr

j, . . . , Pr
m}

represents the rth partial solution of the scheduling problem and in Sr, each Pr
j

represents the set of jobs that must be performed by the machine j. Each Sr has
associated the m-set Tr = {tr

1, . . . , tr
j, . . . , tr

m}, where tr
j := ∑

i∈Pr
j
ti represents the total
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processing time needed to the jth machine to perform all the jobs that are assigned
to it, that is, all the jobs belonging to Pr

j. The gap between the maximum and the
minimum element of the m-set Tr is denoted by �r.

Definition 2.1 A p-family S = {S1, . . . , Sr, . . . , Sp} is called almost balanced p-family
if the following properties are satisfied:

(a) the m elements of each Tr, r = 1, . . . , p, are sorted in a nonincreasing order
with respect to their size, that is, tr

1 ≥ . . . ≥ tr
j ≥ . . . ≥ tr

m;
(b) tr

1 ≤ 2tr
m , r = 1, . . . , p − 1.

Example 2.2 Consider the instance: I = {1, 2, ..., 28}, M = {1, 2, 3, 4, 5} and A =
{66, 64, 61, 60, 56, 47, 47, 46, 40, 39, 30, 30, 29, 26, 23, 22, 21, 15, 15, 11, 9, 9, 8, 6, 6, 2,

2, 2}.
The 4-family

S =

⎧
⎪⎪⎨

⎪⎪⎩

S1 = {1, {5, 22}, 2, {4, 28}, 3},
S2 = {6, 7, {10, 23}, 8, {9, 24}},
S3 = {11, 12, 13, {15, 25}, 14},
S4 = {16, 17, {20, 21}, {19, 26}, {18, 27}}

⎫
⎪⎪⎬

⎪⎪⎭
,

is an almost balanced 4-family of partial solutions. The processing times 5-sets asso-
ciated to the partial solutions are T1 = {66, 56 + 9, 64, 60 + 2, 61}, T2 = {47, 47, 39 +
8, 46, 40 + 6}, T3 = {30, 30, 29, 23 + 6, 26} and T4 = {22, 21, 11 + 9, 15 + 2, 15 + 2}.

Definition 2.3 Let Sr and Sq be two partial solutions in an almost balanced family.
The combination among Sr and Sq is defined as the m-family

S
r � S

q = {Pr
1 ∪ Pq

m, . . . , Pr
j ∪ Pq

m− j+1, . . . , Pr
m ∪ Pq

1}

and the sum between the associated processing times m-sets Tr and Tq as the (not
necessarily ordered) m-set Tr ⊕ Tq = {tr

1 + tq
m, . . . , tr

j + tq
m− j+1, . . . , tr

m + tq
1 }.

Note that the partial solution Sr � Sq is not related to an almost balanced family,
because the elements of Tr ⊕ Tq are not necessarily sorted in a decreasing order with
respect to their size.

Definition 2.4 Let Tr and Tq be the processing times m-sets of the partial solutions
Sr and Sq belonging to an almost balanced family. The ordered sum between Tr and
Tq is defined as the ordered m-set Ord(Tr ⊕ Tq) whose elements are the elements
of Tr ⊕ Tq sorted in a non increasing order with respect to their size and the ordered
combination among Sr and Sq as the m-family Ord(Sr � Sq) whose sets are those of
Sr � Sq sorted so that the jth element of Ord(Tr ⊕ Tq) represents the total processing
time of the jth job-set of Ord(Sr � Sq).
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Example 2.5 Let T1 and T4 be the processing times sets of the partial solutions S1

and S4 related to the almost balanced family of Example 2.2, then

T1 ⊕ T4 = {66 + 17, 65 + 17, 64 + 20, 62 + 21, 61 + 22} = {83, 82, 84, 83, 83},
S

1 � S
4 = {{1, 18, 27}, {5, 22, 19, 26}, {2, 20, 21}, {4, 28, 17}, {3, 16}},

Ord(T1 ⊕ T4) = {84, 83, 83, 83, 82},
Ord(S1 � S

4) = {{2, 20, 21}, {1, 18, 27}, {4, 28, 17}, {3, 16}, {5, 22, 19, 26}}.

In the next proposition is shown that the gap related to the combined partial
solution does not increase with respect to the gaps related to the initial partial
solutions.

Proposition 2.6 Let Tr and Tq be the processing times m-sets of the partial solutions
Sr and Sq belonging to an almost balanced family of partial solutions. Then �Tr⊕Tq ≤
max{�r, �q}.

Proof Let max{(Tr ⊕Tq)}= tr
k+tq

m−k+1, for some k, 1≤k≤m, and min{(Tr ⊕Tq)} =
tr
l + tq

m−l+1, for some l, 1 ≤ l ≤ m. Let

�(Tr⊕Tq) = (tr
k + tq

m−k+1) − (tr
l + tq

m−l+1) = (tr
k − tr

l ) + (tq
m−k+1 − tq

m−l+1).

Since tr
k − tr

l ≥ 0 can or cannot occur, both cases will be examined separately.
If tr

k − tr
l ≥ 0, as an immediate consequence of the property (a) in Definition 2.1 it

follows that tq
m−k+1 − tq

m−l+1 ≤ 0. From this �Tr⊕Tq = (tr
k − tr

l ) + (tq
m−k+1 − tq

m−l+1) ≤
tr
k − tr

l ≤ tr
1 − tr

m = �r.

If tr
k − tr

l ≤ 0, it follows that tq
m−k+1 − tq

m−l+1 ≥ 0. Then �Tr⊕Tq ≤ tq
m−k+1 − tq

m−l+1 ≤
tq
1 − tq

m = �q. Consequently, �Tr⊕Tq ≤ max{�r,�q}. �	

Remark 2.7 Starting from an almost balanced family of partial solutions, the
ordered combination gives an almost balanced family of partial solutions. In
fact, the property (a) is guaranteed by the definition of ordered combination
operator. Moreover, let Tr and Tq be the processing times m-sets of the partial
solutions Sr and Sq. Let max{(Tr ⊕ Tq)} = tr

k + tq
m−k+1, for some k, 1 ≤ k ≤ m, and

min{(Tr ⊕ Tq)} = tr
l + tq

m−l+1, for some l, 1 ≤ l ≤ m. Then, max{(Tr ⊕ Tq)} = tr
k+

tq
m−k+1 ≤ (property (a)) ≤ tr

1 + tq
1 ≤ (property (b)) ≤ 2tr

m + 2tq
m ≤ (property (a)) ≤

2(tr
l + tq

m−l+1) = 2 min{(Tr ⊕ Tq)}.

3 Algorithms

The proposed SPS (Sum Partial Solutions) algorithm firstly partitions the jobs by
using a procedure, named DPS (Determining Partial Solutions), that obtains an
almost balanced p-family S of initial partial solutions to the scheduling problem.
Then, at the iteration j, SPS selects two partial solutions and combines them with
the ordered combination operator, obtaining a single partial solution. The algorithm
continues to iterate until a feasible solution of the scheduling problem is obtained.
Both the procedure, used to partition the jobs, and the rule, used for selecting which
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two partial solutions are to be combined, are designed in order to reduce as much
as possible the gap between the maximum and minimum elements of the processing
times m-set associated to a partial solution.

The DPS procedure firstly orders the jobs so that t1 ≥ . . . ≥ ti ≥ . . . ≥ tn. Then it
builds an almost balanced p-family of initial partial solutions by processing the jobs
in turn, starting with the job 1. Now, we suppose that the job i must be inserted. Then
DPS selects a initial partial solution that has the biggest gap between the processing
times of the first and the last job-sets, say Sq. If ti ≤ �q, then the job i is inserted in
last job-set of Sq and the job-sets are sorted in a nonincreasing order with respect to
their processing times. If ti > �q, then the job i is inserted in the first job-set of a new
partial solution.

The DPS procedure can be formally described as follows.

DPS Procedure

Initialization

– Order the jobs so that t1 ≥ . . . ≥ ti ≥ . . . ≥ tn. Set p = 1 (p = number of initial
partial solutions);

– Consider Sp = {Pp
1 = {1}, Pp

2 = ∅2, . . . , Pp
m = ∅m}, T p = {tp

1 = t1, tp
2 = 0, . . . ,

t p
m = 0};

– Set �p = t1.

Construction

For each i = 2, . . . , n

– Compute a processing times m-set with the biggest gap, say Tr;

– If ti ≤ �r, then

– tr
m = tr

m + ti, Pr
m = Pr

m ∪ {i}, sort the elements of the m−set Tr so that
tr
1 ≥ . . . ≥ tr

j ≥ . . . ≥ tr
m and arrange the family Sr so that tr

j is the total
time required by the jobs belonging to Pr

j;
– �r = tr

1 − tr
m;

– End If ti ≤ �r;
– If ti > �r, then

– p = p + 1, Sp = {Pp
1 = {i}, Pp

2 = ∅2, . . . , Pp
m = ∅m}, T p = {tp

1 =
ti, , tp

2 = 0, . . . , tp
m = 0};

– �p = tp
1 − tp

m;

– End If ti > �r;

End For i.

Proposition 3.1 The DPS procedure produces an almost balanced p-family that
satisfies

(1) t1
1 ≥ . . . ≥ t1

m ≥ t2
1 ≥ . . . ≥ tp−1

m ≥ tp
1 ≥ . . . ≥ tp

m;
(2) the first job-set of each partial solution is a singleton;



44 J Math Model Algor (2010) 9:39–51

(3) tr
j, j = 1, . . . , m and r = 1, . . . , p − 1, is equal to the sum of at least an ti ∈ A such

that ti ≥ min
q=1,...,p

{tq
1 } = tp

1 ;

(4) max{�1, . . . , �p} ≤ tp
1 ;

Proof The assertions (1)–(4) follow from the construction of the algorithm.
Also, by construction, for r = 1, ..., p − 1, �r < tp

1 , that is tr
1 − tr

m < tp
1 ≤ tr

m. This
implies tr

1 ≤ 2tr
m. �	

Since the number p of initial partial solutions that the DPS procedure returns is
involved in our approximation ratio, we give some upper bounds for p.

Proposition 3.2 We assume that t1 ≥ . . . ≥ ti ≥ . . . ≥ tn.

(a) The DPS procedure returns p ≥ 1
mt1

∑
i=1,...,n ti initial partial solutions.

(b) Let α := t1
tn

. The DPS procedure returns p ≥ n
αm initial partial solutions.

(c) For all instances such that t1 < 2tn, the DPS procedure returns p =
⌈

n
m

⌉
initial

partial solutions (here �x� denotes the smallest integer not less than x).

Proof

Statement (a) From (1) and (2) of Proposition 3.1, it follows that∑
j=1,...,m tr

j ≤ mtr
1 ≤ mt1

1 = mt1, r = 1, . . . , p. Hence
∑

i=1,...,n ti =∑
r=1,...,p

∑
j=1,...,m tr

j ≤ ∑
r=1,...,p mt1 ≤ pmt1.

Statement (b) By using (a) we have that

p ≥ 1

mt1

∑

i=1,...,n

ti ≥ ntn
mt1

= n
αm

.

Statement (c) Since t1 − tn < 2tn − tn = tn, DPS returns an almost balanced p-
family of initial partial solutions such that every Pr

j, r = 1, . . . , p and

j = 1, . . . , m, is a singleton. It follows that z =
⌈

n
m

⌉
.

�	

Remark 3.3 The family of partial solutions of Examples 2.2 has been determined
using the DPS procedure.

Now, Proposition 2.6 ensures that the smaller are the gaps associated with the
initial partial solutions in S, the smaller are the gaps associated to the combined
partial solutions. Moreover, the smaller is the gap associated with the feasible
solution, obtained if the ordered combination operator is used p − 1 times, and
the smaller is the heuristic algorithm error. The SPS algorithm, at the iteration j,
selects two partial solutions which have the biggest gaps and combines them with
the ordered combination operator, obtaining a single partial solution. The algorithm
continues to run, exactly p − 1 times, using the same rule and, at the end, returns a
solution of the problem. The SPS algorithm can be summarized as follows.
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SPS Algorithm

Initialization

– Use the DPS procedure to obtain an almost balanced p-family S of initial partial
solutions. If DPS returns with only one partial solution, then Stop (the algorithm
provides an optimal solution).

Construction

For j = 1, . . . , p − 1

– Select two ordered partial solutions belonging to S with associated biggest
gaps, say Sl and Sk;

– Compute T p+ j=Ord(Tl ⊕ Tk), Sp+ j =Ord(Sl � Sk) and �p+ j = tp+ j
1 − tp+ j

m ;
– Set S=(S\{Sl, Sk}) ∪ Sp+ j;

End For j.

It is routine to see that the SPS algorithm runs in O(nlog(n))-time. This is the
running time of the DPS procedure.

4 The Performance Ratio of SPS Algorithm

Let Cmax = t2p−1
1 denote the makespan of the SPS solution and C∗

max denote the
makespan of the optimal solution. As before, �2p−1 = t2p−1

1 − t2p−1
m denotes the gap

of the m-set T2p−1.
From now on we assume that t1 ≥ . . . ≥ ti ≥ . . . ≥ tn.

Theorem 4.1 Let A = {t1, ..., ti, ..., tn} be the set of processing times of the jobs I =
{1, ..., i, ..., n}. Let S be an almost balanced p-family of initial partial solutions given
by the DPS procedure. Then

Cmax

C∗
max

≤ 1 + m − 1

m
· 1

p
if p > 1

and

Cmax = C∗
max if p = 1.

Proof If the DPS procedure returns only the m-set T1, we have an optimal solution.
In fact, t1

1 = t1 = max{ti} and C∗
max ≥ t1.

Let p > 1. In view of (3) of Proposition 3.1, the number of elements ti ∈ A such
that ti ≥ tp

1 in t1
1, . . . , t1

m, . . . , tp−1
1 , . . . , tp−1

m , is at least m(p − 1). These m(p − 1) ele-
ments ti ≥ tp

1 joined with tp
1 , provides m(p − 1) + 1 jobs with processing times greater

or equal to t p
1 (ignoring all the other jobs). Then C∗

max ≥
⌈

m(p−1)+1
m

⌉
tp
1 =

⌈
(p − 1) +

1
m

⌉
tp
1 = ptp

1 . Moreover, one has �2p−1 ≤ (Proposition 2.6) ≤ max{�1, . . . , �p} ≤
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((4) of Proposition 3.1) ≤ tp
1 , and therefore C∗

max ≥ p�2p−1. Since C∗
max ≥ t2p−1

m +
1
m�2p−1, it follows that

Cmax = t2p−1
m +�2p−1 = t2p−1

m + �2p−1− 1

m
�2p−1 + 1

m
�2p−1 ≤ C∗

max + (1 − 1

m
)�2p−1.

Then Cmax
C∗

max
≤ 1 + 1

C∗
max

(1 − 1
m )�2p−1 ≤ 1 + 1

p�2p−1 (1 − 1
m )�2p−1 = 1 + m−1

m · 1
p . �	

Corollary 4.2 For all instances so that t1 < 2tn, the SPS algorithm returns a solution
with

Cmax

C∗
max

≤ 1 + m − 1

m
⌈

n
m

⌉ .

Proof The thesis immediately follows from Proposition 3.2 and Theorem 4.1 �	

The following example shows that the worst-case performance ratio of our algo-
rithm cannot be improved.

Example 4.3 We consider the instance: I = {1, 2, 3, 4, 5}, M = {1, 2} and A =
{3, 3, 2, 2, 2}. The optimal solution is obtained when jobs 1 and 2 are performed by
machine 1 and jobs 3, 4 and 5 are performed by machine 2 so the makespan is equal
to 6.

The DPS procedure returns the almost balanced 3-family

S = {S1 = {{1}, {2}}, S
2 = {{3}, {4}}, S

3 = {{5},∅}}
of initial partial solutions and the associated processing times 2-sets T1 = {3, 3}, T2 =
{2, 2} and T3 = {2, 0}. Altogether, the SPS algorithm returns

S
5 = {{1, 4, 5}, {2, 3}} and T5 = {3 + 2 + 2, 3 + 2} = {7, 5}

and the related makespan is equal to 7. Then

7

6
= Cmax

C∗
max

≤ 1 + 1

2
× 1

3
.

Remark 4.4 The estimate of the worst-case performance ratio of our algorithm
depends on the number p that is a priori unknown. However, from Proposition 3.2
we have, for p > 1,

Cmax

C∗
max

≤ 1 + m − 1

m
· 1

p
≤ 1 + (m − 1)t1

ntn
,

that is, a worst-case performance ratio equal to 1 + 1
c (if p > 1), with c = ntn

(m−1)t1
a

priori determined. Therefore, in the instances in which 1
c ≤ 2

11 , our algorithm works
very well compared to the LPT and MFD algorithms. This happens, for example,
when n > 6(m − 1) t1

tn
.

Also, our bound is comparable with 1 + m−1
mx (where x is the least number of jobs

on any processor), that is the worst-case performance bound given by Coffman and
Sethi [5] for the LPT approach.
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5 Computational Results

The Instances In order to compare the SPS heuristic with other algorithms, three
families of instances taken from the literature, are used for the computational
investigation. These instances have quite a different structure.

In the first two families the number of machines m is 5, 10, 25, the number
of jobs n is 50, 100, 500, 1000 (for m = 5 and n = 10 is also tested), and the the
integer processing times belong to the intervals [1, 100], [1, 1000] and [1, 10000]. Ten
instances are randomly generated for each choice of m, n and of the processing time
intervals, for a total of 390 instances within each family.

The two families differ in shape of the distribution of processing times. In the first
family (UNIFORM), which was presented by França et al., the processing times are
generated by using an uniform distribution.

The generator of the second family (NONUNIFORM), which was presented by
Frangioni et al. [7, 8], given an interval [a, b ] of the processing times, produces
instances where 98% of the processing times are uniformly distributed in the interval
[(b − a)0.9, b ], while the remaining processing times fall within the interval [a, (b −
a)0.02].

Both generators are available from http://www.di.unipi.it/di/groups/optimize/
Data/index.html. The third family of instances is obtained from several difficult
bin packing instances, which are available at the OR-Library of J.E. Beasley,
from http://mscmga.ms.ic.ac.uk/jeb/orlib/binpackinfo.html. In this family, denoted
BINPACK, the number of jobs n is 120, 250, 500, 1000, the processing times are
uniformly distributed in {20, 100} and the number of machines m is the number of
bins in the best known solution of the bin packing instances. Twenty instances are
generated for each choice of n, for a total of 80 instances.

Plan of the experimentation The SPS algorithm is tested on the three families of
instances and compared with the classical LPT heuristic of Graham, the composite 3-
PHASE heuristic of França et al. and the improvement 1-SPT algorithm of Frangioni
et al.

The results of the MPS algorithm of Paletta and Pietramala are not reported
because are comparable to the ones obtained using the LPT.

The results reported by Frangioni et al. [7] for the 3-PHASE algorithm, are
utilized in this paper, since the same instances are used in this paper. These results
does not include the number of instances solved by optimality.

Results are averaged for a group of 10 instances and are given in terms of the
relative error with respect to the lower bound

L2 = max

⎧
⎨

⎩

⎡

⎢
⎢
⎢

1

m

∑

i=1,...,n

ti

⎤

⎥
⎥
⎥

, t1, tm + tm+1

⎫
⎬

⎭
,

where t1 ≥ t2 ≥ . . . ≥ tn.
In the Tables 1–3, columns LPT, 3-PHASE, 1-SPT and SPS, describe the results

of the LPT heuristic, of the algorithm of França et al., of the algorithm designed
by Frangioni et al. and of the algorithm here proposed. The number of instances in
which the algorithms obtain the makespan equal to the lower bound, representing
instances solved to optimality, is reported in column opt.
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Table 3 Computational
results for BINPACK
instances

m n LPT 1-SPT SPS

gap gap gap

48 120 1.16e-01 2.30e-02 2.96e-02
50 120 1.33e-01 1.90e-02 3.04e-02
102 250 1.20e-01 2.28e-02 2.54e-02
102 250 1.42e-01 1.94e-02 2.34e-02
203 500 1.26e-01 2.48e-02 2.60e-02
200 500 1.41e-01 1.33e-02 2.93e-02
402 1000 1.32e-01 1.80e-02 2.87e-02
399 1000 1.35e-01 2.67e-02 2.60e-02

All the instances of the three families are solved so quickly by the SPS algorithm
that the running time in which the makespan is obtained, is not reported. The SPS
algorithm is coded in C and all tests are executed on a Pentium 3 machine.

Computational results The computational results obtained using the SPS algorithm
are very encouraging.

UNIFORM instances are known to be efficiently approached with the LPT and
3-PHASE algorithms. LPT usually obtains low gaps, and solves to optimality a fair
number of instances, while 3-PHASE offers more accurate results than LPT. The
SPS algorithm noticeably improves LPT, and in 27 out of 39 cases the average
relative error of SPS is equal or less than the one given by the more accurate 3-
PHASE. Moreover, when the ratio n

m is large, SPS provides an optimal solution
almost always. The results for UNIFORM instances are shown in Table 1.

For NONUNIFORM instances the average relative error of SPS is always slightly
lower than the average relative error of LPT and comparable to those of 3-PHASE,
especially when the ratio n

m is large. The results for NONUNIFORM instances are
shown in Table 2.

For BINPACK instances the average relative error of SPS is always lower than
the average relative error of LPT and comparable to those of 3-PHASE. In these
instances the ratio n

m is small, but the same happens for the the ratio t1
tm

. The results
for BINPACK instances are shown in Table 3.

6 Conclusions

The paper considers the problem of scheduling independent jobs on identical parallel
machines with the objective to minimize the makespan, that is the maximum finishing
time over all machines. For this problem, a new nlogn algorithm is presented, that
firstly constructs a set of partial solutions and secondly iteratively combines them to
get a feasible solution to the scheduling problem. A worst-case performance ratio is
also given that depends on the number p of initial partial solutions.

The presented algorithm is capable of producing good quality solutions for all
classes of instances used in the computational investigation. The tests show that the
SPS algorithm outperforms the LPT heuristic and is comparable to the composite
3-PHASE heuristic.
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